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Abstract—Teaching decisions need to be optimized to guide learners to stick 

to the right learning method, and maintain learning interests. However, the exist-

ing evaluation systems for college teachers’ teaching decision ability cannot 

adapt to online teaching decision-making. What is worse, the previous studies on 

college teachers’ teaching decisions rarely consider online teaching decision-

making. Therefore, this paper attempts to optimize college teachers’ teaching de-

cision under the smart teaching environment. Specifically, the roadmap of teach-

ing decision generation and optimization was presented, the teaching decision 

bases were specified for different teaching decision scenarios, and a teaching de-

cision model was established under the smart teaching environment. In addition, 

teaching decisions were generated based on deep reinforcement learning algo-

rithm, and optimized by certain rules under the experience replay mechanism. 

The proposed algorithm was proved effective and feasible through experiments. 

Keywords—smart teaching, teaching decision generation, decision optimiza-

tion 

1 Introduction 

The development and application of smart teaching platforms are promoted by var-

ious new smart devices and advanced techniques [1-9]. Online learning is highly sus-

ceptible to interference from other factors. Online teaching must be dominated by 

teachers, and teaching decisions must be optimized based on the data of the smart teach-

ing platform, so as to guide learners to stick to the right learning method, and maintain 

learning interests [10-15]. Traditional teaching decision-making methods are usually 

only suitable for specific teaching environments. It is difficult for them to adapt to dy-

namic, uncertain, complex decision environments [16-21]. Based on artificial intelli-

gence (AI), adaptive decision-making provides a new solution to complex decision-

making problems.  

So far, most teachers have relied on summative evaluation items as the benchmark 

for measuring student learning and making teaching decisions. However, these items 

may not necessarily provide comprehensive evidence for the actual learning process, 

especially in an online learning environment. After that, it is impossible for them to 
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monitor students’ online learning patterns over time. Kaliisa et al. [22] discussed how 

teachers understand students’ learning process through social learning analysis, and 

thus make smart teaching decisions during course operation. Mceachron and Torres 

[23] measured the application value of educational decision support system in the field 

of education, and its impact on the educational environment. Through a case study on 

26 British teachers, Webb and Cox [24] investigated various aspects of the teaching 

reasoning process, including the beliefs and knowledge used, examined the reasoning 

behind decisions related to the utilization of information and communications technol-

ogy (ICT), developed a teaching practice framework related to different types and us-

ages of ICT, and applied the framework to real cases to illustrate ICT-related teaching 

practices. Salcedo et al. [25] developed a knowledge-based distance education system, 

which plans teaching strategies through a neural network, and described various issues, 

including the motivation for creating the platform, the theoretical basis of the platform, 

the services provided by the system, and the operating results of the system. Kwok et 

al. [26] optimized and validated a prototype of a smart decision support system for 

teaching task assignments, and tested the algorithm on a real dataset from a secondary 

school. The algorithm results were compared with the manually collected results of the 

school president, revealing that the algorithm is highly feasible. 

Domestic and foreign scholars have probed deep into college teachers’ teaching de-

cisions. In foreign countries, the existing evaluation systems for college teachers’ teach-

ing decision ability concentrate on decision-making on college or school level, and can-

not adapt to online teaching decision-making. In China, the research into college teach-

ers’ teaching decisions mostly stop at evaluating the decision values, paying little at-

tention to the decision practice in online teaching. Taking music teaching for example, 

this paper attempts to optimize college teachers’ teaching decision under the smart 

teaching environment. The main research contents are as follows: Section 2 presents 

the roadmap of teaching decision generation and optimization, specifies the teaching 

decision bases for different teaching decision scenarios, and builds a teaching decision 

model under the smart teaching environment. Section 3 generates teaching decisions 

based on deep reinforcement learning algorithm. Section 4 optimize the generated de-

cisions by certain rules under the experience replay mechanism. The proposed algo-

rithm was proved effective and feasible through experiments. 

2 Modeling 

Figure 1 explains the roadmap of teaching decision generation and optimization, and 

presents the basis for teaching decision-making under different scenarios, including de-

cision of teaching plan, that of teaching interaction, and that of teaching effect reflec-

tion. For online and offline teaching, the decision of teaching plan is affected by teach-

ing goal, teaching content, and teaching method, and based on learning situation, teach-

ing environment, teaching style, textbook, and school requirements. The decision of 

teaching interaction is influenced by method selection, and strength/weakness analysis, 

tool determination, and affectivity improvement, and based on highlighting student sub-

jectivity, technology update, and classroom feedbacks. The decision of teaching effect 

reflection is impacted by teaching evaluation, and teaching results, and based on learn-

ing results, mutual evaluation results, and subjective experience of teachers. 
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Fig. 1. Roadmap of teaching decision generation and optimization 

Based on the above roadmap, a teaching decision model was established for college 

teachers under the smart teaching environment (Figure 2). Specifically, a decision is 

generated and optimized through the following steps: (1) collecting and sorting out the 

data on teaching decision elements; (2) processing the existing data, judging the current 

teaching state, and estimating the teaching state; (3) generating the teaching decision 

based on deep reinforcement learning, and optimizing the generated decision by certain 

rules, following the experience replay mechanism; (4) implementing the decision, and 

evaluating the effectiveness of the decision. The generation and optimization of 

teaching decisions are detailed below. 

