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Abstract—Analog Insydes, Mathematica’s symbolic circuit 
analysis toolbox, uses modern algorithms of expression 
simplification depending on comparisons with a numerical 
reference solution of the circuit under investigation. Some 
insight is offered on how the complexity of an expression 
barrier is overcome followed by two classical examples, a 
BJT emitter follower and a MOSFET common-gate 
amplifier stage to illustrate the proposed method at work. A 
concluding section discusses that time spent teaching 
introductory electronics by computer-aided circuit analysis, 
interactive numerical and symbolic, is a worthwhile 
investment.  

Index Terms—Analog Insydes, computer algebra, electrical 
engineering education, expression simplification, symbolic 
techniques. 

I. INTRODUCTION 
As is well known, too little time is made available in 

modern four year electrical and computer engineering 
curricula to teach introductory electronics in the 
traditional manner.  One way to improve the outcome is to 
use computer-aided techniques including the newly 
developed symbolic circuit simulators such as Analog 
Insydes 2.1 [1].  

The computer revolution has acquired two 
complementary but distinct faces: pure numerical solution 
techniques and symbolic solution techniques, about which 
more shortly. Before attempting to discuss how the 
computer is best to be employed in our endeavor, let us 
digress briefly to discuss a philosophical but relevant 
matter. When a competent, experienced engineer engaged 
in design, optimization, revision, or whatever considers a 
circuit or system, we often say that the engineer 
understands the entity in question. What exactly do we 
mean by the term “understands?” No answer could be 
totally unequivocal, but we might be able to agree with the 
following: he understands, at least qualitatively, a 
significant portion of the cause and effect relationships 
that exist within the circuit or system, and he understands 
in workable detail the analyses or computer simulations 
that could be and would need be done to provide 
quantitative answers to any questions that could 
reasonably be asked about the circuit or system in 
question. If we further agree that our educational 
objectives are . . . to give the student some level of 
understanding via simple examples of cause and effect . . . 
to survey and codify the questions, it is possible and 
useful to ask . . . and to teach how the answers to the 
questions can be obtained via computer, then we can 
explore the question . . . how the computer can be most 
expediently employed.  

We are proposing to begin using the computer 
immediately to solve problems yes, both symbolically and 
numerically; however, we are also proposing to begin 
immediately teaching the student how to use both the 
computer and selected software to solve the underlying 
mathematical problem. As example: a mature user of 
SPICE [2], say, readily understands the mathematical 
problem he is posing to the computer software combo 
even though he may have little or no understanding of the 
actual algorithmic processes involved in obtaining the 
solution. We are proposing that students be taught that the 
analysis of electric circuits can be codified. When 
confronted by a specific example, the student must be able 
to recognize the essential type of underlying mathematical 
problem. In the particular arena of circuits, it is not 
difficult to do because there are only a few types and they 
are readily recognizable for what they are. Next, the 
student must be able to formulate his example in a manner 
acceptable to the hardware software combo used; this will 
invariably require system-specific formatting but the 
process is essentially generic. The basic type of 
mathematical problem being solved may well include 
adjustable parameters, variable ranges, or other user 
specified inputs. The student must understand the 
mathematical nature of his example well enough to 
guarantee that the information he is seeking will be 
included in the output from the computer. The final step, 
by no means trivial, requires that the student be able to 
recognize and interpret the information produced. 

Analog Insydes simplifies expressions the same way a 
human analyst would. It selectively restricts the frequency 
range of interest to that specified by one or more design 
points and discards relatively insignificant terms of the 
expression as determined by an allowable error bound and 
the reference solution. The program was developed 
primarily as a serious tool for professional analog 
designers; however it seemed to us to have a strong 
pedagogic potential as well [3], [4]. 

