
INTERACTIVE NUMERICAL AND SYMBOLIC ANALYSIS: A NEW PARADIGM FOR TEACHING ELECTRONICS

Interactive Numerical and Symbolic Analysis: A
New Paradigm for Teaching Electronics

Jean-Claude Thomassian
SUNY Maritime College/Engineering, Throggs Neck, New York

Abstract—Analog Insydes, Mathematica’s symbolic circuit
analysis toolbox, uses modern algorithms of expression
simplification depending on comparisons with a numerical
reference solution of the circuit under investigation. Some
insight is offered on how the complexity of an expression
barrier is overcome followed by two classical examples, a
BJT emitter follower and a MOSFET common-gate
amplifier stage to illustrate the proposed method at work. A
concluding section discusses that time spent teaching
introductory electronics by computer-aided circuit analysis,
interactive numerical and symbolic, is a worthwhile
investment.

Index Terms—Analog Insydes, computer algebra, electrical
engineering education, expression simplification, symbolic
techniques.

I. INTRODUCTION
As is well known, too little time is made available in

modern four year electrical and computer engineering
curricula to teach introductory electronics in the
traditional manner. One way to improve the outcome is to
use computer-aided techniques including the newly
developed symbolic circuit simulators such as Analog
Insydes 2.1 [1].

The computer revolution has acquired two
complementary but distinct faces: pure numerical solution
techniques and symbolic solution techniques, about which
more shortly. Before attempting to discuss how the
computer is best to be employed in our endeavor, let us
digress briefly to discuss a philosophical but relevant
matter. When a competent, experienced engineer engaged
in design, optimization, revision, or whatever considers a
circuit or system, we often say that the engineer
understands the entity in question. What exactly do we
mean by the term “understands?” No answer could be
totally unequivocal, but we might be able to agree with the
following: he understands, at least qualitatively, a
significant portion of the cause and effect relationships
that exist within the circuit or system, and he understands
in workable detail the analyses or computer simulations
that could be and would need be done to provide
quantitative answers to any questions that could
reasonably be asked about the circuit or system in
question. If we further agree that our educational
objectives are . . . to give the student some level of
understanding via simple examples of cause and effect . . .
to survey and codify the questions, it is possible and
useful to ask . . . and to teach how the answers to the
questions can be obtained via computer, then we can
explore the question . . . how the computer can be most
expediently employed.

We are proposing to begin using the computer
immediately to solve problems yes, both symbolically and
numerically; however, we are also proposing to begin
immediately teaching the student how to use both the
computer and selected software to solve the underlying
mathematical problem. As example: a mature user of
SPICE [2], say, readily understands the mathematical
problem he is posing to the computer software combo
even though he may have little or no understanding of the
actual algorithmic processes involved in obtaining the
solution. We are proposing that students be taught that the
analysis of electric circuits can be codified. When
confronted by a specific example, the student must be able
to recognize the essential type of underlying mathematical
problem. In the particular arena of circuits, it is not
difficult to do because there are only a few types and they
are readily recognizable for what they are. Next, the
student must be able to formulate his example in a manner
acceptable to the hardware software combo used; this will
invariably require system-specific formatting but the
process is essentially generic. The basic type of
mathematical problem being solved may well include
adjustable parameters, variable ranges, or other user
specified inputs. The student must understand the
mathematical nature of his example well enough to
guarantee that the information he is seeking will be
included in the output from the computer. The final step,
by no means trivial, requires that the student be able to
recognize and interpret the information produced.

Analog Insydes simplifies expressions the same way a
human analyst would. It selectively restricts the frequency
range of interest to that specified by one or more design
points and discards relatively insignificant terms of the
expression as determined by an allowable error bound and
the reference solution. The program was developed
primarily as a serious tool for professional analog
designers; however it seemed to us to have a strong
pedagogic potential as well [3], [4].

