
Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

A Quasi-Experimental Evaluation of Teaching Software

Testing in Software Quality Assurance Subject during a

Post-Graduate Computer Science Course

https://doi.org/10.3991/ijet.v17i05.25673

Isaac Souza Elgrably(), Sandro Ronaldo Bezerra Oliveira
Graduate Program in Computer Science (PPGCC), Federal University of Pará (UFPA), Pará,

Brazil

isaacelgrably@gmail.com

Abstract—Software testing is regarded as a key activity in the software de-

velopment cycle, as it helps information technology professionals to design

good quality software. Thus, this is an essential activity for the software indus-

try, although with all its nuances high priority is still not being given to learning

about it at an academic level. The purpose of this work is to investigate a teach-

ing strategy for software testing which involves acquiring academic skills with-

in a curriculum based on active teaching methodologies. A teaching model was

designed for this to coordinate the different areas of a subject, and then a con-

trolled quasi-experiment was carried out in a post-graduate course to evaluate

the application of this model. The results obtained demonstrate that there was a

considerable learning gain in the experimental group that adopted the teaching

approach, when compared with the control group that relied on a traditional ap-

proach. The student t test was employed to determine the learning efficiency.

Keywords—software testing, software engineering, software engineering edu-

cation, active teaching methodologies

1 Introduction

Software testing plays a critical role in both building software quality and deter-

mining whether or not the desired quality has been achieved. An improvement in

quality is essential and a focus on best practices and emerging technologies can help

to enhance performance [1].

Recent literature has shown that there is a need to teach topics related to software

testing in institutions in a more active and practical way. In addition to technical

knowledge, social skills should also be taught to students [2], [3]. Vam Damn [4]

states that, as well as having technical skills, software testers, must also have social

skills and Veenendaal [5] stresses that testers must have personal skills so that they

can influence people and communicate in a way that makes them feel they are an

essential, part of a software project.

For this reason, in this study, a teaching approach was adopted for software testing

that was based on active teaching methodologies and aimed at making improvements.

iJET ‒ Vol. 17, No. 05, 2022 57

https://doi.org/10.3991/ijet.v17i05.25673

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

This is an ongoing study that is being carried out by the authors, and is underpinned

by a number of factors that emerged from previous studies. These include the follow-

ing: (i) a systematic mapping that helped to locate topics and academic content related

to software tests [6], (ii) an academic curriculum (syllabus) was drawn up that was

designed for teaching Software Testing [7], and also served as a knowledge manage-

ment instrument that could be assessed by the control and experimental groups; (iii) a

teaching plan based on an active methodology [8] together with strategies adopted to

optimize the students' learning experience. These were employed as a means of teach-

ing the topics in the experimental group, which had to be coordinated by the teaching

model designed for this work, (iv) there was a diagnosis of some aspects of software

testing/ teaching in the main Brazilian universities [9], and, finally, (v) after the ex-

perimental group was formed, there were several findings and good practices for

remote teaching based on active methods [10]. When taken together, these factors

served as the basis for conducting the quasi-experiment which is outlined in this arti-

cle.

The main Research Question (RQ) of this work is designed to address the chal-

lenge of assessing the academic skills required for the education of students. It can be

stated as follows: If professors in Software Engineering courses employ a set of active

teaching methodologies and collaborative teaching practices instead of adopting tradi-

tional approaches, will students be able to acquire more academic competences relat-

ed to Software Testing?

This question will be broken down into 4 other research questions, (shown in Sec-

tion 5.2), to analyze each teaching unit adopted in the syllabus on an individual basis.

A quasi-experiment was conducted with postgraduate students enrolled in a graduate

computer science program to learn software quality with a view to comparing the

learning effectiveness of the newly designed teaching approach with that of the results

obtained from a more traditional pedagogical approach, (similar to [11] but without

the use of pre-tests). The results of the quasi-experiment showed that there was a

considerable difference between the degrees of learning effectiveness, since the new

teaching approach obtained better results than those obtained from traditional teach-

ing.

The objective of this work is to show the learning gain of students when a teaching

approach is adopted that is based on the use of active methodologies, while taking

into account that the experimental and control classes used the same syllabus [7] and

both focused on teaching content related to software testing.

2 Teaching tests for computer students

The Brazilian Computer Society (SBC) states in its curriculum guidelines for train-

ing that academic subjects in Brazilian institutions should give priority to the learning

of skills aimed at personal development rather than the assimilation of traditional

content, and ensure that these skills are fully acquired [12].

Computing Curricula 2020 (CC2020) is an initiative that was launched jointly by

several professionals in computing, to compile and summarize the current curricular

58 http://www.i-jet.org

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

guidelines for academic programs that run Bachelor Degree courses in Computing, as

well as planning future curricular guidelines [13].

The range of academic competences taken from the national curricular guidelines

of the Ministry of Education of Brazil - MEC [14] was selected for this work, with t

the asset mapping compiled in [6] being used as a benchmark. The selected compe-

tences are outlined below:

1. Specify, design, implement, maintain and evaluate computer systems, by employ-

ing appropriate theories, practices and tools,

2. Employ methodologies based on criteria that can ensure and sustain data quality

throughout all the developmental stages of a computational solution,

3. Plan, specify, design, implement, test, check and validate computer systems,

4. Understand and apply processes, techniques and procedures for the software con-

struction, evolution and evaluation,

5. Evaluate the quality of Software Systems, and

6. Design, apply and validate principles, standards and best practices in Software de-

velopment.

2.1 Objectives, syllabus and teaching plan

The ACM / IEEE – Association for Computing Machinery / Institute of Electrical

and Electronics Engineers guide [15] states that there is no single formula for devising

a perfect syllabus for subjects in Computing, although there are some specific rec-

ommendations and strategic suggestions in the report that are useful for a wide range

of institutions.

Academic curricula in computing must be constantly updated, so they can keep

abreast with the constantly evolving needs of the software industry. The methods of

learning and academic content must also be updated so that students can acquire mar-

ket-oriented job skills [9], [16].

Once the required skills had been determined, it was possible to form a syllabus

that could include all the necessary subjects [9]. It was suggested that knowledge

could be disseminated in a progressive way more effectively, if the content referring

to software tests was divided into 4 teaching units, as can be seen in Table 1.

Table 1. Syllabus units

Teaching

Units
Objective

Related

Competences

Software

Engineering

To provide a basic theoretical knowledge of testing and quality and concep-

tualize a number of testing terms, models and practices.
(1), (4)

Software

Construction

This teaching topic is designed to formulate concepts for identifying com-
mon errors, establishing good coding practices, defining peer code review

principles, and refactoring.

(2), (3), (6)

Quality

This teaching topic is designed to formulate concepts for building testable

projects, analyzing evolutionary and agile requirements, and preparing test

cases.

(1), (2), (4),

(6)

Software These will consolidate the knowledge acquired in the previous units; when (1), (2), (3),

iJET ‒ Vol. 17, No. 05, 2022 59

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

Teaching

Units
Objective

Related

Competences

Tests put into practice, this teaching unit must be used with the maximum number

of practical teaching strategies.

(4), (5), (6)

A teaching plan was drawn up so that the syllabus could be put into effect, and the

academic content linked to the teaching methodologies and levels of learning. Each

teaching methodology has its own learning objectives, based on Bloom's revised tax-

onomy [17].

Table 2 outlines the teaching topics and the methodologies used, as well as the

predicted results and the expected learning levels for each topic. The next section

explains how these parameters were derived from the methodology employed.

Table 2. Teaching topics, expected results and learning levels in units

Teaching Units Topics Expected Results Learning Levels

1 Software
Engineering

1.1 Introduction
to Testing and

Quality

The students must know the basic concepts of
software engineering when related to testing and

quality control.

Remember /

Factual

The students should be able to correlate the relation-

ship between test content and computational prob-

lems.

Understand /
Procedural

1.2 Introduction

to software

creation and its
developmental

methods

The students must understand the software creation
process.

Understand/
Procedural

The students should be able to analyze computation-
al problems and make decisions which can assist in

solving them.

Analyze / Con-

ceptual

The students should be able to evaluate solutions

and make decisions based on their knowledge.

Evaluate / Factu-

al

The students must be able to plan, build and correct

computational solutions.

Create / Proce-

dural

2 Software

Construction

2.1 Software

Creation Con-
cepts

The student must know, the concepts of software
construction and be able to differentiate between

them.

Remember /
Factual and

Conceptual

The students must know the basic concepts and

work products related to software creation and how
they apply to testing.

Understand /

Factual

Students should be able to evaluate the different
concepts that they have learned and their relation-

ships, dependencies and complementary features.

Evaluate / Con-

ceptual

2.2 Definition
and implemen-

tation of defen-

sive program-
ming techniques

and software

maintainability

The students must recognize situations that are

suitable for the application of good coding practices.

Remember /

Conceptual

The students must be able to know and handle

strategies, as well as understanding best practices
for software evolution and maintenance.

Analyze / Factual

and Procedural

The students must be able to make adjustments and

improvements to achieve computational solutions.

Create / Meta-

cognitive

3 Quality
3.1 Software
quality concepts

Students should know the basic concepts of software

quality and how to relate them to what was learned

previously.