II. SYMBOLIC SYMPLIFICATION METHODOLOGY 
It has long been a goal of researchers to develop 

methods of symbolic analysis of electric circuits. 
Historically, two major problems have blocked progress. 
Symbolic circuit analysis, as one major application of 
computer algebra, has labored under traditional 
shortcomings: it required, relatively speaking, large 
amounts of computer resources, memory and CPU time. 
These requirements are largely met by modern machines, 
but a problem of an essentially mathematical nature also 
needed a solution. Formal solutions of even simple 
circuits yield expressions of enormous complexity—so 
complex as to effectively defy human understanding and 
thereby render them useless. The number of terms in a 
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formal solution tends to increase near exponentially as a 
function of the number of components in the circuit. This 
effect is sometimes referred to as the “complexity of 
expression barrier.” Over the past several years, 
researchers have developed at least two essentially 
different approaches to simplification routines. The first 
developed has been named Simplification After Term 
Generation (SAG) [5], [6]; the second is named 
Simplification Before Term Generation (SBG) [7], [8]. 

SAG or solution-based approximation starts by 
calculating the complete symbolic expression followed by 
a simplification step where product terms in the 
coefficients of the numerator and denominator 
polynomials of the transfer function are deleted. This 
approach can stop being useful when the number of terms 
is large because it alone cannot reduce the expression to a 
comprehensible level of complexity. The newest 
approaches to simplification, simplification during and 
before generation were developed about the same time [9], 
[10]. The rationale underlying SBG or equation-based 
approximation is to emulate the technique of a seasoned 
circuit analyst who makes approximations even as he is 
describing the circuit; e.g., if he is interested only in low 
frequency behavior where small capacitors have no effect, 
he will simply leave them out. It may also turn out that the 
computational burden of solving an approximated system 
of equations is dramatically lower than solving the full 
system of non-approximated equations followed by an 
SAG routine. The next two subsections describe the 
implementation of these routines as built into Analog 
Insydes. 

A.  Simplification Before Generation (SBG) 
ApproximateMatrixEquation[dae, var, errspec] 

approximates a symbolic matrix equation, dae, with 
respect to a designated output variable, var, while 
observing the error specification, errspec. The above 
operation approximates a linear symbolic matrix equation 
by discarding insignificant matrix entries before the 
system is solved (SBG). The significance of a symbolic 
matrix element is determined by calculating its numerical 
influence on the magnitude of the transfer function at one 
or several frequency sampling points. The approximation 
process generates a term ranking obtained by computing 
the large-change sensitivities of the output variable with 
respect to all matrix entries and sorting the resulting list in 
order of decreasing influence. The algorithm deletes all 
possible matrix entries subject to the constraint that their 
cumulative influence is less than the user-specified error 
bound. For a given errspec, the algorithm assures that the 
relative deviation of the magnitude of the output variable, 
var, measured at the frequency values fvar=freqi is less 
than maxerri. 

B.  Simplification After Generation (SAG) 
ApproximateTransferFunction[expr, fvar, dp, error] 

approximates a symbolic transfer function, expr, by 
discarding insignificant terms where fvar, dp, and error 
denote the complex frequency variable [i.e. the Laplace 
variable s], the design point [here understood to mean the 
numerical values of the components and device 
parameters appearing in the reference solution], and the 
bound on the coefficient error. The foregoing operation 
implements SAG. The significance or insignificance of a 
term is assessed on the basis of numerical reference values 

for the symbols, i.e., the design point. For each 
coefficient, the algorithm removes the numerically least 
significant terms until the maximum coefficient error is 
reached. The fourth argument, noted above, denotes the 
maximum coefficient error; it does not constitute a bound 
on the absolute error of the transfer function. The absolute 
error may be larger or smaller than the maximum 
coefficient error. This operation does not discriminate 
frequency, and the result is valid for whatever frequency 
range was used in the reference solution. 

III. INTERACTIVE NUMERICAL AND SYMBOLIC SIMULATION 
EXAMPLES 

In the examples to follow, two very simple and very 
well-known one-transistor circuits are presented; a BJT 
emitter follower (EF) and a MOSFET common-gate (CG) 
amplifier stage. The examples presented employ PSpice 
and Analog Insydes as a toolbox of Mathematica. Tight 
interaction between symbolic and numeric computations 
helps to ensure continuous error control and verification of 
the results. 