II. SYMBOLIC SYMPLIFICATION METHODOLOGY
It has long been a goal of researchers to develop

methods of symbolic analysis of electric circuits.
Historically, two major problems have blocked progress.
Symbolic circuit analysis, as one major application of
computer algebra, has labored under traditional
shortcomings: it required, relatively speaking, large
amounts of computer resources, memory and CPU time.
These requirements are largely met by modern machines,
but a problem of an essentially mathematical nature also
needed a solution. Formal solutions of even simple
circuits yield expressions of enormous complexity—so
complex as to effectively defy human understanding and
thereby render them useless. The number of terms in a

iJET – Volume 3, Issue 3, September 2008 27

INTERACTIVE NUMERICAL AND SYMBOLIC ANALYSIS: A NEW PARADIGM FOR TEACHING ELECTRONICS

formal solution tends to increase near exponentially as a
function of the number of components in the circuit. This
effect is sometimes referred to as the “complexity of
expression barrier.” Over the past several years,
researchers have developed at least two essentially
different approaches to simplification routines. The first
developed has been named Simplification After Term
Generation (SAG) [5], [6]; the second is named
Simplification Before Term Generation (SBG) [7], [8].

SAG or solution-based approximation starts by
calculating the complete symbolic expression followed by
a simplification step where product terms in the
coefficients of the numerator and denominator
polynomials of the transfer function are deleted. This
approach can stop being useful when the number of terms
is large because it alone cannot reduce the expression to a
comprehensible level of complexity. The newest
approaches to simplification, simplification during and
before generation were developed about the same time [9],
[10]. The rationale underlying SBG or equation-based
approximation is to emulate the technique of a seasoned
circuit analyst who makes approximations even as he is
describing the circuit; e.g., if he is interested only in low
frequency behavior where small capacitors have no effect,
he will simply leave them out. It may also turn out that the
computational burden of solving an approximated system
of equations is dramatically lower than solving the full
system of non-approximated equations followed by an
SAG routine. The next two subsections describe the
implementation of these routines as built into Analog
Insydes.

A. Simplification Before Generation (SBG)
ApproximateMatrixEquation[dae, var, errspec]

approximates a symbolic matrix equation, dae, with
respect to a designated output variable, var, while
observing the error specification, errspec. The above
operation approximates a linear symbolic matrix equation
by discarding insignificant matrix entries before the
system is solved (SBG). The significance of a symbolic
matrix element is determined by calculating its numerical
influence on the magnitude of the transfer function at one
or several frequency sampling points. The approximation
process generates a term ranking obtained by computing
the large-change sensitivities of the output variable with
respect to all matrix entries and sorting the resulting list in
order of decreasing influence. The algorithm deletes all
possible matrix entries subject to the constraint that their
cumulative influence is less than the user-specified error
bound. For a given errspec, the algorithm assures that the
relative deviation of the magnitude of the output variable,
var, measured at the frequency values fvar=freqi is less
than maxerri.

B. Simplification After Generation (SAG)
ApproximateTransferFunction[expr, fvar, dp, error]

approximates a symbolic transfer function, expr, by
discarding insignificant terms where fvar, dp, and error
denote the complex frequency variable [i.e. the Laplace
variable s], the design point [here understood to mean the
numerical values of the components and device
parameters appearing in the reference solution], and the
bound on the coefficient error. The foregoing operation
implements SAG. The significance or insignificance of a
term is assessed on the basis of numerical reference values

for the symbols, i.e., the design point. For each
coefficient, the algorithm removes the numerically least
significant terms until the maximum coefficient error is
reached. The fourth argument, noted above, denotes the
maximum coefficient error; it does not constitute a bound
on the absolute error of the transfer function. The absolute
error may be larger or smaller than the maximum
coefficient error. This operation does not discriminate
frequency, and the result is valid for whatever frequency
range was used in the reference solution.

