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Abstract—Big data learning analytics is still in its infancy and has been de-
veloped on several campuses worldwide. Ideally, all students' profiles should be 
described and embraced to optimize the development of any proposed system 
related to big data learning analytics. This paper aims to extract information re-
lated to factors contributing to students’ academic achievement using quantita-
tive and qualitative approach, in which co-occurrence analysis were applied for 
quantitative approach and facet analysis for the qualitative approach. For data 
collection, Kitchenham’s technique were used to select and filter the literature, 
at the first iteration, 1,167 papers were found. After applying inclusion and ex-
clusion criteria, 101 articles were processed for text mining. Titles and abstracts 
were analyzed using a text-mining tool, and then resulted clusters of words. Af-
terwards, clusters of words were labeled using facet analysis. This study results 
in eight interrelated clusters of academic achievement factors: demography, in-
ternal consistency, technology, student course engagement, activity in a class-
room, educational system, socio-culture, and personality. Several insights into 
each cluster will be described and might be beneficial for researchers in learn-
ing analytics.  

Keywords—text mining, big data learning analytics, student’s success, facet, 
co-occurrence analysis 

1 Introduction 

In recent years, the research of big data analytics has been gaining significance in 
every field. It is due to the growth of data and the increase of computing power that 
has enabled researchers to embrace advanced technology in processing the data that 
meets the criteria of 5V’s (Variety, Veracity, Volume, Velocity, and Value)[1]. Big 
data is essential for educational institutions [2] in which the application is for analyz-
ing learners’ behavior [3]–[7] to gain students’ profiles, improving students’ retention 
[8], [9] and evaluating student’s feedback [10]–[12]. However, since learning is a 
complex process [13] with various factors affecting students and many stakeholders in 
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the learning process, it might be beneficial to revisit and define what type of features 
should be included in the conceptual framework for predicting student’s academic 
achievement.  

Research related to predicting student’s academic achievement has been a concern 
since five decades ago. In 1940, a study reviewed several factors on academic 
achievement and claimed that the most contributing factors affecting student’s grades 
were intelligence and academic motivation [14]. These findings had not been changed 
until the 1990s. Several researchers agreed that those two factors play a significant 
role in academic achievement [15]—other research-related academic achievements 
with psychological aspects, such as personality and learning styles. In line with the 
development of the internet and technology, learning media also vary. Up until now, 
technology-enhanced learning, such as learning management systems, virtual learn-
ing, Massive Open Online Course (MOOCs), has emerged to support the learning 
process in which each learning environment contains several success factors [16]. 

A study found factors contributing to academic achievement in online learning [17] 
and resulted in interrelated entities to support student retention. Instead of focusing on 
online education, this study revisits and finds factors related to student retention in 
online learning and broaden the context of learning in general. This study uses a dif-
ferent approach from the previous studies and results in various student factors. While 
the previous research using Kitchenham’s Systematic Literature Review (SLR), this 
study applies the strategy of seeking knowledge using literature-based discovery [18], 
then analyzing using quantitative and qualitative approach. This study aims to de-
scribe factors affecting students’ academic achievement using a co-occurrence analy-
sis and using facet analysis to propose a conceptual model related to big data learning 
analytics.  

The organization of this paper is as follows. Section 2 explains the literature re-
view; Section 3 describes the research methodology; Section 4 discusses the results; 
Section 5 describes the limitations of this study, concludes and recommends for future 
study. 

2 Literature review 

The next subsections provide the theoretical foundations and literature review that 
is underlying in this study. 

2.1 Big data and learning analytics 

Learning Analytics (LA) is the research area that is proposed by a community 
called SoLAR (Society for Learning Analytics Research). LA's main idea is using 
educational data to improve the learning process [19] by analyzing activity data taken 
from the learner and all agents involved in a learning process. In general, LA is used 
to optimize the learning process. Several benefits from LA are improving curriculum, 
optimizing student learning outcomes, identifying learning habits and learning pro-
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cesses, supporting personalized learning, improving instructor performance, analyzing 
post-educational work, and contributing to education [20]. 