A. Common Collector Example 
We will analyze the circuit of Fig. 1, which is a 

common collector (emitter follower EF) amplifier. The 
thing to note is that a load, if present, would be connected 
to the emitter. The collector is connected to VCC, and the 
output is in phase with the input. The EF amp has a 
voltage gain close to one. With this kind of gain, we may 
ask what is the point? The point is that an EF has a very 
low output resistance and a relatively high input 
resistance. It is therefore useful as a buffer placed between 
a high resistance source and a low resistance load, thereby 
providing the necessary current to the load without undue 
voltage drop.  

The DC bias for a stand alone EF amp is similar to the 
CE amp, but since the gain is near one, we would establish 
a quiescent or DC bias point around VB = VCC/2, VC = 
VCC and VE = VB-0.7 V. The 0.7 V reflects a diode drop 
across the base-emitter junction. 
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Figure 1.  Emitter follower amplifier schematic − no load. 
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Figures 2 and 3 are what the PSpice input and output 
files look like for the simulation of the emitter follower 
amplifier we are going to examine 

 
Figure 2.  PSpice emitter follower amplifier input file. 

 
Figure 3.  PSpice emitter follower amplifier output file. 

Figure 4 is a Probe plot for the simulation results of the 
gain magnitude and phase. From the plot we can read the 
low frequency gain to be approximately 1V/V and the cut 
off frequency to be about 2 MHz. 

 
Figure 4.  Emitter follower amplifier gain magnitude and 

phase. 

Figure 5, is the Analog Insydes simulation result of 
analyzing the emitter follower circuit under investigation. 
Included in the figure are the emitter follower gain 
magnitude and phase angle, the imported PSpice netlist, 
and the symbolic expression for the transfer function in 
fully symbolic form and using numbers in the low 
frequency approximation. The numerical expression 
calculated uses both the design point information and the 
component values specified. 

Here we have solved the modified nodal analysis matrix 
for the output voltage at node V$4 using the basic BJT 
model, which produced the fully symbolic result for gain 
as shown in the figure. Then we have applied a 
simplification before generation command 
ApproximateMatrixEquation and obtained an approximate 
symbolic result of gainsimp which in our case turns out to 
be VS (gain = 1). 

If we plot gainNum[s_] and gainsimpNum and compare 
to the SPICE Bode plot we will find that gainNum[s_] 
constitutes a global description of the frequency response 
of the amplifier and closely approximates the original 
PSpice plot while gainsimpNum is just the SBG solution 
and is valid only in the low to midband region and does 
not reflect the behavior the amplifier exhibits at high 
frequencies. Note that such a local approximation was 
precisely what we asked for, because we specified only 
one reference point on the frequency axis at 1 MHz. 

 
Figure 5.  Analog Insydes Emitter Follower amplifier Gain. 

It may also be noted that by setting VS to 1, we can 
avoid computing the gain as (V$4/V$1); instead it is given 
by solving for V$4 only. 

To extend the analysis, Fig. 6 shows how we calculate 
the input and output resistance for this simple emitter 
follower circuit. Input resistance is calculated by taking 
the input voltage divided by input current. The output 
resistance is calculated by adding a current source IX at 
the output, node 4 in our case, and then the output 
resistance is obtained as the voltage at node 4 by setting 
VS=0 and IX=1 as shown in the figure. The numerically 
approximated results agree closely with PSpice probe 
results. 
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Figure 6.  Analog Insydes emitter follower input and output 

resistances. 

B. Common Gate Example 
In this subsection we will analyze the common gate 

(CG) amplifier circuit of Fig. 7 where the gate is 
grounded, input is applied at the source, and the output is 
taken from the drain. The Q-point of the transistor is set 
by DC biasing. It is obvious that the current gain for this 
amplifier must be unity, since the gate current for a 
MOSFET is zero. The CG is a good current buffer; it 
takes a current at the input that may come from a source 
with a relatively small Norton resistance and replicates it 
at the output port, which approximates a strong source due 
to the relatively high output resistance. 

 
Figure 7.  Common Gate “CG” amplifier. 

Figures 8 and 9 are the PSpice input and output files for 
the simulation of the common gate amplifier we are 
examining. 

 
Figure 8.  PSpice common gate amplifier input file. 