Remember /
Factual

60 http://www.i-jet.org

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

Teaching Units Topics Expected Results Learning Levels

3.2 Software
quality assur-

ance strategies

aligned with
tests

Students should understand the use of design pat-

terns in software construction.

Remember /

Conceptual

Students must understand the relationship between

requirements and tests so that they can create testa-
ble requirements.

Understand /

Conceptual

Students must be able to find solutions by taking
into account the concepts and practices of testing,

construction and quality assurance.

Analyze / Factual

Students should be able to apply the knowledge they

have acquired in the subject and find practical
solutions to computational problems.

Apply / Proce-

dural and Meta-
cognitive

4 Software Test

4.1 Initial

concepts for
adopting test

approaches

Students should know the different practices and
ways of creating work products in testing.

Remember /
Factual

Students must understand how work products in

testing can progressively support a software project.

Understand /

Procedural

Students should be able to understand the relation-

ship between test concepts and their role in software

evaluation and problem discovery.

Understand /
Factual

Students must know how to apply learning tech-
niques to solve computational problems.

Apply / Concep-
tual

Students must know how to build work products in
testing in a structured way.

Create / Proce-
dural

4.2 Construction

of work prod-

ucts for valida-
tion and the

verification of

software tests

Students should be able to recognize and solve

problems about non-functional work products.

Remember /

Factual

Students must interpret and verify work products of

testing in situations requiring a connection.

Understand /

Conceptual

Students must remember the parameters for testing

practices and testable requirements.

Remember /

Factual

Students must evaluate the solutions and uses of

learning concepts.

Evaluate / Con-

ceptual

4.3 Test-

oriented devel-

opment project

Students should be able to understand decision-
making factors based on testing and quality parame-

ters, to assist them in their development.

Understand /

Factual

Students must know how to handle strategies and

apply best practices for the evolution of code
maintenance and work products in testing.

Apply / Proce-

dural

Students should be able to evaluate the quality,
operational features, and issues of coding and work

products in testing.

Evaluate / Con-

ceptual

Students should find solutions based on good coding

practices and aligned with tests.

Create / Meta-

cognitive

4.4 Test-

oriented project

evaluation

Students must acquire criticality about software

products to enable them to evaluate the importance
of testing techniques and practices.

Evaluate / Con-

ceptual

Students must be able to define strategies and offer
solutions to computational problems.

Apply / Concep-

tual and Meta-

cognitive

Students should be able to evaluate work products
and correlate them with solutions to create a derived

part of work products.

Evaluate / Con-

ceptual

iJET ‒ Vol. 17, No. 05, 2022 61

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

On the basis of the academic content obtained from the mapping work carried out

in [6], the syllabus defined the 4 teaching units shown in Table 2, where each of these

teaching units has the items that can be seen. Each of the teaching units is designed to

produce different kinds of knowledge in a progressive way. This means a part of the

content that appears in one unit can be revisited and displayed in a different way in

another teaching unit with different expected results and levels of learning, (as ex-

plained in Computing Curriculum 2020 (CC2020) [13]. This is intended to consoli-

date the student's knowledge of the academic content in a conceptual and practical

way.

The different learning levels selected for each teaching unit were chosen by the re-

searchers, on the basis of a literary analysis which can be found in many computer

knowledge guides, such as: ACM/IEEE [18] and SBC curricula [19, 5]. Thus, the

Syllabus was compiled and peer-reviewed with researchers who were specialists in

Software Engineering. More details about this stage can be found in Syllabus [7].

The expected results of each teaching unit were obtained to achieve the teaching

objectives outlined in the syllabus, and active teaching methodologies were em-

ployed, in conjunction with teaching tools, practices and agile techniques. This teach-

ing plan is focused on the students, with the professor as a supportive figure and the

knowledge produced should correspond to what is required in the labor market. One

should try to break the traditional teaching paradigm which is based on an educational

theory that knowledge should only be spread through traditional lecturing techniques.

The new teaching environment seeks to provide a better way of teaching a subject

to t students, by encouraging them to engage in critical thinking and thus obtain the

highest possible standard of learning. More details about the teaching plan can be

found in [10].

2.2 Scope of the definition

Within the scope of this work, can be found the construction of knowledge based

on academic competences. The SBC 2017 Curriculum Guide [12] recommends that

syllabuses should be created on the basis of competency-based learning, as advocated

by the MEC [14], but that researchers and professors should be allowed to define the

competencies and teaching strategies that will be used.

The ongoing plan for the Computing Curricula 2020 (CC2020) is rooted in learn-

ing theory, which strongly advocates the adoption of a competency-based approach

when issuing computing curricula [20].

A syllabus specifically designed with content related to software tests was used

within the scope of the definition outlined above [7]. This syllabus can be followed

either by adopting a traditional classroom approach or using a teaching plan with

active teaching methodologies, group work and practical strategies [8], with the aim

of building core academic competences related to software testing for students.

62 http://www.i-jet.org

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

3 The teaching approach

The Brazilian Ministry of Education [14] lays down that the teaching methodology

for computer courses should be student-centered and supported by the instructor as a

facilitator of the teaching-learning process. Moreover, the professor should act as a

mediator by a) also showing the applications of the theoretical content, b) stimulating

competition, c) encouraging teamwork, d) motivating students to study, and e) devel-

oping communication and negotiation skills.

The SBC 2017 Curriculum Guide [12] recommends that, whenever possible, active

methodologies should be used in computer science courses so that the students can

spend more time on activities in which they are the leading figures in the teach and

learning process.

Active learning must be encouraged for software testing students so that there can

be progressive learning and an effort should also be made to employ pedagogical

models that can create scenarios that provide opportunities for active learning [21].

The planned model is designed to follow a set of timed phases based on the model

by Portela et al. [22], in addition to having definite phases for the planning of the

subject, (as in the model designed by Benitti [23].)

This model gives priority to the construction of knowledge based on academic

competences and content that is derived from many sources, practical teaching activi-

ties and collaborative activities. In addition, it provides this content by employing

several active teaching methodologies, which are starting- points that can lead to more

advanced processes of reflection, cognitive integration, generalization, and the prepa-

ration of new practices [24]. Figure 1 shows the phases that make up the teaching

model that is displayed and then discusses each phase.

Fig. 1. Learning model of the methodology

In the following subsections. each phase of the model is described. As a means of

contextualizing this quasi-experiment, the employment of the software testing tech-

nique will be used as an example.

iJET ‒ Vol. 17, No. 05, 2022 63

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

3.1 Phase I: Subject planning

At first, the professor or person responsible for carrying out the subject must build

it. Thus, the first stage necessary is to select the competences that must be acquired

for teaching the students. For the purposes of this study, the competences of the MEC

[14] were used, (as shown in the previous section).

This is followed by, an important task which is the selection of academic content

for the subject, since the [25] study found that the community sees the need for better

education and training in software testing. This is because they are professionals that

come from universities with a limited knowledge of this area of teaching. In view of

this, this model recommends that the content should originate from several different

sources, such as:

1. Academic curricula,

2. Curriculum Guides,

3. ISO Models, Certification Guides and Standards,

4. Techniques and activities employed in industry.

The topics found in the SWEBOK curriculum guide [26] and related to software

testing were used to create the teaching units for this study. Authors who want to use

this model are advised to make a strategic alignment with their disciplines and refer to

notes from published guides of knowledge, systematic reviews and systematic map-

pings.

The content topics used in this work were selected from different sources of

knowledge, with the aim of seeking academic topics taken from the ACM/IEEE [18],

SBC curricula [19, 12], and knowledge of quality improvement models related to

software testing, such as TMMI [27] and TMMI Agile [28]. Authors who want to

compile a list of content topics are advised to combine knowledge of the software

industry with academic subjects.

There are knowledge guides at basic levels, such as the ISTQB Foundational Level

Certification Guide [29] and ISO 29119-5 [30], which give useful advice on the con-

tent that will be taught in each topic and which can be consulted in [7], since software

testing has a wide range of different approaches and views, depending on the authors.

It is advisable to select some global and broad reference-points which have some

application to the labor market; therefore, the agile testing practices of Laing and

Graves [31] and Crispin and Gregory [32] have been used in this research because

they match the content of agile methodologies that has been widely used in the labor

market. Authors are ad-vised to take note of these tips when creating their academic

content.

Bloom's revised taxonomy [17] was used to predict the expected results and the

level of learning that could be attained in each topic, as is also recommended by the

current Computing Curricula 2020 (CC2020) [13]. Finally, while compiling the sylla-

bus, academic content and teaching topics, the authors are advised to provide illustra-

tions for their national and international curriculum guides, and also to analyze sys-

tematic reviews, systematic mappings and computer-based diagnostic assessment.

64 http://www.i-jet.org

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

This is because a lot of content has been created and updated, and a quick update of

academic content is always essential to prepare students for the labor market.

3.2 Phase II: Adapting the subject to peculiar features

After the contents and expected results have been selected, they must be aligned

with teaching methodologies and backup materials that can help achieve the desired

learning level. For this reason, the different contexts that the professors want to incor-

porate in their subject must be taken into account.