Current research review regarding big data usage for LA recommend that future re-
search will focus on developing automated systems that can acquire, analyze, and 
aggregate large amounts of data, then produce descriptive, predictive, and prescriptive 
analysis for learning analytics purposes [21]. There are four objectives of current 
research related to big data learning analytics: to improve learning process, to analyse 
learning behavior, to improve student retention and to evaluate learning process. In 
short, big data has been considered to be embraced in learning analytics [21], and 
transdisciplinary approaches should be carried out [13], [22].  

2.2 Text mining 

Text Mining is an interdisciplinary field that draws on information retrieval, data 
mining, machine learning, statistics, and computational linguistics [23]. A large por-
tion of the data, such as news articles, technical papers, books, digital libraries, email 
messages, blogs, and web pages, is stored as text. Documents need to be ranked for 
more efficient retrieval over extensive collections in many text mining applications, 
particularly information retrieval (IR). Documents are represented as vectors with a 
numerical value assigned to each word in order to describe the significance of a word 
in a text. 

In LA, text mining has been used for various applications, such as opinion mining 
from students’ feedbacks [10]–[12]. A study evaluated the course using data generat-
ed from the students’ survey, then classified the feedback as negative or positive [10]. 
Furthermore, another study also implemented text mining to assess students’ satisfac-
tion, not only for sentiment analysis but also for monitoring learners' satisfaction 
using big data approaches [11]. In the same way, [12] proposed a big data framework 
to evaluate students’ opinions. The differences with [11], [12] also tried to predict 
student’s emotions. However, the data used by Jena [12] is still unclear due to the 
disclosure agreement. Another study [24] also applied text mining and proposed a 
recommender system for an intelligent chatbot. Another study applied text mining in a 
different context, Rahmah et al. [18] conducted literature-based-discovery that com-
bined literature review and text mining to find Technology-Enhanced Learning com-
ponents.  

Previous studies show that research regarding big data learning analytics attempted 
to embrace all possible data [21]. This study adopt the research method proposed by 
Rahmah et al. [18] that combine literature review and text mining, but we use a dif-
ferent text mining tool. Section 3 shows the research methodology for extracting in-
formation of factors contributing to students’ academic performance.  

3 Methodology 

Our main objective of this study is to find factors that contribute to student’s aca-
demic achievement. For data selection, this study used the technique to select papers 
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using Kitchenham’s technique. Figure 1 shows the step-by-step of doing this research. 
Mainly there are four phases: planning, data collection, data analysis, and interpreta-
tion. Firstly, in the planning phase, we emphasize the research problem and research 
objective. A further step is collecting published studies using Kitchenham’s approach 
to select papers and mining the title and abstract. The third step is analyzing the re-
sults, and the last is interpreting the results. 

 
Fig. 1. Research phases 

3.1 Data collection 

A set of documents that contain factors affecting students' academic achievement 
were selected and filtered using Kitchenham’s guideline [25]. Firstly, the searching 
strategy and keywords were described. Several words are derived from the research 
question, and several synonyms of the terms are determined to be used in the search 
strategy. The first term that might be included is “predict”, because students’ factors 
were commonly used to predict students’ academic performance [26]–[28]. After 
several iterations, it can be detected that several studies use the word predicting, pre-
diction, forecast, detect, detecting, detection, asses, assessing, assessment, analyze or 
analyze to replace the term predict. Another term is academic achievement, which is 
very similar to academic performance where several studies use it interchangeably. 
Other synonyms for those two terms are retention, dropout, and attrition. Academic or 
student are commonly at the beginning of those terms, such as academic achievement 
or student achievement.  