Here we have used a Level 3 model for a 0.4 um 
technology to analyze this circuit, we have biased the 
NMOS to produce a drain current of 0.1 mA as shown in 
the following figure for the operating point information. 

 
Figure 9.  PSpice common gate amplifier output file. 

Figure 10 is the Probe plots for the gain magnitude and 
phase of the common gate; here the gain is calculated to 
be 2.232 V/V. We are using an NMOS with a width of 8 
um, applied Vgs of 1.27 V, and a supply voltage of 4.5 V. 

 
Figure 10.  Common gate amplifier gain magnitude and 

phase. 

The following Fig. 11 is the Analog Insydes simulation 
result excerpted from analyzing the common gate circuit 
under investigation. Included in the figure are the common 
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gate gain magnitude and phase angle, the imported Pspice 
netlist, and the expressions for the transfer function in 
fully symbolic form and in the low frequency numerical 
approximation. The numerical expression calculated uses 
the design point information and component values given. 

Here we have solved the modified nodal analysis matrix 
for the gain using the basic MOS model, which produced 
the fully symbolic result for gain as shown in the figure. 
Then we have applied a simplification before generation 
command ApproximateMatrixEquation and obtained an 
approximate symbolic result of gainsimp. The command 
ApproximateMatrixEquation is restricted to control only a 
single output variable. To control several variables, we 
need to repeat the approximation. When computing a 
small-signal voltage gain, we usually apply a constant 
voltage source to the input. The value of the input variable 
is a constant. Thus, in our application, it is sufficient to 
carry out the approximation for the output voltage only 
and then solve the equations as set forth in the figure 
below. 

 
Figure 11.  Analog Insydes common gate amplifier output 

file. 

The next excerpt shows how Analog Insydes calculated 
the input and output resistances. Again, the numerical 
values match well with PSpice values when compared. It 
is shown that the Thevenin resistance at node 3 is just RD 
as follows from the ideal current source drive. 

 
Figure 12.  Analog Insydes common gate amplifier input / 

output resistances. 

IV. CONCLUSIONS 
Symbolic methods or computer algebra has been 

around for many years; only recently, however, have 
powerful simplification algorithms been developed and 
implemented. This improvement has increased the value 
of symbolic methods enormously both for pedagogic and 
for serious design purposes. An example is that now it is 
possible to identify specific small-signal parameters of 
specific transistors as important contributors to dominant 
system poles and zeroes.  

There is no going back to a simpler time. Modern 
problems are complex and demand computer simulation 
or computer-assisted analysis, synthesis, or optimization. 
Nothing is gained and much can be lost by postponing the 
introduction of computer methods or by introducing them 
in a partial, half hearted, adjunctive way. This is often 
done in the name of ‘understanding.’ We propose that if 
effectively instructed, a beginning student can 
‘understand’ the analysis of a 50-node circuit just as 
readily as he can ‘understand’ that of a one node circuit.  

By ‘understand’ we imply some knowledge of cause 
and effect, or as it is sometimes put, “simple formulas are 
the salt of understanding.” Thus, traditionally, students are 
introduced to both classical problem formulations and 
simple solution techniques, but Hand analysis quickly 
runs up against the complexity barrier–one cannot use 
pencil and paper techniques to solve practical scale 
problems.  

From Pspice output file there is no relevant information 
produced to give us any insight into the functional 
dependencies between the circuit elements and the output 
behavior. Symbolic analysis and computer algebra 
methods constitute a natural approach towards capturing 
the expertise of experienced designers. Symbolic analysis 
is a formal technique for calculating the behavior of 
circuits as closed-form mathematical expressions. The 
formulae provide insight into the functional dependencies 
between the circuit elements and the output behavior; for 
example, the voltage at a node is not just a number. 
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In our opinion, it would be better to support instruction 
in electronics on computer-aided circuit analysis for the 
same reason that a modern carpenter prefers to use electric 
skill saws and pneumatic nail drivers. 

What are the challenges to the education community? 
Time, money and breaking the grip of habit and tradition. 
We look forward to learning about some real-world 
experiments, either as participants or as interested 
onlookers. 
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