The peculiar features and teaching conditions are determining factors for the crea-

tion of a subject. They range from teaching in a hybrid way, remote teaching or even

stimulated learning that relies on some central methodology, such as PBL – Problem-

Based Learning. In the model displayed, these factors are included after the creation

of the disciplinary content, so that there are no constraints with regard to content as a

result of these adjustments.

In the case of this study, the subject was adapted to learning via practical teaching,

collaborative work and remote teaching. In a teaching context that involves active

methodologies, it is expected that dialogues and an exchange of knowledge between

students that is mediated by the professor, will take place in a general way. In light of

this, even in a remote teaching situation, the authors point out that classes must re-

main synchronous, while also being recorded and made available from a teaching

platform for students, in accordance with the regulations of each country.

In the case of practical activities, the authors advise that more time should be de-

voted to tutorials (and manuals on the tools and practices that will be used) so that

students can absorb the knowledge more easily.

In light of the practical challenges facing collaborative work, similar activities

should be carried out asynchronously for the students and examples drawn on that are

based on everyday situations in the labor market. These and other situations arose

during the experimental work carried out by this work, and further details can be

found in [10].

3.3 Phase III: Theoretical learning in dialogues

This model advises that at the beginning of the classes of each teaching unit, a the-

oretical teaching approach should be adopted for disseminating the knowledge. It is

useful if the professor in the area has some technical knowledge or if a professional

can be invited to give a presentation about the academic content. If there is more than

one professor or mediator for the subject, the model advises that at the end of each

class. a meeting should be held to discuss what happened, as a means of improving

the next classes.

The methodologies that were employed in the quasi-experiment for the theoretical

learning cycle included expositional dialogue classes, discussion of practical cases

and lists of exercises for the consolidation of learning, as well as backup materials

such as books, academic articles / papers, certification guides and tutorials, and these

tools are available in the class. Details of how they operate can be found in [10].

iJET ‒ Vol. 17, No. 05, 2022 65

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

3.4 Phase IV: Practical and collaborative activities

This phase enables students to improve their learning and skills through practical

activities, and offers the participants a chance to test the knowledge they acquired in

the previous phase. The ACM / IEEE guide [15] recommends that students doing

information technology courses should be practice-oriented and that in some subjects,

the practical side of applying information technology is essential for the success of the

graduate's future career.

This model advises that practical activities should be carried out in groups in a col-

laborative way so that there can be an exchange of knowledge and experience be-

tween students, and it is possible to replicate the situations that may occur in industry.

These practices might arise from employing different methodologies, and include:

practical projects [22], PBL [33], [34], serious games [35] or programming dojos

[10]. It is advisable that a professor or other professional should supervise these prac-

tical activities so that they can coach and mentor the groups, sort out any technical

problems, assist in the way the practices are carried out and act as a mediator if any

possible conflicts arise in the groups. The professors who will use this model must

have the necessary skills to teach practical knowledge, since when they are running a

graduate program, this practical knowledge must be transferred to other professors as

recommended in the guidelines [36]. As in Phase III, if there is more than one profes-

sor or mediator, there should be an ¨after-class¨ meeting to discuss what has taken

place.

The practices carried out in this phase of the study were programming Dojo (with

the Scratch tool, similar at [37]) and the Java language; the practical project, as indi-

cated [38], divided into two parts. Further details will be provided later, in the Execu-

tion section.

3.5 Phase V: Stakeholder feedback

At the end of each iteration of a teaching unit from the model, students must pre-

sent the results of their practical and collaborative activities to the professor. Every-

one involved must provide feedback on the teaching unit, including an analysis of the

following: the contents shown, the teaching methodologies used, any adaptations that

must be made and the difficulties encountered. This feedback must be stored and

made available by the professor, and may include a spreadsheet, cell phone applica-

tion, gamification or classroom recording.

The model does not suggest which technique is required for sending feedback and,

leaves this to the professors to decide. If there is still more than one teaching unit, the

model cycle must be repeated from Phase III onwards.

Two different forms of feedback collection methods were employed for this study:

(i) the recording of practical collaborative activities – this was because at the end of

the presentation, the students were encouraged to comment on the task and the learn-

ing they had acquired in each teaching unit, (ii) two questionnaires, through which

students could assess aspects of the subject and teaching approaches anonymously.

66 http://www.i-jet.org

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

4 Related works

The work carried out by Benitti [23] sets out a methodology based on learning ob-

jects that are used to teach different computing subjects, although the case study of

the work was conducted in a software testing subject. It made use of case studies to

evaluate the possible learning gains that could be obtained from the methodology.

The author divided her methodology into 2 phases: in the first phase the contents to

be covered must be defined, with priority being given to material acquired from refer-

ence curricula and other sources, such as certifications, standards and maturity mod-

els. In the second phase of the methodology, the mapping of the learning level of each

content is only based on the first cognitive process dimension of Bloom's revised

taxonomy [17].

The methodology of this work is mainly differentiated through its use of the

knowledge dimension of Bloom's revised taxonomy [17], which correlates the content

with active teaching methodologies. The purpose of this is to achieve learning levels

and encourage teamwork so that students are confronted with challenges that are

closer to real situations in the software industry, as recommended by ACM / IEEE

[15] and SBC [12].

Another work that employs a teaching methodology for the creation of a software

testing subject is that of Liu [39], which combines different online and offline teach-

ing methods and is divided into 3 phases. In Phase 1, there is pre-class learning,

through articles and training manuals provided by the professor; in Phase 2 there is a

period to ¨internalize¨ and absorb the knowledge acquired in the previous phase, with

the aid of different active teaching methodologies, (such as a flipped classroom meth-

od with a focus on industrial software testing problems. Finally, in Phase 3 students

watch video summaries to extend their knowledge-building capacity and do online

tests and homework to broaden their knowledge of software testing through an online

platform with feedback for each task performed.

The main differential of the work shown is in the way the academic content was

built, since there is a phase designed for defining what will be learn and setting a

threshold for the learning to be achieved, based on Bloom's revised taxonomy [17].

This, involves employing active teaching methodologies for knowledge construction.

Another approach to the subject of software testing is by Enoiu [40], and consists

of a project-based testing course which employs models in remote teaching within a

context of software industry standards, this entails students watching online lectures

before classes and later on, holding group discussions in virtual classrooms; in addi-

tion, it includes pedagogical techniques such as group work, student presentations and

discussions. It is also recommended that an online learning platform is created to store

teaching material.

The aim of the study by Furtado et al. [33] is to help teach the topic of Statistical

Process Control (SPC), by separating the content into four teaching units aligned with

a set of academic competences and its expected results with the aid of Bloom's taxon-

omy [41]. The authors achieved this by developing a competency model [42]. The

content is disseminated through student-focused learning and a set of active teaching

methodologies.

iJET ‒ Vol. 17, No. 05, 2022 67

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

The differentials of this study are based on Bloom's revised taxonomy [17], which

is a recent form of evaluation in the learning process and, employs its own methodol-

ogy with the aim of being able to help researchers form new subjects in the future.

The analysis of each of these related works illustrated the use of different method-

ologies and teaching-learning strategies for teaching software testing or other topics in

Software Engineering. The recent prominence given to teaching the subject of soft-

ware testing was also noted, (as mentioned in the work by [25].)

One of strengths of this project can be attributed to the fact that its designers have

created their own syllabus for teaching tests [7]. These comprise several items derived

from different sources, which can be better viewed in the Objective, Syllabus and

Teaching Plan section, based on Bloom's revised taxonomy. Its results can be predict-

ed, as recommended by the Computing Curricula 2020 (CC2020).

Some weaknesses of this work are as follows: i) the design of the quasi-

experiment, since there was a time interval of one year between the study undertaken

by the control group and the experimental group; ii) the difference between a group

that attended in-person classes and another conducted through remote classes (due to

the COVID-19 pandemic); and iii) the failure to use pre-testing to assess learning

efficiency this meant that the results could be biased because the experimental group

was taught remotely, without any control of what was being accessed by students

during the pre-test.

5 Evaluation

The aim of this quasi-experiment was mainly to evaluate the possible effectiveness

of learning software tests at different levels of learning by adopting the teaching ap-

proach outlined here and comparing it with the results achieved in traditional classes

in a post-graduate program in Computer Science.

5.1 Research and evaluation strategy

A quasi-experiment was conducted with two different graduate classes in Comput-

er Science to evaluate the teaching approach and make a comparative assessment of

the effectiveness of each of the Teaching Units that make up the syllabus [7].

The method employed for this was a quasi-experiment [43], which is an empirical

interventional study used to assess the effect of making an intervention in a targeted

population without random assignment. This is because it is not possible to control

and select the students who will take part in the classes, as well as the fact that this

study is longitudinal and annual, and has both in-person and remote teaching t envi-

ronments.

This form of quasi-experiment allows a statistical comparison to be made between

the behavior of the experimental group and a control group. Thus, the quasi-

experiment was carried out as follows: the quasi-experiment was conducted in 2 dif-

ferent semesters. The participants were students enrolled in a Software Quality course

of the Graduate Program in Computer Science at the Federal University of Pará in

68 http://www.i-jet.org

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

Brazil. There was no screening or selection of students since they were master's, doc-

toral or specialized students who enrolled in the subject without knowing about the

quasi-experiment. This system served as a means of ensuring the participants were

divided into a control group or experimental group at random so that the statistical

results would have greater validity.