 

Fig. 2. Architecture of teaching decision model under the smart teaching environment 
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3 Decision generation 

Model-free deep reinforcement learning has been applied in finance and intelligent 

control, thanks to its capability of realizing many automated decision and control tasks. 

However, the algorithm faces problems like high computing cost and unideal conver-

gence, which bottleneck its adaptivity to complex decision environments. To overcome 

these problems, this paper generates each college teachers’ teaching decision by an im-

proved maximum entropy reinforcement learning algorithm, and maximizes the ex-

pected reward and entropy of the decision. The improved algorithm boasts a strong 

exploration ability and a high robustness. 

The training goal of traditional reinforcement learning is to maximize the cumulative 

expected reward of the decision: 

  (1) 

The training goal of maximum entropy reinforcement learning can be expressed as:  

  (2) 

Comparing formulas (1) and (2), the maximum entropy reinforcement learning has 

one more entropy term than the traditional reinforcement learning. In maximum entropy 

reinforcement learning, the cumulative expected reward of the decision and the entropy 

of decision implementation should be maximized at the same time. Let β be the relative 

importance of the entropy term relative to expected reward. Then, the entropy can be 

expressed as:  

  (3) 

Formula (3) shows that the stochasticity of the optimal decision can be adjusted by 

regulating β. Through maximum entropy reinforcement learning, the probability of de-

cision implementation is scattered as much as possible, rather than focusing on one 

decision only. 

To solve the optimal decision through dynamic programming, the basic maximum 

entropy reinforcement learning was derived from the angle of policy iteration. The der-

ivation process includes decision evaluation and decision improvement. 

Decision evaluation aims to compute the size of decision ε based on the goal of max-

imum entropy learning. For a fixed strategy, the state transfer probability is expressed 

as FV, the state value function as D(rτ+1), and the Bellman operator as ψε. Then, the soft 

Q value can be solved iteratively from any function W: R×X→U, which satisfies 

Wl+1=ψεWl: 

  (4) 
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As l→∞, function Wl will converge to the soft Q value of decision ε. The soft state 

value function D(rτ) can be expressed as: 

  (5) 

Let εN and εO be the new and old values of decision ε, respectively. During decision 

improvement, the decision in each state can be updated by:  

  (6) 

where, Cεold(rτ) is responsible for normalizing decision distribution. This term can be 

neglected, because it does not significantly affect the gradient of the new decision. 

The above algorithm can only be executed in exact form under discrete conditions. 

To overcome the limitation, this paper constructs a decision optimization network based 

on Soft Actor-Critic algorithm. The soft Q value of the algorithm is characterized by a 

function approximator. The evaluation and improvement links are performed alterna-

tively until convergence. 

The established decision optimization network consists of two Q networks and two 

state value networks. The Q networks are expressed as Wω(rτ,oτ), responsible for out-

putting the value of the selected decision. The two state value networks are expressed 

as DΦ(rτ) and DΦ'(rτ+1), responsible for outputting the value rτ of the current state, and 

that rτ+1 of the next state, respectively. The decision network can be expressed as 

εΩ(oτ|rτ), responsible for outputting the decision implementation under the current state. 

The quadratic sum of the residual function is minimized by training the state value 

function of the network. Let RB be the replay buffer. Then,  

 (7) 

The gradient of formula (7) can be calculated by:  

 (8) 

According to the current decision, the decision implementation is sampled. Then, 

the soft Q function is trained to minimize the Bellman residual: 

  (9) 

where, W*(rτ,oτ) can be given by:  

  (10) 

Introducing the objective value network DΦ' to perform stochastic gradient optimi-
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 (11) 

The decision network parameter for Kullback-Leibler (KL) divergence can be min-

imized by:  

  (12) 

Let ρτ be the noise. During the selection of decision implementation, ρτ is introduced 

to satisfy a certain distribution. The actual strategy εΩ is defined as gΩ. Then, decision 

implementation oτ can be expressed as: 

  (13) 

By sampling from a fixed distribution, formula (12) can be converted into:  

  (14) 

The gradient of formula (14) can be calculated by:  

  (15) 

Soft Actor-Critic algorithm relies on two Q networks to effectively reduce the devi-

ation produced in decision improvement, and accelerate network training, especially 

under complex decision environments. In the above analysis, the gradient of state value 

and that of decision can be characterized by the minimum values of the two Q functions. 

