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Abstract—In this article we study a deep learning-based reading detection
problem in an online exam proctoring. Pandemia-related restrictions and lock-
downs lead many educational institutions to go online learning environment. It
brought the exam integrity challenge to an online test-taking process. While vari-
ous commercial exam proctoring solutions were developed, the online proctoring
challenge is far from being fully addressed. This article is devoted to making a
contribution to the exam proctoring system by proposing an automated test-taker
reading detection method. To this end, we obtain our own dataset of short video
clips that resemble a real online examination environment and different video
augmentation methods utilized to increase the training dataset. Two different
deep learning techniques are adapted for training. The experiments show quite
satisfactory results with model accuracy varying from 98.46% to 100%. The find-
ings of the article can help educational institutions to improve their online exam
proctoring solutions, especially in language speaking tests.

Keywords—exam proctoring, reading detection, video recognition, computer
vision, deep learning

1 Introduction

It has been over two years since the start of the COVID-19 pandemic. The pandemic
affected every aspect of our society and the education system is no exception [1]-[5].
Especially in the early stages of the disease, many countries implemented social dis-
tancing measures to combat the virus. In particular, school pupils and university stu-
dents were required to stay at home and the instructors were asked to conduct online
classes [6]. Online education is not a new area. Indeed, online learning platforms such
as Coursera, Udemy, EdX, and learning management systems such as Moodle, Black-
board, Google Classroom, and online meeting solutions such as Webex, Zoom, Google
meet, and Skype all existed before the pandemia [7]. However, with the start of the
pandemic, the need for online learning methods and tools has increased drastically.

Online education has many benefits due to its flexible nature. It enables both instruc-
tor and student to decide on their learning environment. No one is required to travel
for learning or teaching reducing the cost of learning and minimizing the wasted time.
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Nothing comes without a price. Despite the above-listed advantages of online educa-
tion, it also brings various issues together. The dishonesty in the examinations is among
the biggest concerns in online learning [8] and the automated proctoring systems need
to be improved to prevent possible examination malpractices. There are various partial
solutions provided to prevent any dishonesty in examinations [9], [10]. Moodle’s Safe
Exam Browser (SEB) is an open access browser that prevents the test taker from using
other windows or tabs in a computer-based exam. Some paid solutions such as Examus
and ProctorEdu provide more comprehensive tools to proctor the online exams. These
solutions often include metrics such as identity verification, screen casting, webcam
recording, speaking or noise detection, second person detection, second monitor detec-
tion, and so on.

While the above-mentioned online proctoring systems have various functionalities,
they still fall short in completely preventing cheating. This necessitates a need for fur-
ther research to improve the current state-of-the-art methods. In particular, the exten-
sive search of the literature revealed that almost no research has been conducted to
detect automated reading detection. The purpose of this article is to develop a new
model that can determine whether or not a test taker is reading from a source. This is
particularly important during an online speaking examination, where the test taker is
expected to speak on a subject without reading. Furthermore, in any online oral exam-
ination, a student may be answering the questions from an unallowed source on the
computer screen or from other nearby sources.

We remark here that in general reading detection is a challenging task even for
humans as often eye movements are involuntary [11]. Compared to other machine
learning tasks such as natural language processing and face recognition, action recogni-
tion is much more challenging as the automated system needs to take into account both
spatial and temporal features. Within action recognition tasks, clearly, reading detection
is a harder task requiring a very focused feature extraction from the eye region of the
human. Moreover, finding a dataset suitable for training is difficult.

In the next section, we review the literature in a related field. Section 3 provides
information on the dataset and methodologies to run the experiments. In section 4, we
report the findings of the experiments. The paper ends with a discussion of results and
conclusion.

2 Literature review

2.1 Human action recognition

In the last decade, advancements in artificial intelligence research showed state-of-
the-art methods exceeding human-level accuracy in various data science tasks includ-
ing natural language processing, sound recognition, and computer vision. Human
action recognition is one of the computer-vision tasks that aims to detect what type
of activity is done based on a video clip. There are many real-world applications of
action recognition such as human-robot interaction, entertainment, video surveillance,
and autonomous driving vehicles [12]. While temporal feature extraction is crucial in
handling time series data and text classification, for image-related tasks, spatial features
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are needed. On the other hand, one needs to take into account both temporal and spa-
tial features for action recognition. In this subsection, we review deep learning-based
approaches to the action recognition problem.