III. INTERACTIVE NUMERICAL AND SYMBOLIC SIMULATION
EXAMPLES

In the examples to follow, two very simple and very
well-known one-transistor circuits are presented; a BJT
emitter follower (EF) and a MOSFET common-gate (CG)
amplifier stage. The examples presented employ PSpice
and Analog Insydes as a toolbox of Mathematica. Tight
interaction between symbolic and numeric computations
helps to ensure continuous error control and verification of
the results.

A. Common Collector Example
We will analyze the circuit of Fig. 1, which is a

common collector (emitter follower EF) amplifier. The
thing to note is that a load, if present, would be connected
to the emitter. The collector is connected to VCC, and the
output is in phase with the input. The EF amp has a
voltage gain close to one. With this kind of gain, we may
ask what is the point? The point is that an EF has a very
low output resistance and a relatively high input
resistance. It is therefore useful as a buffer placed between
a high resistance source and a low resistance load, thereby
providing the necessary current to the load without undue
voltage drop.

The DC bias for a stand alone EF amp is similar to the
CE amp, but since the gain is near one, we would establish
a quiescent or DC bias point around VB = VCC/2, VC =
VCC and VE = VB-0.7 V. The 0.7 V reflects a diode drop
across the base-emitter junction.

VCC
12

Ibias

IX

0

IDC

VS

RS

1K

1

1 2

3

4

1m

Q2N2222

Q1

Figure 1. Emitter follower amplifier schematic − no load.

28 http://www.i-jet.org

INTERACTIVE NUMERICAL AND SYMBOLIC ANALYSIS: A NEW PARADIGM FOR TEACHING ELECTRONICS

Figures 2 and 3 are what the PSpice input and output
files look like for the simulation of the emitter follower
amplifier we are going to examine

Figure 2. PSpice emitter follower amplifier input file.

Figure 3. PSpice emitter follower amplifier output file.

Figure 4 is a Probe plot for the simulation results of the
gain magnitude and phase. From the plot we can read the
low frequency gain to be approximately 1V/V and the cut
off frequency to be about 2 MHz.

Figure 4. Emitter follower amplifier gain magnitude and

phase.

Figure 5, is the Analog Insydes simulation result of
analyzing the emitter follower circuit under investigation.
Included in the figure are the emitter follower gain
magnitude and phase angle, the imported PSpice netlist,
and the symbolic expression for the transfer function in
fully symbolic form and using numbers in the low
frequency approximation. The numerical expression
calculated uses both the design point information and the
component values specified.

Here we have solved the modified nodal analysis matrix
for the output voltage at node V$4 using the basic BJT
model, which produced the fully symbolic result for gain
as shown in the figure. Then we have applied a
simplification before generation command
ApproximateMatrixEquation and obtained an approximate
symbolic result of gainsimp which in our case turns out to
be VS (gain = 1).

If we plot gainNum[s_] and gainsimpNum and compare
to the SPICE Bode plot we will find that gainNum[s_]
constitutes a global description of the frequency response
of the amplifier and closely approximates the original
PSpice plot while gainsimpNum is just the SBG solution
and is valid only in the low to midband region and does
not reflect the behavior the amplifier exhibits at high
frequencies. Note that such a local approximation was
precisely what we asked for, because we specified only
one reference point on the frequency axis at 1 MHz.

Figure 5. Analog Insydes Emitter Follower amplifier Gain.

It may also be noted that by setting VS to 1, we can
avoid computing the gain as (V$4/V$1); instead it is given
by solving for V$4 only.

To extend the analysis, Fig. 6 shows how we calculate
the input and output resistance for this simple emitter
follower circuit. Input resistance is calculated by taking
the input voltage divided by input current. The output
resistance is calculated by adding a current source IX at
the output, node 4 in our case, and then the output
resistance is obtained as the voltage at node 4 by setting
VS=0 and IX=1 as shown in the figure. The numerically
approximated results agree closely with PSpice probe
results.

iJET – Volume 3, Issue 3, September 2008 29

INTERACTIVE NUMERICAL AND SYMBOLIC ANALYSIS: A NEW PARADIGM FOR TEACHING ELECTRONICS

Figure 6. Analog Insydes emitter follower input and output

resistances.