From the explanation above, keywords used for this review are: (predict* or fore-
cast or detect* or assess* or analy*) AND (academic or student) and (performance or 
achievement or attrition or retention or dropout) and (model or system or framework 
or technique or algorithm) and (internal or external) and factor*. This study's database 
is Scopus because it contains an extensive abstract and citation database of peer-
reviewed literature. Google Scholar and Web of Science were not selected in this 
study because of several reasons. First, Google Scholar includes peer-reviewed litera-
ture and all manuscripts without reviewed by other researchers, such as academic 
articles, proceeding papers, and journal papers. Second, most of Web of Science’s 
publications are not peer-reviewed, while Web of Science is mostly overlapping with 
Google Scholar [29].  
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A further step is defining inclusion and exclusion criteria. The criteria are: papers 
were published from 2015 until 2020, the publications must be in English, only arti-
cles were published in proceedings or journals. The detailed steps of selecting docu-
ments are explained in Figure 2 below. 

 
Fig. 2. Selection process of potential papers 

Searching with the specific keywords was conducted on 14 February 2020. Firstly, 
the year of publication was not set, and the search resulted in 1,167 documents. Publi-
cations for this keyword year-by-year and distribution of country can be seen in Fig-
ure 3. Figure 3 shows that research regarding predicting students’ academic achieve-
ment has grown from 1970 until now.  
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Fig. 3. Research trend year-by-year 

For the next step, the results were limited with two criteria: language must be in 
English, the type of documents must be Journal and Conference Proceedings. Due to 
the process, it resulted 1,028 documents. The year of publications were limited from 
2015 to 2020, and it resulted 445 documents. Due to similar publications, it resulted 
in 444 documents. We scanned the title and abstracts to find a set of publications that 
seems to answer the research question. From this step, 109 documents were collected. 
Furthermore, papers that have no full text were disregarded. Finally, 101 documents 
were processed using text mining. The process of text mining is explained in the next 
section.  

3.2 Data analysis using co-occurrence analysis and facet analysis 

For the quantitative approach, the analysis was carried out with the help of 
VOSviewer clustering functions, which aid in calculating similarities between key 
terms based on their association strength and a weighted sum of squared distance. 
Even though Vosviewer is developed for bibliometrics analysis [30], this application 
also can be used for text mining [31] to detect the occurrences of a term from abstract 
and title. Several parameters were set in Vosviewer, such as choosing the minimum 
number of term’s occurrences and the number of terms to be selected. The details of 
the parameters selected are shown in Table 1. 

Table 1.  Vosviewer Parameters Chosen for This Study 

Parameters Selection for This Study 
Fields from which terms were extracted Title and abstract 
Full counting/binary counting Full counting 
Minimum number of occurences of a term 3 (of the 3,334 terms, 475 terms meet the threshold) 
Number of terms to be selected 90% 
Method Fractionalize 
Fields from which terms were extracted Title and abstract 
Full counting/binary counting Full counting 

 

iJET ‒ Vol. 17, No. 16, 2022 113



Paper—Finding Contributing Factors of Students’ Academic Achievement Using Quantitative and… 

Next, we deselected irrelevant words manually, for example, the name of publica-
tions: Taylor & Francis Group, Springer, and Elsevier. We also disregarded several 
terms about research methodology, such as validity, design, approach, control group, 
methodology, framework, correlation, hypothesis, sample, evidence, mean, regres-
sion, questionnaire, structural equation, and survey. Several terms common in the 
abstract were also ignored, such as introduction, method, purpose, aim, analysis, limi-
tation, and conclusion.  

After deselecting irrelevant terms, terms were clustered using a unified framework 
for mapping and clustering in Vosviewer [31]. The results from Vosviewer shows 
several clusters, where each cluster should represent each topic, and some insights 
could be gained.  

The next process is analysing using Facet in which the analysis summarized as fol-
lows: It provides a rational, scientific methodology for the construction of systems; it 
allows for the full and precise description of objects with significant structural com-
plexity and multi-dimensional semantic composition; and it provides a flexible syn-
tactical apparatus for the combination and ordering of concepts where this is required 
[32], [33]. This approach's strength lies in its logical principles and the way it pro-
vides structures in knowledge organization systems (KOS). The main flaws are (1) its 
lack of empirical foundation and (2) its speculative ordering of knowledge without 
reference to the development or influence of theories and socio-historical studies [34]. 