Interventions were made with traditional classes and with the teaching approach

adopted. The experimental group took part in the learning activities carried out for the

teaching approach described in this article, while the control group participated in

classes that relied on traditional teaching methods. At the end of each teaching unit,

the results of the evaluative activities were collected. While the experimental group

carried out different activities, (outlined in the teaching approach), the control group

had to answer a list of questions about the contents learned, to achieve this result. At

the end of the quasi-experiment carried out, the students answered a perception ques-

tionnaire and the experimental group also answered one about their learning experi-

ence.

Table 3 summarizes the information about the quasi-experimental design.

Table 3. Summary of the case study

Groups Preparation Interventions Conclusion

Control Allocation of groups in each

semester, according to which
subjects the students were

enrolled in, and with regard to

the class capacity (15 students)

Traditional classes.
Application of

exams.

Content perception

questionnaire.

Experimental

Classes based on

the methodology
employed.

Application of
lists of exercises,

Dojos and case

studies.

Content and learn-

ing perception
questionnaire.

5.2 Research questions and hypotheses

When seeking to answer the RQ outlined in the Introduction, a set of other research

questions was defined, one for each teaching unit in the current syllabus and these

were evaluated in the control and experimental classes.

Grades were awarded from 0 to 10, but in each unit, it was necessary to analyze the

level of intervention on the basis of Bloom's revised taxonomy [17], as specified in

the syllabus. Thus, the instruments used to evaluate the students' activities were

aligned with the expected results of the topics in each unit.

Table 4 shows the study objectives of each of the teaching units designed for the

construction of knowledge of software tests, their research questions and instruments,

together with their null hypotheses. The variables are directly related to the instru-

ments used to evaluate students from both groups.

iJET ‒ Vol. 17, No. 05, 2022 69

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

Table 4. Details of study objectives

Study objective 1

Research question 1 (RQ1): How effective is the learning of the Software Engineering unit when the

Software Testing approach is adopted instead of r the traditional approach at the ¨Create level¨?

Hypothesis H01: There will be no difference between the scores obtained by the Experimental and
Control groups at the Create level.

Variables

TI1 - List of Exercises 1
TI2 - List of Exercises 2

TI3 - List of Exercises 3

TG1 - Dojo 1
P1 - Exam 1

Formulation: Ma > Mb, where:
a = Experimental Group

b = Control Group

Experimental Group scores:

Nai =
((𝑇𝐼1∗1)+(𝑇𝐼2∗1)+(𝑇𝐼3∗1)+(𝑇𝐺1∗1,5))

4,5
, where i is a student of Group a

Control Group scores:

Nbi = P1, where i is a student from Group b
Average of the scores of students in group a:

Mai =
𝛴𝑖=1
𝑚 𝑁𝑎𝑖

𝑚
, where m is the number of students in Group a

Average of the scores of students in group b:

Mbi =
𝛴𝑖=1
𝑚 𝑁𝑏𝑖

𝑚
, where m is the number of students in Group b

Instruments: Lists of exercises, Dojo and Exam.

Study objective 2

Research question 2 (RQ2): How effective is the learning of the Software Construction unit when the

Software Testing approach is adopted instead of r the traditional approach at the Create level?

Hypothesis H02: There will be no difference between the scores obtained by the Experimental and
Control groups at the Create level.

Variables

TG2 - Dojo 2
P2 - Exam 2

Formulation: Ma > Mb, Where:
a = Experimental Group

b = Control Group

Experimental Group scores:
Nai = TG2, where i is a student from Group a

Control Group scores:
Nbi = P2, where i is a student from Group b

Average of the scores of students in group a:

Mai =
𝛴𝑖=1
𝑚 𝑁𝑎𝑖

𝑚
, where m is the number of students in Group a

Average of the scores of students in group b:

Mbi =
𝛴𝑖=1
𝑚 𝑁𝑏𝑖

𝑚
, where m is the number of students in Group b

Instruments: Dojo and Exam.

Study objective 3

Research question 3 (RQ3): How effective is the learning of the Quality unit when the Software Testing

approach is adopted instead of the traditional approach at the Analyze level?

Hypothesis H03: There will be no difference between the scores obtained by the Experimental and

Control groups at the Analyze level.

70 http://www.i-jet.org

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

Variables

EC1 - Case Study 1

P3 - Exam 3

Formulation: Ma > Mb, where:

a = Experimental Group
b = Control Group

Experimental Group scores:

Nai = EC1, where i is a student from Group a
Control Group scores:

Nbi = P3, where i is a student from Group b

Average of the scores of students in group a:

Mai =
𝛴𝑖=1
𝑚 𝑁𝑎𝑖

𝑚
, where m is the number of students in Group a

Average of the scores of students in group b:

Mbi =
𝛴𝑖=1
𝑚 𝑁𝑏𝑖

𝑚
, where m is the number of students in Group b

Instruments: Case study and Exam.

Study objective 4

Research Question 4 (RQ4): How effective is the learning of the Software Testing unit when the Soft-

ware Testing approach is adopted instead of the traditional approach at the Create level?

Hypothesis H04: There will be no difference between the scores obtained by the Experimental and

Control groups at the Create level.

Variables

TG3 - Dojo 3

EC2 - Case Study 2
P4 - Exam 4

Formulation: Ma > Mb, where:
a = Experimental Group

b = Control Group

Experimental Group scores:

Nai =
(𝑇𝐺3∗1,5)+(𝐸𝐶2∗2,5))

4
, where i is a student of Group a

Control Group scores:

Nbi = P4, where i is a student of Group b

Average of the scores of students in group a:

Mai =
𝛴𝑖=1
𝑚 𝑁𝑎𝑖

𝑚
, where m is the number of students in Group a

Average of the scores of students in group b:

Mbi =
𝛴𝑖=1
𝑚 𝑁𝑏𝑖

𝑚
, where m is the number of students in Group b

Instruments: Dojo, Case study and Exam.

5.3 Instrumentation

The existing variables in each unit were used to collect the data needed to answer

research questions 1, 2, 3 and 4. The tasks were adapted to each different level of

learning, to extract this knowledge from the students, using a pre-established schedule

for each group. For example, it was determined that to achieve the expected result

"The students must be able to make adjustments and improvements to computational

solutions". In the control group, the students had a subjective question about how to

refactor a pseudocode, while in the experimental group there was a practical class that

employed the Dojo methodology, in which students had to achieve the same result.

iJET ‒ Vol. 17, No. 05, 2022 71

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

The rest of the agenda will be shown later in Table 5. Thus, regardless of the type of

instrument used, the activities were designed with the aim of enabling students to face

real-world situations that can occur in the software industry.

The activities were corrected by 3 specialists in the area, who were not involved in

teaching the content. If there was a disparity in the grades given, there was a meeting

to decide how to reach a consensus. The scores for each teaching unit were calculated

in accordance with the variables of each object of study in Table 4. The level of learn-

ing that had to be reached for each research question, was assessed in terms of the

highest expected result that could be obtained from the content of that teaching unit,

following Bloom's revised taxonomy.

Even when different instruments were employed, the comparison between the ex-

perimental and control groups proved to be reliable, because it was ensured by the

fact that in each Teaching Unit a certain level of learning could be reached through

Bloom's revised taxonomy. This meant that whether in a Dojo or in a conventional

multiple-choice test, the content of the questions had the same level of taxonomy

learning, so that the comparison was not distorted.

Possible outliers in the samples were handled (or deleted), with the aim of mitigat-

ing problems that could arise from different instruments in each group, (control and

experimental), involving random errors. Additionally, a third quasi-experiment is also

being carried out to increase the sample size.

Regarding systematic errors caused by measuring instruments, as there were team

activities in the experimental group, there was a general awareness that these errors

cannot be completely avoided, but only reduced, and bonus grades were given to the

more attentive students, when possible. However, since the main object of this study

is to enhance the effectiveness of learning through active methodologies which priori-

tize teamwork, the authors gave priority this design feature of the quasi-experiment.

The grades obtained in each activity were only made available to students at the

end of the quasi-experiment. Finally, the collection of feedback from students was

also carried out in the way recommended by the model.

5.4 Execution

The first part of the quasi-experiment with the control group was carried out in per-

son in August 2019 and the second part with the experimental group was carried out

in August 2020. This had to be adapted to remote learning strategies, owing to the

pandemic of COVID-19, in an elective course of Software Quality in the Post-

graduate Program in Computer Science (PPGCC) at the Federal University of Pará

(UFPA) in Brazil.

All quasi-experimental team members were officially enrolled in the course and

those in the first class were informed about the quasi-experiment. Altogether, there

were thirty students enrolled, fifteen in each of the classes. All the participants in the

quasi-experiment were volunteers and signed an Informed Consent Form – TCLE at

the standard that the Post-graduate Program in Computer Science (PPGCC) requires

and the research followed the guidelines outlined in the work by Petousi and Sifaki

[44]. The subject consisted of a total of 60 hours, and 32 classes during the semester,

72 http://www.i-jet.org

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

each lasting up to 2 hours. In the case of the experimental group, the classes were

given remotely with adaptations to the way the methodologies were implemented

[10], but keeping all the necessary methodological procedures. Students from both

groups had access to backup materials for studying the contents taught. The quasi-

experiment schedule is displayed in Table 5.