Inspired by 2D convolutional neural networks (CNN), in [13], the authors developed
a novel 3D CNN for the task of action recognition. The idea was to realize a video as
a three-dimensional object where time is considered a third dimension. They tested the
performance of their model on KTH [14] and TRECVID 2008 dataset. On KTH data-
set, the 3D CNN model slightly underperformed (90.7%) compared to HMAX (91.7)
[15]. On the other hand, for TRECVID dataset, on average it overperformed previous
approaches proposed in [16], [17].

In 2015 authors in [18] proposed Convolutional 3D architecture with a linear SVM
classifier improving 3D CNN models. The performance of the model was tested using
UCF101 dataset [19] and proved to outperform previous results including iDT [20] and
Imagenet [21]. As 3D CNN-based models often consider a few frames as their third
dimension, their performance is more likely to be lower for actions needing longer time
intervals [12].

Other kinds of models to address action recognition are called multi-stream net-
works. Two-stream CNN model was proposed in [22] where one stream captures spa-
tial information and the second one recognizes temporal features. The model showed
comparable performance on UCF-101 [19] and HMDB-51 [23].

Based on [22] a Temporal Sampling Network was proposed in [24] robust to action
recognition with longer videos. To enable quick and effective learning using the entire
action video, it combines a sparse temporal sampling method and video-level super-
vision. Temporal segment networks work using a sequence of tiny snippets sparsely
sampled from the entire video rather than single frames or frame stacks. Each snippet
in this sequence will generate its own tentative action class prediction. The video-level
prediction will then be formed from a consensus among the snippets. The proposed
model reached 69.4% accuracy for HMDB-51 and 94.2% accuracy for UCF101.

Another common approach to learning both spatial and temporal information is to
consider hybrid models involving both CNN and recurrent layers such as Long-Short
Term memory (LSTM) or Gated Recurrent Units (GRU). Donahue et al proposed
Long-term Recurrent Convolutional Networks [25] with 82.66% accuracy on UCF-
101 dataset. Another hybrid model was proposed in [26] capable of handling action
videos with a duration as long as 2 minutes. The experimental results on the proposed
CNN-LSTM model with 30-frame unroll showed state-of-the-art results on UCF-101
with 88.6% accuracy.

2.2 Reading detection

In an early work [11] the authors study the reading detection problem with their
own dataset of four participants. The proposed system has three main steps, namely,
quantized eye movement representations, pooled evidence-based identification, and
mode switching. A video camera with an array of LEDs that reflect infrared light into
the participant’s eye was used to determine gaze direction. The eye tracking software
was calibrated for each participant to ensure accurate tracking over the whole screen.
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While the performance of the model is close to 100% it requires infrared cameras and
requires the participant’s head kept fixed.

Later, Keat et al. [27] proposed an improved algorithm for determining whether or
not a person is reading. The experiment was conducted on a regular video camera with
10 participants in the experiment. Their approach reached 85% accuracy.

In 2008, Bulling et al [28] proposed a different approach using wearable electroocu-
lography. Eight participants were involved in a 6-hour data collection, where they were
allowed to read freely without any restrictions. Using string matching, their method
reached 80.2% recognition accuracy.

In a recent work [29], authors studied a commercial electrooculography-based read-
ing activity detection problem in a general environment. 980 hours long data from 7
subjects was used in the experiment with three different approaches, namely, Support
Vector Machine (SVM), CNN, and LSTM-based approaches. In a natural environment,
LSTM-approach overperformed the others with 73.8% accuracy, while SVM-approach
was best with 92.2% accuracy in a controlled environment.

The COVID-19 pandemic period not only shaped the educational sphere but also
influenced the development of online education. However, the question of cheating did
not disappear, but it became a hot topic because it affects the quality of education. As
a result of the literature review, this work is guided by the following research question:
Can deep learning models help us to detect reading during proctoring in online exams?

3 Methodology

In this section we provide detailed information about the dataset used in the experi-
ment and the deep learning architectures that will be used.