4 Results and discussion  

The document selection process and text mining results in the network map, as 
shown in Figure 4, and a list of words in each cluster, as shown in the Appendix. 
Using quantitative approach, it resulted in five clusters, and we carefully analyzed and 
labeled using Facet [34] as “Cluster Demography-Internal Consistency”, “Technolo-
gy-Course Engagement”, “Activity in a Classroom- Educational system- Intrinsic 
Motivation”, “Socio-culture”, and “Personality”. Each cluster is analyzed and ex-
plained below.  

4.1 Demography-internal consistency 

The first cluster might be labeled as structure, measure, age, difference, associa-
tion, or internal consistency, as the node has the most considerable edge, in other 
words. However, when we traced back to the literature, internal consistency might be 
the most appropriate to represent this cluster. Internal consistency is also known as 
self-regulation. As can be seen in Figure 4 that the term internal consistency relates to 
adaptation, and adaptation relates to self-regulation. Self-regulation is considered 
necessary in academic success [24, 28, 35], not only for learning that has characteris-
tics to change stimulus-response such as playing music [28] and cognitive learning 
process. However, it is essential to note here that when traced back to literature con-
taining “internal consistency”, it also refers to internal consistency related to valida-
tion when conducting a survey using a specific questionnaire. Regarding Self-
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Regulated Learning (SRL), it is interesting to note here that since traditional learning 
shifted to online learning, research regarding SRL has also grown to online learning, 
since SRL can be traced in the context of formal education online learning [35]. 

 
Fig. 4. Network map of students' factors 

Another term that might reflect this cluster is demographic characteristics because 
the word “internal consistency” relates to several terms, such as gender, child, adoles-
cent, age, adaptation, goal, and psychometric property. It can be argued that demogra-
phy characteristics, which consist of several terms related to demography, dominate 
this cluster. Gender is a predictor of student success as boys tend to have lower aca-
demic achievement [36]. Age also essential to be a predictor as it might differentiate 
behavior, time management, working activity between adolescents and kids.  

Due to the mixed topics in this cluster, this cluster can be divided into Demography 
and Internal Consistency. Even though other terms seem to be indifferent, such as 
behavior, family, evaluation, college, and strength, the demography characteristics 
and internal consistency are still dominant. It can be seen in Figure 4 as the terms 
internal consistency seems to be a relatively larger node than others.  
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4.2 Technology-student course engagement 

The second cluster contains several terms related to engagement, course, technolo-
gy, and work. Regarding technology, the previous study pointed out that it might 
negatively impact students, for example, internet addiction [37]–[39]. Nevertheless, 
technology has a more significant number of benefits than the consequences. Tech-
nology provides an environment for educators and students, so learning and teaching 
have no boundaries in time and place. All applications that use technology to facilitate 
learning, called Technology-Enhanced Learning (TEL). The implementation of TEL 
is a mobile learning management system that influences online students’ academic 
achievement [40], e-learning, multimedia learning environment [41], MOOC [42]. 
However, several issues might arise with technology-enhanced learning, such as usa-
bility factors in learning media [43], an external motivation that affects learners [44], 
and one size fits all dashboards [45].  

Regarding student course engagement, the term related to student course engage-
ment is ‘working’. A study states that students with part-time jobs more than 20 hours 
per week are less likely to complete degrees [46]. Another term related to course 
engagement is self-efficacy, which is defined as an individual belief in his ability to 
succeed in doing something and consequently affect individual behavior, persistence, 
intention, commitment, and effort [47][48]. Another study agrees that intention and 
commitment might be the two issues that affect academic achievement [49].  

4.3 Activity in a classroom-educational system 

This cluster relates to the educational system as several words in this cluster are ac-
tivity, class, classroom, educator, and teaching. From the literature, it can be conclud-
ed that the educational system affects student’s performance, including type of school 
[50], teaching strategies [51], assessment [52], and teacher [53]. Those factors are 
interrelated, such as administrator to teaching, teaching to activity, task to classroom, 
and task to engagement. A classroom as a learning environment also should be a pri-
ority for students’ success. A study shows that planting trees in school backyards, 
especially tree cover and tree diversity, affect students’ academic performance[54]. 