Table 5. Case study schedule

Days Control Group Experimental Group

Inaugural

Class

Presentation of the Syllabus

[7], inclusion of the subjects
and teaching plan.

Availability of backup materi-
al.

Presentation of the Syllabus [7], inclusion of the subjects
and teaching plan [8].

Availability of backup material.

Classes 2 to 7

Expository classes of a clas-

sical form: About Teaching
Unit 1 – Software Engineer-

ing: With topics 1.1 and 1.2,

shown in Table 2.

Exam: Evaluative task with
multiple choice and discursive

questions about the content

taught in the teaching unit.

Expositional dialogue classes: about Teaching Unit 1 -

Software Engineering: With topics 1.1 and 1.2, shown in

Table 2.

List of Exercises: List of multiple choice exercises with

subjects included in the content of the teaching unit, based
on ISTQB and TMMI certification exams. The activity was

carried out on an individual basis.

Dojo Randori: Challenge for code building and unit

testing for a banking service using the Scratch online

platform. All the students had to play the roles of a pilot,
co-pilot and the audience. A grade was given to all the

students who took part, which took into account the num-

ber of complete and correct challenges. This activity was
largely collaborative, with all the students in the remote

classroom working together, but the students were assessed

individually, which meant that some of them had lower
grades than others.

Classes 9 to
13

Expository classes of a clas-

sical form: About Teaching
Unit 2 – Software Construc-

tion: With topics 2.1 and 2.2,

shown in Table 2.

Exam: Evaluative task with

multiple choice and discursive
questions about the content

taught in the teaching unit.

Expositional dialogue classes: about Teaching Unit 2 -

Software Construction: With topics 2.1 and 2.2, shown in

Table 2.

Dojo Kake: In this practice, multiple teams carry out the

activity by working in parallel. Each team compiled a list
of challenges in Java and the professors helped by mentor-

ing the concepts learned in the teaching unit. Each team is

awarded a grade based on the degree of correctness and
quality used in the code. The activity was divided into

groups of three or four students, and the grades were given

to each group in an equitable manner.

Classes 14 to

19

Expository classes of a clas-

sical form: About Teaching
Unit 3 – Quality: with topics

3.1 and 3.2, shown in Table 2.

Exam: Evaluative task with

multiple choice and discursive

questions about the content
taught in the teaching unit.

Expositional dialogue classes: About Teaching Unit 3 –

Quality: with topics 3.1 and 3.2, shown in Table 2.

Practical Project: The practical project was a progressive

activity, and at first the students analyzed the implementa-
tion of a software interface After this, they conducted an

Ad-hoc test analysis to locate errors and failures and de-

termine new requirements for the system. Each team is
awarded a grade that matches the degree of success and

iJET ‒ Vol. 17, No. 05, 2022 73

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

quality employed in the activity. The activity was divided

into groups of three or four students, and the grades were
given to each group on an equitable basis.

Classes 20 to

32

Expository classes in a clas-

sical form: About Teaching

Unit 4 – Software Tests: with

topics 4.1, 4.2, 4.3 and 4.4,
shown in Table 2.

Exam: Evaluative task with
multiple choice and discursive

questions about the content

taught in the teaching unit.

Expositional dialogue classes: About Teaching Unit 4 –
Software Tests: with topics 4.1, 4.2, 4.3 and 4.4, shown in

Table 2.

Discussion of Practical Cases: Presentation of experience

reports and existing tools in the software development

industry or in project laboratories at universities so that
students can be confronted with problems that arise in real-

world environments.

Dojo Kake: In this practice, multiple teams work in paral-

lel to carry out the activity. Each team compiled a list of

Java code refactoring, (code improvement) and had to rely
on bug tracking. The professors helped with mentoring the

concepts learned in the teaching unit. Each team is awarded

a grade that reflects the degree of success and quality
shown in the activity. The activity was divided into groups

of three or four students, and the grades were given to each

group on an equitable basis.

Practical Project: The teams built a prototype and formed

a test plan on the basis of what had been collected in the
Ad-hoc test analysis in the previous teaching unit, and

presented the results to the professors. Each team is award-
ed a grade that reflects the degree of success and quality

shown in the activity. The activity was divided into groups

of three or four students, and the grades were given to each
group on an equitable basis.

Feedback
Content Perception Question-

naire.
Content Perception Questionnaire.

Questionnaire on teaching approaches.

Each group had its own professor while the quasi-experiment was being carried out

and was assisted by three other professors. Hence, only one professor taught the con-

trol group, while another one taught the experimental group, with the exception of a

practical case-study and discussion classes where a specialist was invited to teach the

class. For further details of the findings and the quasi-experiments of the experimental

group, see [10].

6 Data analysis

In this section, there is an examination of the data obtained from the case study ex-

plained in this work. An analysis will be carried out on how each of the research ques-

tions refers to the teaching units, and finally, there will be an analysis of the main

Research Question.

74 http://www.i-jet.org

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

6.1 Analysis of research question 1

In response to RQ1, (which can be seen in Section 5.2), the two-tailed student t test

was chosen for independent samples so a comparison could be made between the

experimental and control groups in teaching unit 1. This took account of the normality

of the data and its objective was to evaluate the difference between two populations

with varying treatment conditions and two samples (treatments).

A standard alternative string (Two Sided) with a confidence interval of 95% was

used to calculate the degree of variance. The p-value of the F test = 0.08053, which is

greater than the 0.05 significance level. In conclusion, there is no significant differ-

ence between the two mean variances, so the hypothesis test used for this research

question was the Student-t hypothesis for two means with equal and unknown vari-

ances. It was noted that with a 5% significance level, H01 could be rejected; that is,

there is statistical evidence to show that the means are different, when these indicators

are con- confirmed by the p-value = 0.00151 < 0.05. Table 6 summarizes the results

obtained for RQ1.

Table 6. Comparison of the learning effectiveness of the participating groups (Student-t) in

teaching unit 1

Variables
Experimental Group Control Group

Evaluation Evaluation

Sample size 15 15

Minimum 4.9 2

Maximum 9.3 8

Sum total of Scores 116.1 86.5

Median 8 6

First quartile 7.6 4,5

Third quartile 8 7

Average 7.74 5.76

Standard Deviation 1.14005 1.850354

6.2 Analysis of research question 2

In response to RQ2, (which can be seen in Section 5.2), a comparison was made

between the experimental and control groups in teaching unit 2, and the choice result-

ing from the comparison made for RQ1 was followed.

When the two variances are compared, the p-value of the F test is p-value =

0.3431, which is greater than the 0.05 significance level. In conclusion, there is no

significant difference between the two mean variances, so the hypothesis test used for

this research question was the Student-t hypothesis for two means with equal and

unknown variances. It was noted that with a 5% significance level H02 could be re-

jected; that is, there is statistical evidence to show that the means are different, when

these indicators are confirmed by the p-value = 5.87e-05 (0.0000587) < 0.05. Table 7

summarizes the results obtained for RQ2.

iJET ‒ Vol. 17, No. 05, 2022 75

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

Table 7. Comparison of the degree of learning effectiveness between the participating groups

(Student-t) in teaching unit 2

Variables
Experimental Group Control Group

Evaluation Evaluation

Sample size 15 15

Minimum 7.5 3

Maximum 10 8.5

Sum Total of Scores 129 86.5

Median 8.5 6

First quartile 8 4.5

Third quartile 9 7

Average 8.5 5.43

Standard Deviation 1.535299 1.989855

6.3 Analysis of research question 3

In response to RQ3, (which can be seen in Section 5.2), a comparison was made

between the experimental and control groups in teaching unit 3, followed by the

choice resulting from the comparison made for RQ1.

When the two variances of RQ3 are compared, the p-value of the F test = 0.02669,

which is lower than the 0.05 significance level, so the hypothesis test used for this

research question was the Student-t hypothesis for two means with equal and un-

known variances. In conclusion, there is a significant difference between the two

mean variances. It was noted that with a 5% significance level, we can reject H03;

that is, there is statistical evidence to show that the means are different, when these

indicators are confirmed by the p-value = 7.915e-06 (0.000007915) < 0.05. Table 8

summarizes the results obtained for RQ3.

Table 8. Comparison of the degree of learning effectiveness between participating groups

(Student-t) in teaching unit 3

Variables
Experimental Group Control Group

Evaluation Evaluation

Sample size 15 15

Minimum 7.5 3

Maximum 10 8.5

Sum Total of Scores 129 86.5

Median 8.5 6

First quartile 8 4,5

Third quartile 9 7

Average 8.6 5.76

Standard Deviation 0.8904253 1.656876

76 http://www.i-jet.org

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

6.4 Analysis of research question 4

In response to RQ4, (which can be seen in Section 5.2), a comparison was made

between the experimental and control groups in teaching Unit 4 and the comparison

made for RQ1 was followed.