4 Decision optimization 

Experience replay is the most crucial link in the implementation of deep reinforce-

ment algorithm. Figure 3 explains the principle of experience replay mechanism for 

teaching decision optimization: the teaching experiences are randomly and repeatedly 

sampled from the historical music teaching samples in experience replay buffer, and 

used to optimize the teaching decision. Different teaching experiences in the buffer are 

of different importance in the optimization of the generated teaching decision. To dif-

ferentiate the teaching experiences by importance, this paper introduces the priority 

experience replay into Soft Actor-Critic algorithm. 
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Fig. 3. Principle of experience replay mechanism for teaching decision optimization 

Here, the experience value is evaluated by a special index: the estimation error TD-

error of the experience states corresponding to different time points. Since the algo-

rithm has two Q networks, the absolute value of experience state estimation error of the 

algorithm equals the mean absolute value of the experience state estimation errors of 

the two networks: 

  (16) 

On the right side of formula (16), the first term s+αDΦ-OB(r') is the goal network of 

W, and the second term Wω,k(r,o) is the current estimate of the network of the k-th W. 

Random sampling was employed to prevent the lack of sample diversity, which 

arises from the utilization of the priority of experience state estimation error. The prob-

ability of sampling experience i can be calculated by: 

  (17) 

Let rank(i) be the rank of experience i in replay buffer. Taking the absolute value of 

experience state estimation error as the criterion, priority hi=1/rank(i) is greater than 

zero. Parameter β controls the degree of utilization of hi. β=0 and β=1 correspond to 

even sampling and greedy sampling, respectively. 

If the decision prefers to play back the experiences with high experience state esti-

mation errors frequently, the state access frequency will change. Then, the network 

training will oscillate or diverge. Therefore, this paper adopts importance sampling 
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weights. Let M be the scale of the playback buffer; FV(i) be the probability of sampling 

experience i. Then, we have: 

  (18) 

where, λ controls the degree of correction. If λ=0, it is not necessary to implement 

importance sampling; if λ=1, regular importance sampling will be performed. As net-

work training approaches the end, the λ value must approximate 1. 

Suppose the current update phase needs to cyclically take L mini batch data from the 

replay buffer. For the l-th update, the samples are collected evenly from the latest ul 

data points. Then, we have:  

  (19) 

where, γ(0, k] is a hyperparameter determining the importance attached to the re-

cent data. If γ=1, even sampling will be performed; if γ<1, the sampled number will 

gradually decrease with the growing number of updates. Let umin be the minimum 

threshold of ul. By controlling ul, it is possible to avoid collecting samples from the few 

recent samples of music teaching. Therefore, this paper performs even sampling in the 

first update. The γ value condition for the last update can be expressed as:  

  (20) 

During network training, this paper optimizes γ value with simulated annealing (SA) 

algorithm. Let ψ be the total time step of network training; γ0 and γEND be the initial and 

final values of γ, respectively. If γEND=1, even sampling will be performed. Then, the γ 

value corresponding to the time step τ can be calculated by: 

  (21) 

When the collected music teaching samples are sufficient, L mini batch updates are 

carried out. Let EMul be the ul most recent experience data samples in the replay buffer. 

Then, the probability of sampling a single data sample can be calculated by:  

  (22) 

5 Experiments and results analysis 

This paper carries out a chi-squared test on the combination between each of the 

three teaching decision scenarios and each of the corresponding teaching decision ele-

ments. Table 1 summarizes the approximate power of the Pearson chi-square test of 
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each decision element. It can be seen that the decision of teaching plan has a significant 

correlation with teaching goal, teaching content, and teaching method; the decision of 

teaching interaction has a significant correlation with method selection, strength/weak-

ness analysis, tool determination, and affectivity improvement; the decision of teaching 

effect reflection has a significant correlation with teaching evaluation and teaching re-

sult. The results confirm the scientific nature of the selected decision elements. 