B. Common Gate Example
In this subsection we will analyze the common gate

(CG) amplifier circuit of Fig. 7 where the gate is
grounded, input is applied at the source, and the output is
taken from the drain. The Q-point of the transistor is set
by DC biasing. It is obvious that the current gain for this
amplifier must be unity, since the gate current for a
MOSFET is zero. The CG is a good current buffer; it
takes a current at the input that may come from a source
with a relatively small Norton resistance and replicates it
at the output port, which approximates a strong source due
to the relatively high output resistance.

Figure 7. Common Gate “CG” amplifier.

Figures 8 and 9 are the PSpice input and output files for
the simulation of the common gate amplifier we are
examining.

Figure 8. PSpice common gate amplifier input file.

Here we have used a Level 3 model for a 0.4 um
technology to analyze this circuit, we have biased the
NMOS to produce a drain current of 0.1 mA as shown in
the following figure for the operating point information.

Figure 9. PSpice common gate amplifier output file.

Figure 10 is the Probe plots for the gain magnitude and
phase of the common gate; here the gain is calculated to
be 2.232 V/V. We are using an NMOS with a width of 8
um, applied Vgs of 1.27 V, and a supply voltage of 4.5 V.

Figure 10. Common gate amplifier gain magnitude and

phase.

The following Fig. 11 is the Analog Insydes simulation
result excerpted from analyzing the common gate circuit
under investigation. Included in the figure are the common

30 http://www.i-jet.org

INTERACTIVE NUMERICAL AND SYMBOLIC ANALYSIS: A NEW PARADIGM FOR TEACHING ELECTRONICS

gate gain magnitude and phase angle, the imported Pspice
netlist, and the expressions for the transfer function in
fully symbolic form and in the low frequency numerical
approximation. The numerical expression calculated uses
the design point information and component values given.

Here we have solved the modified nodal analysis matrix
for the gain using the basic MOS model, which produced
the fully symbolic result for gain as shown in the figure.
Then we have applied a simplification before generation
command ApproximateMatrixEquation and obtained an
approximate symbolic result of gainsimp. The command
ApproximateMatrixEquation is restricted to control only a
single output variable. To control several variables, we
need to repeat the approximation. When computing a
small-signal voltage gain, we usually apply a constant
voltage source to the input. The value of the input variable
is a constant. Thus, in our application, it is sufficient to
carry out the approximation for the output voltage only
and then solve the equations as set forth in the figure
below.

Figure 11. Analog Insydes common gate amplifier output

file.

The next excerpt shows how Analog Insydes calculated
the input and output resistances. Again, the numerical
values match well with PSpice values when compared. It
is shown that the Thevenin resistance at node 3 is just RD
as follows from the ideal current source drive.

Figure 12. Analog Insydes common gate amplifier input /

output resistances.

IV. CONCLUSIONS
Symbolic methods or computer algebra has been

around for many years; only recently, however, have
powerful simplification algorithms been developed and
implemented. This improvement has increased the value
of symbolic methods enormously both for pedagogic and
for serious design purposes. An example is that now it is
possible to identify specific small-signal parameters of
specific transistors as important contributors to dominant
system poles and zeroes.

There is no going back to a simpler time. Modern
problems are complex and demand computer simulation
or computer-assisted analysis, synthesis, or optimization.
Nothing is gained and much can be lost by postponing the
introduction of computer methods or by introducing them
in a partial, half hearted, adjunctive way. This is often
done in the name of ‘understanding.’ We propose that if
effectively instructed, a beginning student can
‘understand’ the analysis of a 50-node circuit just as
readily as he can ‘understand’ that of a one node circuit.