Other options for labeling this cluster are intrinsic motivation cluster. From the list 
of terms in the Appendix, intrinsic motivation is clustered in the third, while extrinsic 
motivation in the second cluster. Several terms that highly relate to intrinsic motiva-
tion are mindset [55] and academic self-concept [56], [57]. However, according to 
literature [58], motivation is one of the aspects of SRL, therefore motivation was not a 
label in this cluster.  

4.4 Socio-culture 

As shown in Appendix, this cluster contains thirty terms, mostly related to socio-
cultural factors, such as background, culture, experience, social, and attitude. Socio-
cultural factors play a significant role in academic achievement motivation as Western 
students differ from Asia in terms of academic self-concept. Hence, it may affect 
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motivation, and consequently, motivation influences academic achievement [59]. 
Another study finds that low violence at school and family socioeconomic status 
relate to academic achievement [60]. In line with that, the social environment also 
influences students. A study finds that students who are not significantly affected by 
the institution's social environment, such as university study after working for some 
time, commuter, part-time students relate to their performance [61]. In contrast, [62] 
point out that parents and peers were the two most significant social support for un-
dergraduate students within the age range of 18-24. 

This cluster shows that social relations are essential to academic achievement. 
However, the term family is not included in this cluster, but in the first cluster. Family 
support, especially in the first semester, is considerably influential in student retention 
[63].  

4.5 Intelligence, behavior, ability, personality, interest - personal factors 

This cluster contains fourteen terms that most relate to students’ themselves, such 
as intelligence, behavior, ability, personality, interest, and value. First, term intelli-
gence, when this term was traced into the literature, this term related with emotional 
intelligence [64], artificial intelligence [65]-this terms might not represent student’s 
factors because it refers to a specific research topic, intrapersonal intelligence [63], 
verbal intelligence [66], and social intelligence [67]. 

Another term is “ability”, which is the subset of several terms, such as cognitive 
ability [41] and emotion regulation ability [68]. Furthermore, the term is interest; this 
term reveals that students' interest relates to motivation and significantly affects aca-
demic performance. Other terms, such as behavior related to planned behavior that 
mostly affected by intention. Positive or negative motives are created by the percep-
tion of how other people will view similar actions (external forces) [69]. 

Based on the analysis, this cluster seems to be suitable to be labeled as a personali-
ty. Personal factors, especially the interests of students [57], are essential predictors 
for academic achievement. Also, previous academic achievement is a significant 
predictor in Medical students, even though it might not be generalized to every stu-
dent [70].  

From the results of quantitative approach, each cluster’s factors in each cluster in-
terrelated mean each cluster’s cluster factor in a cluster might relate to other factors in 
the same cluster and a different cluster as can be seen in Figure 5. Afterwards, we 
analysed and split carefully. Then, it resulted eight clusters: demography, internal 
consistency, technology, student course engagement, activity in a classroom, educa-
tional system, socio-culture, and personality. 
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Fig. 5. Cluster of students' factors 

5 Limitations and conclusion  

This study has several limitations regarding the data selected and the parameter in 
the quantitative tools. First, related to the data selected in this study were only papers 
within 5 years. There should be more than five years to get another result. Keywords 
and the inclusion and exclusion also could be different. The second limitation is relat-
ed to parameter chosen in Vosviewer. Different parameter chosen in Vosviewer might 
lead to different clusters then it might result biases while retrieving literature on au-
tomatic search. Even though this study has several limitations, as explained above, 
this result might still benefit all stakeholders in the learning process as the implication 
might lighten students, teachers, policymakers, and researchers interested in educa-
tion.  

First, for students, they might consider that their academic achievements are not 
only affected by themselves. Neither their intrinsic motivation nor their personality is 
a single factor that affects their academic achievement. Various factors, including 
assessment process, teaching process, student engagement in class, the technology 
used for learning, age, family support, and other factors, are essential. 