Table 1.  Chi-squared test results of different decision elements  

 
Decision of teaching 

plan 

Decision of teaching 

interaction 

Decision of teaching effect 

reflection 

Teaching goal 0.001 0.241 0.275 

Teaching content 0.002 0.251 0.314 

Teaching method 0.001 0.082 0.145 

Method selection 0.137 0.001 0.118 

Strength/weakness analysis 0.263 0.000 0.208 

Tool determination 0.241 0.002 0.185 

Affectivity improvement 0.182 0.001 0.183 

Teaching evaluation 0.215 0.128 0.003 

Teaching result 0.136 0.172 0.001 

 

This paper looks for the optimal solution of model training, using Adam optimizer 

and gradient descent optimizer, respectively. Repeated experiments were carried out 

under online teaching and offline teaching scenarios. The mean number of training 

steps was obtained as each algorithm completes decision-making. The results of tradi-

tional Soft Actor-Critic algorithm are compared with those of our algorithm in Table 2. 

The comparison shows that the Soft Actor-Critic algorithm with priority experience 

replay achieved higher training efficiency, stronger stability, faster convergence, and 

better robustness than the original Soft Actor-Critic algorithm.  

The ROC curves of different types of decision optimization obtained by our algo-

rithm can be found in Weka software. Figure 4 divides the ROC curves into categories 

like excellent, poor, and general. These curves reflect the relationship between true 

positive and false positive. As shown in Figure 4, the optimization performance of dif-

ferent categories ranked as excellent, poor, and general. Hence, the excellent teaching 

decision generated by our algorithm has the best optimization effect. 

Table 2.  Training steps of different algorithms in decision-making 

Algorithm Traditional Soft Actor-Critic algorithm Our algorithm 

Online teaching 
Adam optimizer 361 32 

Gradient descent optimizer 163 25 

Offline teaching 
Adam optimizer 525 42 

Gradient descent optimizer 325 29 
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Fig. 4. Receiver operating characteristic (ROC) curves of different types of decision optimiza-

tion 

Through comprehensive analysis of the performance of the teaching decisions gen-

erated by each teaching decision element, it is possible to clarify the direction of im-

proving the implementation effect of teaching decisions, e.g., highlighting student sub-

jectivity, stressing affectivity improvement, learning situation analysis, teaching envi-

ronment creation, interaction tool determination, and modern teaching technology up-

date. Whether online teaching or offline teaching, teaching decision-making must focus 

on learning motivation, learning interests, as well as the learning state of students with 

learning difficulties. This paper collects music teaching samples, which cover such as-

pects as music theory, sight singing, singing, instrumental music, and music apprecia-

tion. Figure 5 shows the error percentage of teaching effect of different samples after 

the execution of teaching decisions. It can be seen that the teaching effect of the gener-

ated teaching decision deviated from the target teaching effect by less than 7%. This 

means our teaching method is highly effective. 

The sources of unideal teaching effect were discovered after preliminary analysis of 

the existing samples of music teaching. In addition, the authors collected the teaching 

states of student problems and teaching plan problems, which are evaluated based on 

music teaching samples. The specific problems include unstable performance, uneven 

distribution of performance, inaccurate grasp of key difficulties, deviation of teaching 

contents from teaching goals, etc. This paper uses a fishbone diagram (Figure 6) to 

illustrate the existing data on music teaching samples and the evaluated teaching states, 

aiming to disclose the deep-seated reasons of unideal teaching effect, and to help teach-

ers find the right solution. 

As shown in Figure 6, the current teaching state was sorted out, and the causes of 

unreal teaching effect were mined from two aspects: student problems, and teaching 
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plan problems. Teachers should make a solution in view of the personal learning needs 

of students in the class, from both dimensions of students and teaching plan. 

 

Fig. 5. Error percentage of teaching effect of different samples 

 

Fig. 6. Fishbone diagram 
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6 Conclusions 

This paper explores the optimization of college teachers’ teaching decision under the 

smart teaching environment. Firstly, the roadmap of teaching decision generation and 

optimization was presented, and the teaching decision bases were specified for different 

teaching decision scenarios. Next, a teaching decision model was established under the 

smart teaching environment, and teaching decisions were generated based on deep re-

inforcement learning algorithm. The generated decisions were optimized by certain 

rules under the experience replay mechanism. After that, a chi-squared test was per-

formed on the combination between each of the three teaching decision scenarios and 

each of the corresponding teaching decision elements. The test results confirm the sci-

entific nature of the selected decision elements. Then, the training steps of different 

algorithms in decision-making were compared, revealing that our algorithm achieved 

higher training efficiency, stronger stability, faster convergence, and better robustness 

than the original Soft Actor-Critic algorithm. Further, the authors drew the ROC curves 

of different types of decision optimization, and computed the error percentage of teach-

ing effect of different music teaching samples. It was learned that the excellent teaching 

decision generated by our algorithm has the best optimization effect. Finally, fishbone 

diagram analysis was conducted, and suggestions were given on how to prepare a so-

lution to teaching problems. 
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