By ‘understand’ we imply some knowledge of cause
and effect, or as it is sometimes put, “simple formulas are
the salt of understanding.” Thus, traditionally, students are
introduced to both classical problem formulations and
simple solution techniques, but Hand analysis quickly
runs up against the complexity barrier–one cannot use
pencil and paper techniques to solve practical scale
problems.

From Pspice output file there is no relevant information
produced to give us any insight into the functional
dependencies between the circuit elements and the output
behavior. Symbolic analysis and computer algebra
methods constitute a natural approach towards capturing
the expertise of experienced designers. Symbolic analysis
is a formal technique for calculating the behavior of
circuits as closed-form mathematical expressions. The
formulae provide insight into the functional dependencies
between the circuit elements and the output behavior; for
example, the voltage at a node is not just a number.

iJET – Volume 3, Issue 3, September 2008 31

INTERACTIVE NUMERICAL AND SYMBOLIC ANALYSIS: A NEW PARADIGM FOR TEACHING ELECTRONICS

In our opinion, it would be better to support instruction
in electronics on computer-aided circuit analysis for the
same reason that a modern carpenter prefers to use electric
skill saws and pneumatic nail drivers.

What are the challenges to the education community?
Time, money and breaking the grip of habit and tradition.
We look forward to learning about some real-world
experiments, either as participants or as interested
onlookers.

REFERENCES
[1] Analog Insydes, Intelligent Symbolic Design System, by

Fraunhofer ITWM, Online at: http://www.analog-insydes.de/
[2] L. W. Nagel, "SPICE2: A Computer Program to Simulate

Semiconductor Circuits." Tech. Rep. UCB/ERL M520, University
of California, Berkeley, 1975.

[3] J.-C. Thomassian and E. D. Smith, Interactive Numerical and
Symbolic Simulation: A New Paradigm for Teaching Circuits,
Proceedings of IEEE 34th Frontiers in Education Conference, pp.
S2C 8-12, October 2004.

[4] J.-C. Thomassian, Symbolic Techniques: A New Tool for
Teaching Circuits and Electronics, Proceedings of IEEE 37th
Frontiers in Education Conference, pp. S2C 1-5, October 2007.

[5] H. Walscharts, G. Gielen and W. Sansen, "Symbolic Simulation of
Analog Circuits in S- and Z-Domain," IEEE ISCAS, pp. 814-817,
1989.

[6] F. V. Fernandez, A. Rodriguez-Vazquez and J. L. Huertas, "A
Tool for Symbolic Analysis of Analog Integrated Circuits
Including Pole/Zero Extraction," in Proc. 10th ECCTD, pp. 752-
761, Copenhagen (Denmark), July, 1991.

[7] J. J. Hsu and C. Sechen, "The Sifting Approach to Symbolic
Analysis of Large Analog Integrated Circuits," in Proc. 3rd Int.
Workshop on Symbolic Methods and Applications in Circuit
Design (SMACD), pp. 212-230, Sevilla (Spain), Oct. 1994.

[8] J. D. Rodriguez-Garcia, O. Guerra, E. Roca, F. V. Fernandez and
A. Rodriguez-Vazquez, "A New Simplification Before and During
Generation Algorithm," in Proc. 5th Int. Workshop SMACD, pp.
110-124, Kaiserslautern (Germany), Oct. 1998.

[9] E. Hennig, Symbolic Approximation and Modeling Techniques
for Analysis and Design of Analog Circuits, Shaker Verlag,
Aachen, Germany, 2000.

[10] W. Daems, G. Gielen and W. Sansen, “Circuit Simplification for
Symbolic Analysis of Analog Integrated Circuits, IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 21, no. 4, pp. 395-407, April 2002.

AUTHOR

J.-C. Thomassian is with the Department of
Engineering, SUNY Maritime College, Throggs Neck,
NY 10465 USA (e-mail: jthomassian@ieee.org)

Manuscript received 11 March 2008. Published as submitted by the
author.

32 http://www.i-jet.org