Second, for teachers, they might consider that even though they have provided bet-
ter teaching, the result will not always be better due to many factors that affect stu-
dents.  

Third, for policymakers, since many factors of students’ factors, they also might 
consider supporting the education and learning process in various aspects, such as 
teacher, technology, and providing a scholarship to help students gain the better 
achievement. 
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Fourth, for researchers in learning analytics, especially related to student retention, 
they might portray students' factors as large as possible.  

To conclude, this study attempted to extract information using dual approach, 
which are co-occurrence analyses and facet analysis. In this study, the dual approach 
produces eight clusters of students’ factors: Demography, Internal Consistency, Tech-
nology, Students Course Engagement, Socio-culture, Activity in Classroom, Educa-
tional System, and Personality. This study is being a foundation for further study to 
collect data from multiple sources and build a model for adopting big data in learning 
analytics. This study might also help researchers in the education field find quick 
hints regarding students’ factors based on literature. Even though the researcher still 
needs to read each literature, this method might lighten the quick review task. The 
implication for this study is the students’ actors are interrelated with each other. If one 
component of a student is not supported, it might affect another component and affect 
students' academic achievement. For future studies, all possible students’ factors will 
be collected and built into a dataset, then a model capable of making recommenda-
tions will be developed.  
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9 Appendix: Terms of clusters 

Table 1. List of terms in each cluster 
Cluster List of Terms 

Cluster  
1 – 39 
terms 

academic perfor-
mance; 

adaptation; 
adolescent; 

age; 
association; 
behaviour; 

boy; 
challenge; 

Child; 
college student; 

comparison; 
content; 
country; 

demography 
characteristics; 

difference; 
domain; 

Efficiency; 
Evaluation; 

Family; 
Feeling; 

Further study; 
Gender; 

Girl; 
Goal; 

Gpa; 
high school; 

student; 
internal 

consistency; 
measure; 
parent; 

participant; 
predictor; 

psychometric 
property; 
relation; 

reliability; 
self-regulation; 

strength; 
structure; 

student engage-
ment 

Cluster 
2- 35 
terms 

Access; 
Analytic; 
Attrition; 
Business; 
College; 
Control; 
Course; 

current study; 
engagement; 

external factor; 

extrinsic motiva-
tion; 

first year; 
information; 
interaction; 

internal consisten-
cy reliability; 

internal factor; 
lack; 

learning pro-
cess; 

motivational 
factor; 

outcome; 
population; 
retention; 
science; 

self-efficacy; 
series; 

student retention; 
students perfor-

mance; 
technology; 

time; 
usefulness; 

work 

Access; 
Analytic; 
Attrition; 
Business; 
College; 
Control; 
Course; 

current study; 
engagement; 

external factor; 

Cluster  
3 – 32 
terms 

Activity; 
Administrator; 
Assessment; 

Class; 
Classroom; 

Competence; 
Educator; 

Effectiveness; 

Example; 
Expectation; 

external motiva-
tion; 

feedback; 
higher education; 

importance; 

Improvement; 
Individual; 
Instructor; 

intrinsic motiva-
tion; 

medium; 
need; 

perspective; 

Question; 
Recommendation; 

Situation; 
student achieve-

ment; 
student; motiva-

tion; 

Support; 
Task; 

Teacher; 
Teaching; 
Variance; 
Weakness; 

Cluster  
4 – 30 
terms 

Aspect;  
Attitude; 

Background; 
Culture; 

Difficulty; 
Discussion; 

doctoral student; 
effort; 

examination; 
experience; 

faculty; 
intervention; 

Issue; 
Literature; 

male student; 
nature; 

opportunity; 
perception; 

Persistence; 
Practice; 
Process; 
Respect; 

Role; 
Satisfaction; 

skill 
strategy 
success 

term 
transition 

understanding 

Cluster  
5 – 14 
words 

Ability; 
academic 

achievement; 
Area; 

Behaviour; 
Body; 

Computer; 
Intelligence; 

Interest; 
Mathematics; 
Personality; 

statistical analysis; 
students academic 

achievement; 

subject; 
value; 
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