In a similar way to RQ3 in the variance test, the p-value of the F test = 0.3431,

which is greater than the 0.05 significance level, so the test used for this research

question was the Student-t hypothesis for two means with equal and unknown vari-

ances. In conclusion, there is a significant difference between the two mean variances.

Finally, it was noted that with a 5% significance level, we can reject H04; that is,

there is statistical evidence to show that the means are different, when these indicators

are confirmed by the p-value = 0.0004864 < 0.05. Table 9 summarizes the results

obtained for RQ4.

Table 9. Comparison of the degree of learning effectiveness between participating groups

(Student-t) in teaching unit 4

Variables
Experimental Group Control Group

Evaluation Evaluation

Sample size 15 15

Minimum 8.8 4

Maximum 9.8 8

Sum Total of Scores 138.6 89.5

Median 9 6

First quartile 8.8 4.75

Third quartile 9.8 6.6

Average 9.24 5.96

Standard Deviation 0.4792852 1.32916

6.5 Analysis of main research question

As defined in the Introduction, the main Research Question (RQ) can be stated as

follows: “If professors of Software Engineering courses adopt a set of active teaching

methodologies and collaborative teaching practices instead of employing traditional

strategies, will students be able to develop more academic skills related to Software

Testing?”.

In an attempt to answer the RQ, a quasi-experiment was carried out with a control

class where a traditional teaching method was employed and an experimental class

with the constructed approach. From the results obtained in the research questions

when they were broken down into Q 1, 2, 3 and 4, there was a gain of learning which

reflected that more of the academic competences listed in all the teaching units that

employed active teaching methodologies and collaborative practices were acquired

when compared with what could be attained through the traditional approach.

Thus the authors consider the results to be significant, although they appreciate that

they should not be generalized to a great extent, Later in Section 7, the results will be

iJET ‒ Vol. 17, No. 05, 2022 77

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

discussed and in Section 8 the authors will address the question of threats to the valid-

ity of this research.

7 Discussion of results

The results obtained from the rejection of hypotheses H01, H02, H03 and H04

suggest that this approach has a higher learning effectiveness than what can be

achieved by a traditional classroom methodology, since the average grades obtained

by the experimental group during the evaluations were significantly higher than those

of the control group.

These results can be attributed to the fact that the active teaching methodologies

used in the experimental group are particularly focused on students, and carrying out

practical and collaborative activities, as well as on the teaching approaches adopted.

In view of this, the results obtained are similar to those of several authors who adopt-

ed more student-centered approaches and strategies [33], [22], or relied on active

teaching methodologies [45] and competence-based learning [23], [46].

The fact that the results of H03 and H04 in the experimental group are much higher

may be due to the fact that in teaching units 3 and 4, respectively, all the activities

were carried out in a team and were of a practical nature. It can also be explained by

the way, the quasi-experiment was carried out in a graduate program of Software

Quality Assurance and the fact that the students might have had professional experi-

ence in the labor market or in activities related to the program's research groups.

However, this same factor also applies to the control group students. In the case of

this work, no analyses were carried out to assess the performance of students in other

subjects, nor was it determined if they had any previous experience or knowledge of

software testing topics.

When the qualitative feedback provided by the students was analyzed and account

taken of what drove them to learn software testing, it was noted that most students

believe that learning the subject is important and that the experience gained from

testing would open up a wide range of opportunities in the job market, since there is

very little knowledge of this among working professionals. Students from both groups

found the contents of the current syllabus [7] to be extremely useful and sufficient for

learning about software testing. Students in the experimental group evaluated the

practical activities carried out by means of active teaching methodologies as being

beneficial, even though they took place through remote teaching.

The control group had a large workload consisting of theoretical classes and an

evaluative test at the end of each teaching unit. Thus, students may have had difficul-

ties in learning certain subjects solely from traditional lectures with little chance of

collaboration and an exchange of knowledge between students. This may have result-

ed in a score that was considerably lower than what was achieved by the experimental

group.

However, some weaknesses in our approach were noted during the quasi-

experiment carried out with the experimental group. Although there were a consider-

able number of practical tasks, this approach still included expositional dialogue clas-

78 http://www.i-jet.org

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

ses to teach the academic content required by the syllabus [7]. In fact, the students

believed that there were too many expository classes and stated that there should have

been more Dojo activities and practical projects linked to the subject. Perhaps, this

result can be accounted for by the profile of the students who were involved in the

quasi-experiment conducted by the control group. The authors of this work intend to

determine more precisely the nature of the learning profiles and preferences of the

students who are most suited to the new teaching approach so that they can be adapted

to it.

Another weakness of the approach concerns the time constraints for carrying out

practical activities, especially with remote learning. Thus, a more suitable adaptation

and review of the learning activities could lead to a better experience for the students,

and enable them to carry out any of the activities within the stipulated period. The

amount of academic content in the syllabus [7] was also a possible weakness, as a

large number of classes was necessary to cover all of it, and it required students to

carry out some activities outside of class time.

It should be noted that the quasi-experiment was carried out over a period of 32

classes in both groups, so that all the teaching units in the syllabus could be covered.

The model used for the teaching approach recommends the professor should break

down the content into teaching units and use them separately in different subjects

throughout a course, as a means of overcoming the problem of the excessive amount

of content.

The activities that led to the best results were group activities, although the Dojo

Randori activity carried out with all the students in the experimental group was their

most difficult task, because a large number of students were unfamiliar with the con-

tent, and their different backgrounds ended up having an adverse effect on the score.

A final factor that may have prevented the experimental group from making a real

improvement is linked to the question of good practices since these are essential for

professors involved in remote classes, according to the regulations laid down by the

MEC - Brazilian Ministry of Education and Culture. These state that even in a syn-

chronous class a video of the class activities should be made available to students

later, to ensure that they have access to classroom materials and other external aids,

before and possibly during the activities. However, the experiment with the control

group was conducted before the pandemic of COVID-19 in asynchronous class, then

they didn't have this.

8 Threats to validity

Any result obtained in academic research should be treated with some caution, es-

pecially with regard to the possible generalizability of the results. Moreover, in the

case of the study undertaken here, there are some threats to validity that can influence

the results. These are outlined below, together with some actions that can be taken to

mitigate them.

iJET ‒ Vol. 17, No. 05, 2022 79

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

8.1 Internal validity

According to Travassos, Gurov and Amaral [47], internal validity helps to define

whether the observed relationship between treatment and outcome is causal, and not

the result of the influence of some other uncontrolled or measurable factor. This

means that, there are unforeseen events that can lead to distortions in the results.

The experimental and control groups were formed by enrolling students in the

Software Quality course in a graduate program for two consecutive semesters. It

should be noted that this course was not mandatory and none of the students were

invited to do it. This decision was made so as not to influence the formation of the

classes and reduce the risk of confounding factors, and the possible threat of statistical

regression, and thus make the control group and the experimental group as similar as

possible and statistically equivalent.

The existence of a threat of internal validity related to maturation is possible be-

cause researchers cannot restrict the search for external knowledge to that of the sub-

ject being studied by the students. As a means of trying to reduce outside influences,

the backup material for students from both groups related to content, was the same

and professors were always available to answer questions and help any student from

either group outside of class time.

Three specialists corrected the evaluations to mitigate the internal threat of bias by

instrumentation, and it was not the professors who taught the subject to the groups.

Moreover, a statistical researcher who was not involved in the design and implemen-

tation of the subject, had the sole function of conducting the data analysis. To ensure

impartiality in the evaluation, the specialists were not given any information about the

students who had carried out the activity.

Another possible threat of bias from instrumentation may be caused by the ap-

proach adopted in the subject offered to the experimental group and the different

forms of evaluation found between the two groups.

As stated earlier, the subjects were taught by two different professors, one for each

group. This may have resulted in one group learning less than the other, not only

because of the effects of the approach, but also because of the depth of knowledge of

the group's professors and their capacity to disseminate content. The qualifications of

the professors were being a Master in Computer Science and a Doctor in Computer

Science. One way to mitigate the risk of bias was for the professors to compile the

syllabus and draw up a teaching plan together.

8.2 External validity

The threat to external validity is a condition that limits the ability to generalize the

research results. Thus, in the case of a quasi-experiment carried out in an academic

context with graduate students in computer science, these results should only be gen-

eralized within that academic world.

The quasi-experiment was carried out with a very small sample of students, and

has not yet been replicated with another type of population, or at different academic

levels and in other universities. Thus, the ability to generalize the results obtained is

80 http://www.i-jet.org

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

limited, because most of the students have graduated in computer courses and are

already post-graduate students.

With regard to the teaching approach adopted in the experimental group which in-

volves carrying out practical teaching activities with challenges similar to those facing

the software industry, there is no way to guarantee that the skills and knowledge ac-

quired by students can be replicated in real-world situations that occur in the job mar-

ket.

8.3 Construct validity

Construct validity refers to the relationship between the instruments and partici-

pants in the case study and, in this work, the results of the research questions. The

main construct validity concerns the effectiveness of learning between the experi-

mental and control groups at cognition levels from Bloom's revised taxonomy [25],

where these results may not be sufficient to measure the learning achieved by students

at each recommended learning level.