3.1 Dataset and preprocessing

Due to a lack of dataset availability, we developed our own. The participants were
asked to record a short video where they pretend to be in an online examination envi-
ronment and another short video where they were reading from a screen or a nearby
source. There were no restrictions on hardware and the participants used webcams of
their own laptops. As for the physical setup, they were sitting close to the computer as
it is done in a regular online exam, see the first row in Figure 1. Each video lasted about
one minute. There were 10 individuals who participated with total 22.4 minutes of
video recordings. Additionally, we exported parts of 25 videos from Youtube with cre-
ative commons license for total 14.6 minutes, see the second row in Figure 1. All videos
saved with 720p at 30 fps having a frame size of 1280 x 720. Videos were labeled as
‘reading’ vs. ‘no reading’. In total there are 18.2 minutes of videos where participants
are reading from a screen or nearby source and in the remaining 18.8-minute videos the
participants were not involved in reading. Since both labels are represented by roughly
the same amount of video recordings, this will help us create a balanced dataset.
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Fig. 1. Screenshots from the dataset of videos

Once the dataset is collected, next we split it as a train set and a test set. To this end,
we first create 5-second and 7-second videos by cutting each video in the dataset with
50% overlaps. Then, we randomly allocate 10% of these short videos into the test set,
and the remaining 90% is allocated for augmentation and training purposes. In this
way, we obtained 130 short videos for testing the performance of the models and 1164
videos for augmentation and training. 66 out of 130 videos in the test set are labeled as
‘reading’ while in the train set there are 583 videos labeled as ‘reading’.

With the aim to improve the classification performance and avoid possible overfit-
ting, two data augmentation techniques, namely cropping and increasing brightness,
were applied to the train set with 1164 videos while the test set has not modified. For
cropping, we clearly need to preserve the person appearing in the videos, especially his/
her eye region. Similarly, when brightness is increased, we should still be able to see
and follow the eye movements of the person. One copy of 1164 train videos is gener-
ated by applying random cropping according to a uniform distribution. More specifi-
cally, we take random numbers X, y, z, and w from uniform distribution in the intervals
[0,0.3], [0, 0.1],[0.8, 1], and [0.8, 1] respectively.

We recall that the original videos had a height of 1280 and a width of 729 pixels.
Then, a cropped video was obtained from a given video in the train set by removing
1280x portion from the left, 729y portion from the top, 1280z portion from the right,
and 729w portion from the bottom. To apply cropping to the next video, the numbers
X, v, z, and w were generated again. Another copy of 1164 train videos is generated by
increasing the brightness to a random number in the interval [1.5, 2.0]. As a result of
augmentation techniques, the train size is increased to 3492 short video clips.

3.2  Proposed deep learning models

To carry out the experiments, we consider two different deep learning architectures
and compare their performances implemented in Keras. First, we formulate the prob-
lem statement in mathematical terms. A video consists of a sequence of images known
as video frames. Depending on the world region a standard video may consist of 24-30
frames per second (fps). At any given time, the frame X is regarded as a stack of P
number of M X N matrices, where entries of the matrices emphasize the intensity of the
image for a given measurement. For example, for a 10 x 20 pixel RGB image, P = 3,
M =10, and N = 20. Thus, a video is a time series X, X, ..., X, belonging to the vector
space RPMN,
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Now, the reading recognition problem statement amounts to finding

argmaLxPr(x|X1,X2,...,Xt)

Where Pr stands for the probability function and L consists of the labels “reading”
or “no reading”.

1) Convolutional Long Short-Term Memory architecture. Convolutional neural
networks were developed to extract spatial features of the data [30], [31]. In particular,
they perform well dealing with tasks related to still images in Computer Vision [32]
including object recognition and image classification. Despite various cutting-edge
CNN-based models developed in CV, they are not well suited to problems of temporal
nature. Examples include time series analysis and natural language processing tasks. To
address such sequence models, Recurrent neural network architectures were developed
including Long Short-Term Memory (LSTM) [33], BLSTM [34], Gated Recurrent Net-
works (GRU) [35], Encoder-decoder models [36], and so on. There are situations when
the given data has both spatial and temporal characters. Video-based action recognition,
weather forecasting, and spectrogram-based speech recognition are some of examples
of spatiotemporal tasks. In addressing spatiotemporal problems, it is better to combine
the CNN-based models together with RNN-based models. Shi et al. [37] developed a
novel Convolutional LSTM to deal with precipitation nowcasting to predict the upcom-
ing rainfall intensity for a short period of time. Their proposed model is proven to out-
perform fully connected LSTM developed by [38].