In light of this, some statements cannot be made that are based on the results of the

case study; for example, it cannot be asserted that students who were able to answer

the lists of exercises with certified content are able to take the tests and be approved.

The practical knowledge acquired may also not be applicable to different scenarios.

8.4 Conclusion validity

These threats address the validity of some inferences about the correlation between

treatment and effect, which can undermine the statistical results. Until the time that

these are released, the data collected from the populations of the participating groups

is very small. In some cases, different statistical tests were used for different research

questions in this quasi-experiment, while taking into account the variance of data

from the sample in that teaching unit. The objective of the most robust statistical tests

was to try to circumvent the problem of the low statistical power of the distribution of

data obtained. This problem may have arisen because the experimental group had

team activities, which led to data homogeneity.

9 Conclusion

This article investigated the first experimental results of the application of a teach-

ing approach for software testing based on the contents of the syllabus [7], and also an

experimental approach (that followed a teaching plan [8] and was supported by active

methodologies), which obtained a better grade from learning in all the teaching units

when compared with the control group, which relied on traditional expository classes.

As the main objective of the work was to analyze the cognitive levels of learning, it

was decided to make a comparison between very extreme approaches in each of the

groups examined in this work. The article sought to answer the following RQ: "If

professors of Software Engineering courses adopt a set of active teaching methodolo-

iJET ‒ Vol. 17, No. 05, 2022 81

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

gies and collaborative teaching practices instead of traditional strategies, will students

develop more academic skills related to Software Testing?" The new approach was

more efficient in all the teaching units, according to the Student-t test, with a P value

lower than 0.05 in all the comparisons that were made.

A secondary research contribution made by this study was the use of a teaching

model that was applied in the experimental group to help the teaching course? This

model was used because of the COVID-19 pandemic, which meant that an experiment

that had been designed for in-person classes had to be adapted to a remote form of

teaching. It should be made clear that the objective of this work is not to evaluate the

model, although we could not fail to show how it operates and its importance for the

progress of the activities.

The results of this work can be considered to be significant, since the students par-

ticipating in the experimental group obtained a good level of learning from the soft-

ware testing content. However, owing to threats to validity, a broad generalization of

the results is not possible at this time.

There are some weaknesses in this study that stem from the fact that there is only a

small source of results to validate its statistical effectiveness. Another factor is that

there was a need to adapt the form of on-site teaching to remote learning, which may

have led to some improvement in the results. This might be due to the lists of exercis-

es and distant learning activities carried out by the experimental group, since we

could not control what they accessed online while doing the activities, unlike the tests

undertaken by the control group, which were in person.

In future work, we intend to replicate the quasi-experiment in other Software Qual-

ity classes of the Postgraduate Program in Computer Science (PPGCC) of the Federal

University of Pará (UFPA) to evaluate the effectiveness of teaching software tests

with active teaching methodologies. Another goal is to evaluate a possible gain in

motivation and learning which can be achieved by using the constructed teaching

model in different academic subjects of the Postgraduate Program in Computer Sci-

ence (PPGCC) at the Federal University of Pará (UFPA).

Finally, in future studies, the authors seek to determine how far the evaluations of

different levels of knowledge are within the domain of active methodologies for

teaching software tests. This can make it possible to determine which teaching tech-

niques and practices among the active methodologies are more effective and motiva-

tional.

10 Acknowledgments

The authors would like to thank CAPES (Coordination for the Improvement of

Higher Education Personnel) for granting an institutional doctoral scholarship (linked

to the PPGCC/UFPA) to enable the student-researcher of this article to conduct the

research that appears in this article. Additionally, the authors would like to thank the

participants, students and monitors, who carried out the quasi-experiment described in

this article. This article is part of the results of the SPIDER Project - Software Process

Improvement: DEvelopment and Research (http://spider.ufpa.br) at UFPA.

82 http://www.i-jet.org

http://spider.ufpa.br/

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

11 References

[1] O’Regan, G. (2019). Concise Guide to Software Testing. Springer International Publish-

ing. https://doi.org/10.1007/978-3-030-28494-7

[2] Dolezal, D., Posekany, A., Vittori, L., Koppensteiner, G. & Motschnig, R. (2019). Foster-

ing 21st Century Skills in Student-Centered Engineering Education at the Secondary

School Level: Second Evaluation of The Learning Office. 2019 IEEE Frontiers in Educa-

tion Conference (FIE). https://doi.org/10.1109/FIE43999.2019.9028646

[3] Sánchez-Gordón, M., Rijal, L. & Colomo-Palacios, R. (2020). Beyond Technical Skills in

Software Testing. Proceedings of the IEEE/ACM 42nd International Conference on Soft-

ware Engineering Workshops. https://doi.org/10.1145/3387940.3392238

[4] Van Dam, K. (2019) The Future of Testing. The Future of Software Quality Assurance.

Springer International Publishing. 197–205. https://doi.org/10.1007/978-3-030-29509-7_1

5

[5] Van Veenendaal, E. (2019). Next-Generation Software Testers: Broaden or Specialize!

The Future of Software Quality Assurance. Springer International Publishing. 229–243.

https://doi.org/10.1007/978-3-030-29509-7_18

[6] Elgrably, I. & Oliveira, S. (2019). A Proposal for Teaching or Applying Tests with a Focus

on Agile Methods made through an Asset Mapping. 16th International Conference on In-

formation Systemas & Technology Management.

[7] Elgrably, I. & Oliveira, S. (2020a). Construction of a curriculum adhering to the Teaching

of Software Tests Usingelements of Agile Context. IEEE Frontiers in Education Confer-

ence (FIE). https://doi.org/10.1109/FIE44824.2020.9274266

[8] Elgrably, I. & Oliveira, S. (2020b). Model for Teaching and Training Software Testing in

an Agile Context. IEEE Frontiers in Education Conference (FIE). https://doi.org/10.1109/F

IE44824.2020.9274117

[9] Elgrably, I. & Oliveira, S. (2021a). A diagnosis on software testing education in the Brazil-

ian Universities. IEEE Frontiers in Education Conference (FIE). https://doi.org/10.1109/FI

E49875.2021.9637305

[10] Elgrably, I. & Oliveira, S. (2021b). Remote teaching and learning of software testing using

active methodologies in the COVID-19 pandemic context. IEEE Frontiers in Education

Conference (FIE). https://doi.org/10.1109/FIE49875.2021.9637426

[11] Papadakis S, Kalogiannakis M (2020) Learning Computational Thinking Development in

Young Children With Bee-Bot Educational Robotics. In Advances in Early Childhood and

K-12 Education (pp. 289–309). https://doi.org/10.4018/978-1-7998-4576-8.ch011

[12] Zorzo, F., Nunes, D., Matos, E., Steinmacher, I., Leite, J., Araujo, R., Correia, R. &

Martins, S. (2017). Reference Documentation of Training for Undergraduate Computer

Courses. Sociedade Brasileira de Computação (SBC).

[13] CC2020 Task Force, “Computing Curricula 2020.” ACM, Nov. 15, 2020. https://doi.org/1

0.1145/3467967

[14] MEC (2016). National Curriculum Guidelines for Undergraduate Computer Courses

(Dcn16). Brazil.

[15] ACM/IEEE (2017); Information Technology Curricula: Curriculum Guidelines for Bacca-

laureate Degree Programs in Information Technology a Report in the Computing Curricula

Series Task Group on Information Technology Curricula.

[16] Hong, Q., Lu, W., Feng, P., Wei, H., & Cheng, Z. (2015). Occupational Ability Oriented

Graduate Education in Software Engineering. International Journal of Emerging Technol-

ogies in Learning (IJET), 10(8), 25. https://doi.org/10.3991/ijet.v10i8.5214

iJET ‒ Vol. 17, No. 05, 2022 83

https://doi.org/10.1007/978-3-030-28494-7
https://doi.org/10.1109/FIE43999.2019.9028646
https://doi.org/10.1145/3387940.3392238
https://doi.org/10.1007/978-3-030-29509-7_15
https://doi.org/10.1007/978-3-030-29509-7_15
https://doi.org/10.1007/978-3-030-29509-7_18
https://doi.org/10.1109/FIE44824.2020.9274266
https://doi.org/10.1109/FIE44824.2020.9274117
https://doi.org/10.1109/FIE44824.2020.9274117
https://doi.org/10.1109/FIE49875.2021.9637305
https://doi.org/10.1109/FIE49875.2021.9637305
https://doi.org/10.1109/FIE49875.2021.9637426
https://doi.org/10.4018/978-1-7998-4576-8.ch011
https://doi.org/10.1145/3467967
https://doi.org/10.1145/3467967
https://doi.org/10.3991/ijet.v10i8.5214

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

[17] Anderson LW, Krathwohl DR (2001). A Taxonomy for Learning Teaching and Assesing:

A Revision of Bloom's Taxonomy of Educational Objectives. Longman.

[18] ACM/IEEE (2013). Computer science curricula 2013. Curriculum guidelines for under-

graduate degree programs in Computer Science.

[19] SBC- Sociedade Brasileira de Computação (2005). SBC Reference Curriculum for Under-

graduate Degree Courses in Computer Science and Computer Engineering. Grupo de tra-

balho responsável – CR2005.