Our first model to train the dataset will be Convolutional LSTM (ConvLSTM). To
make the work self-contained we provide details of ConvLSTM adopting the notations
from [37], [39]. To this end, let o denote the sigmoid activation given by

o()=——,
l+e™

and i, f, o, ¢ are input gate, forget gate, output gate, cell, and cell input activation
vectors, respectively. The W, b represent the weight matrices and the bias, respectively.
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Fig. 2. LSTM vs ConvLSTM Cell architecture
The main difference between fully connected LSTM [38] and ConvLSTM [37] is

that the latter considers all inputs Xj’s, cell outputs Cl.’s, hidden states Hl.’s, and gates I
f/., o, to be 3D tensors. The assignments governing the ConvLSTM Cell architecture are

then given by the following equations:

L=oW *X+W *H +W, C +b)
f=oW X+ W, *H + W, C, +b)
Ct =]: ° thl + it ° tanh(Vch * ‘th + Vth * I—Itfl + bc)

0,= O, * X+ W,

ho

* I—Itfl + VVC() ° Ct+ ba)

H = o, ° tanh(C)
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Where the operations * and ° denote the convolution and Hadamard product, respec-
tively. A summary of the ConvLSTM model is depicted in Figure 3a. The model is
compiled with binary cross entropy loss using the Adam optimizer.
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Fig. 3. Deep learning architectures

2) Long-term Recurrent Convolutional Networks. We now introduce our second
architecture based on [25]. The convLSTM-based model discussed above uses sev-
eral stacks of convLSTM layers added in sequential order where one convLSTM layer
includes both CNN and LSTM functionality. On the other hand, Long-term Recur-
rent Convolutional Networks (LRCN) proposed by Donahue [25] uses stacks of CNN
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layers flowed by LSTM layers, see Figure 4. This approach proved to outperform pre-
vious results [22], [40].

VISUAL INPUT

VISUAL FEATURES

SEQUENCE LEARNING

PREDICTIONS

Fig. 4. Long-term recurrent convolutional networks

The compiled Long-term Recurrent Convolutional Networks (LRCN) is given in
Figure 3b.

In LRCN each video frame X, belonging to the vector space RV s passed through
CNN layers to produce a fixed-size feature vector representation. These sequences of
feature vectors are then fed into LSTM layers followed by the sigmoid activation in the
output to predict the class the video belong to.

3.3  Training process and accuracy metrics

To input the train set into the models for training, each short video is converted into
(15, 64, 36, 3)-shaped arrays of 15 RGB frames with sizes 64 x 36. This makes the area
of the frames twenty times smaller than the original dataset which in turn increases the
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speed of training and recognition and avoids using excess memory. Depending on the
length of the video we have 150 or 210 frames in each short video and those sequence
of 15 representative frames are extracted so that the duration between any two consec-
utive frames have equal duration. Then, the arrays are normalized through diving each
entry by 255.

It is customary to allocate a small portion of the train set to validation in order to
fine-tune the model parameters and monitor the accuracy. To this end, we allocated 5%
of the augmented train set to validation. Moreover, we considered two different scenar-
ios, in one occasion we only used the original 1164 videos for training and validation.
In the second experiment, we used all 3492 videos.

Once the models are trained, the performance of the binary classifiers is measured
with performance metrics accuracy, precision, recall, and F-score (/) using a test set
with 130 videos. We recall that the accuracy is obtained by taking the ratio of correctly
classified labels to the number of all labels, that is 130. Precision is the ratio of correctly
identified reading cases to the number of all cases predicted as reading. On the other
hand, recall is the ratio of correctly identified reading cases to all true reading cases.
Finally, F-score is the harmonic mean of precision and recall, given by the formula

recision x recall
F =2x 22 .
precision + recall

Moreover, confusion matrices are reported to better visualize the mismatches
between true labels and model predicted labels.

4 Results of experiments

In this section we report the finding of our experiments. We have two different mod-
els ConvLSTM and LRCN and each model was trained twice, first with original train
data of 1164 short videos and on the second occasion with 3492 short videos obtained
through augmentation. Batch sizes of 64 and 4 were employed to train and validation
sets, respectively. The experiments show that ConvLSTM is performing well within 30
epochs and then overfitting occurs while LRCN reaches the best validation accuracy
within 40 epochs, see Figure 5 where Figures 5a, 5b show the accuracy for the original
train data, and Figures 5Sc, 5d show the accuracy for the augmented train data. In all sit-
uations, best-performing model weights were saved with respect to validation accuracy.
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Fig. 5. The accuracy vs. epochs

Table 1 summarizes the performance metrics of all four experiments that are carried
out in Google Colab with GPU. Here we also report the time it took to train the models
per epoch and prediction time per video. Comparing ConvLSTM to LRCN we see that
the latter is outperforming both in terms of four different performance metrics and in

terms of train time per epoch.

Table 1. Summary of performance metrics for our experiments

Classifier Train Data Tl:ain Pre(!iction Accuracy | Precision Recall F1
Time Time
ConvLSTM Original 16s 0.029s 98.46% 97.06% 100% | 98.50%
LRCN Original 3s 0.005s 99.23% 98.50% 100% | 99.25%
ConvLSTM Augmented 31s 0.023s 99.23% 100% 98.48% | 99.24%
LRCN Augmented 8s 0.003s 100% 100% 100% 100%

To visualize the performances of the models we provide the confusion matrices of
the classifiers on the test set in Figure 6.
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Fig. 6. Confusion matrices

5 Discussion

This work is devoted to the study of automated reading detection from the camera
in an online exam. Two state-of-the-art deep learning models, ConvLSTM and LRCN,
were adapted to address the reading detection task. To train the models, we collected
our own dataset of videos with a total length of thirty-seven minutes and 10% of the
dataset was allocated to test the performance of the proposed models. For each model,
the training was carried out in two different cases where in the first case no data aug-
mentation is carried and in the second case, several video augmentation techniques
were used with the aim to improve the performance. In all cases, the models performed
excellently as shown in Table 1 with LRCN reaching 100% accuracy for the augmented
dataset in all four metrics. We also see that LRCN is at least four times faster compared
to ConvLSTM.

Since the performances of the models are satisfactory, we have not used other pos-
sible approaches. In particular, skeleton or biometric-based action recognition may be
adapted for similar tasks. However, we note that this particular approach is more likely
to take a longer recognition time.

Our model was trained for color videos with frames converted into RGB format.
While the model is robust to color videos, we have not tested it for grayscale videos.
During data augmentation, a copy of the training dataset was generated by increasing
the brightness up to 200%. Aside from addressing the overfitting, this makes the model
robust against the different lighting conditions. Since we had no restriction on the video
quality, we initially had various resolutions which are then converted into 720p as
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explained in section 3.1. Then, for training, the frame sizes reduced significantly which
in particular reduced the resolution. Hopefully, this will make the model robust against
videos with various resolutions.

We see from Figure 5 that the model performs equally well on both train and test
sets. This indicates that there is no overfitting and the size of the dataset is sufficient for
the binary classification task studied. However, to train the model for more complex
tasks [41] one may need to collect more data.

Our model is designed to detect a possible screen reading detection. So, our model
needs to see the person’s eye to be able to say if the person is reading or not from a
source on the computer screen or somewhere nearby. However, if a person is reading a
book that is on the table, then it cannot detect it. A book reading detection task could be
an interesting question to study in the future.

Since the accuracy is very high, there are very few cases when the model misla-
bels as shown in the confusion matrix in Figure 6. This makes it difficult to draw any
insights into why the model mislabeled those particular clips. Maybe, increasing the
test data could generate more mislabeled clips which could help one to analyze the
possible reasons.

6 Conclusion

In this work, we trained a binary classifier for an online proctoring system. Clearly,
there are other aspects of online proctoring related to the test taker’s face and eye region.
For example, in certain exams, the test takers may be required to look at the computer
screen all time. In these situations, training the model to detect if a person is staring
at the screen or not is important. In future work, the proposed model can be trained to
carry more general action recognition tasks related to exam proctoring.
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