[20] Frezza, S., Clear, T. & Clear, A. (2020). Unpacking Dispositions in the CC2020 Compu-

ting Curriculum Overview Report. IEEE Frontiers in Education Conference (FIE).

https://doi.org/10.1109/FIE44824.2020.9273973

[21] Lauvås, P. & Arcuri, A. (2018). Recent Trends in Software Testing Education: A System-

atic Literature Review. in The Norwegian Conference on Didactics in IT education.

[22] Portela, C., Vasconcelos, A., Oliveira, S. & Souza, M. (2021). An Empirical Study on the

Use of Student-Focused Approaches in the Software Engineering Teaching. Informatics in

Education. https://doi.org/10.15388/infedu.2021.13

[23] Benitti, F. (2018). A Methodology to Define Learning Objects Granularity: A Case Study

in Software Testing. Informatics in Education, V. 17, No. 1, pp. 1–20. https://doi.org/10.15

388/infedu.2018.01

[24] Morán, J. (2015). Changing education with active methodologies. In: Media Convergenc-

es, Education and Citizenship: young approaches. Coleção Mídias Contemporâneas, v. 2,

n. 1, p. 15-33.

[25] Garousi V, Rainer A, Lauvås P, Arcuri, A (2020) Software-testing education: A systematic

literature mapping. In Journal of Systems and Software (Vol. 165, p. 110570). Elsevier

BV. https://doi.org/10.1016/j.jss.2020.110570

[26] Bourque, P. & Fairley, R. (2014). SWEBOK Guide V3.0. Available: www.swebok.org.

[27] TMMI Foundation (2018). Test Maturity Model Integration – TMMI Release 1.0.

[28] TMMI Foundation (2019). TMMi in the Agile world – TMMI Release 1.3.

[29] ISTQB (2018). International software testing qualifications board. available at:

https://www.istqb.org

[30] ISO/IEC/IEEE (2016). International Standard - Software and systems engineering -- Soft-

ware testing -- Part 5: Keyword-Driven Testing," in ISO/IEC/IEEE 29119-5 First edition

2016-11-15, pp.1-69.

[31] Laing, S. & Greaves, K. (2015). The Testing Manifesto. Available: http://www.growingagi

le.co.za/2015/04/the-testing-manifesto

[32] Crispin, L. & Gregory, J. (2014). Testing and Devops: In more Agile Testing: Learning

Journeys for the Whole Team. Addison-Wesley Professional.

[33] Furtado, J., Oliveira, S., Chaves, R., Telles, A. & Colares, A. (2021). An Experimental

Evaluation of a Teaching Approach for Statistical Process Control in Computer Courses.

International Journal of Information and Communication Technology Education. 17, 1,

154–171. https://doi.org/10.4018/IJICTE.2021010110

[34] Al-Abdullatif, A. M., & Gameil, A. A. (2021). The Effect of Digital Technology Integra-

tion on Students’ Academic Performance through Project-Based Learning in an E-learning

Environment. International Journal of Emerging Technologies in Learning (IJET), 16(11),

189. https://doi.org/10.3991/ijet.v16i11.19421

[35] Paschoal, L., Oliveira, M., Melo, S., Barbosa, E. & Souza, S. (2020). Evaluating the im-

pact of Software Testing Education through the Flipped Classroom Model in deriving Test

Requirements. Proceedings of the 34th Brazilian. https://doi.org/10.1145/3422392.342248

9

84 http://www.i-jet.org

https://doi.org/10.1109/FIE44824.2020.9273973
https://doi.org/10.15388/infedu.2021.13
https://doi.org/10.15388/infedu.2018.01
https://doi.org/10.15388/infedu.2018.01
https://doi.org/10.1016/j.jss.2020.110570
https://www.istqb.org/
http://www.growingagile.co.za/2015/04/the-testing-manifesto
http://www.growingagile.co.za/2015/04/the-testing-manifesto
https://doi.org/10.4018/IJICTE.2021010110
https://doi.org/10.3991/ijet.v16i11.19421
https://doi.org/10.1145/3422392.3422489
https://doi.org/10.1145/3422392.3422489

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

[36] Papadakis, S., Vaiopoulou, J., Sifaki, E., Stamovlasis, D., Kalogiannakis, M. & Vassilakis,

K. Factors That Hinder in-Service Teachers from Incorporating Educational Robotics into

Their Daily or Future Teaching Practice. In Proceedings of the 13th International Confer-

ence on Computer Supported Education (CSEDU 2021) - Volume 2, pages 55-63 ISBN:

978-989-758-502-9 ISSN: 2184-5026.

[37] Amnouychokanant, V., Boonlue, S., Chuathong, S., & Thamwipat, K. (2021). Online

Learning Using Block-based Programming to Foster Computational Thinking Abilities

during the COVID-19 Pandemic. International Journal of Emerging Technologies in

Learning (IJET), 16(13), 227. https://doi.org/10.3991/ijet.v16i13.22591

[38] Levanova, E. A., Galustyan, O. V., Seryakova, S. B., Pushkareva, T. V., Serykh, A. B., &

Yezhov, A. V. (2020). Students’ Project Competency within the Framework of STEM Ed-

ucation. International Journal of Emerging Technologies in Learning (IJET), 15(21), 268.

https://doi.org/10.3991/ijet.v15i21.15933.

[39] Liu, A. (2020). Design of Blending Teaching Mode for Software Testing Course. 2020

15th International Conference on Computer Science & Education (ICCSE). https://doi.org/

10.1109/ICCSE49874.2020.9201740

[40] Enoiu, E. (2020). Teaching Software Testing to Industrial Practitioners Using Distance and

Web-Based Learning.” Frontiers in Software Engineering Education. Springer Internation-

al Publishing. pp. 73–87. https://doi.org/10.1007/978-3-030-57663-9_6

[41] Bloom (1956). Taxonomy of Educational Objectives: The Classification of Educational

Goals.

[42] Portela, C. (2018). An Iterative Model for Teaching Software Engineering Based on Stu-

dent-Focused Approaches and Industry Training Practices, Tese de Doutorado, Univer-

sidade Federal de Pernambuco.

[43] Gribbons, B., & Herman, J. (1996). True and quasi-experimental designs. Practical As-

sessment, Research & Evaluation, 5(1), 14.

[44] Petousi, V. and Sifaki, E. (2020) ‘Contextualising harm in the framework of research mis-

conduct. Findings from discourse analysis of scientific publications’, Int. J. Sustainable

Development, Vol. 23, Nos. 3/4, pp.149–174. https://doi.org/10.1504/IJSD.2020.115206

[45] Fonseca, V. & Gomez, J. (2017). Applying Active Methodologies for Teaching Software

Engineering in Computer Engineering. IEEE Revista Iberoamericana de Tecnologias del

Aprendizaje, V. 12, No. 4, pp. 182–90. https://doi.org/10.1109/RITA.2017.2778358

[46] Yoshioka, S. & Ishitani, L. (2018). An Adaptive Test Analysis Based on Students’ Motiva-

tion, Informatics in Education, V. 17, No. 2, pp. 381–404. https://doi.org/10.15388/infedu.

2018.20

[47] Travassos, G., Gurov, D. & Amaral, E. (2002). Introduction to Experimental Software En-

gineering. Coppe/UFRJ, Rio de Janeiro, Relatório Técnico: RT-ES590/02.

12 Authors

Isaac Souza Elgrably, Doctoral student in Computer Science with emphasis in

Software Engineering from Graduate Program in Computer Science (PPGCC) at

Federal University of Pará (UFPA). His research areas are: Software Testing, Soft-

ware Engineering and Software Quality.

Sandro Ronaldo Bezerra Oliveira, PhD in Computer Science with emphasis in

Software Engineering and did his postdoctoral internship at the Informatics Center,

Federal University of Pernambuco. Currently he is professor and researcher at the

iJET ‒ Vol. 17, No. 05, 2022 85

https://doi.org/10.3991/ijet.v16i13.22591
https://doi.org/10.3991/ijet.v15i21.15933
https://doi.org/10.1109/ICCSE49874.2020.9201740
https://doi.org/10.1109/ICCSE49874.2020.9201740
https://doi.org/10.1007/978-3-030-57663-9_6
https://doi.org/10.1504/IJSD.2020.115206
https://doi.org/10.1109/RITA.2017.2778358
https://doi.org/10.15388/infedu.2018.20
https://doi.org/10.15388/infedu.2018.20

Paper—A Quasi-Experimental Evaluation of Teaching Software Testing in Software Quality Assurance…

Faculty of Computing (FACOMP) and Graduate Program in Computer Science

(PPGCC) at Federal University of Pará (UFPA). He is the Lead Coordinator of the

SPIDER research project, which has won many scientific awards and has already

graduated many doctoral, master, graduate and scientific initiation students in Com-

puter Science. He is consultant, appraiser and instructor of the MPS.BR and CMMI

software and service quality models. His research areas are: Informatics in Education,

Software Engineering and Software Process Improvement (email: srbo@ufpa.br).

Article submitted 2021-07-22. Resubmitted 2021-11-29. Final acceptance 2021-12-13. Final version

published as submitted by the authors.

86 http://www.i-jet.org

