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Abstract—Every academic institution’s goal is to identify students who
require additional assistance and to take appropriate actions to improve their
performance. As such, various research studies have focused on developing pre-
diction models that can detect correlated patterns influencing students’ perfor-
mance, dropout, collaboration, and engagement. Among the influential predictive
models available, the bagging ensemble has captured the interest of researchers
seeking to improve prediction accuracy over single classifiers. However, prior
work in this area has focused mainly on selecting single classifiers as the base
classifier of the bagging ensemble, with little to no further optimization of the
proposed framework. This study aimed to fill this gap by providing a bagging
ensemble framework to optimize its hyperparameters and achieve improved pre-
diction accuracy. The proposed model used the Weka BESTrees data mining tool
and Math language course student dataset from UCI Machine Learning Repos-
itory. Based on the experiments performed, the proposed bagging optimization
technique can effectively increase the accuracy of a traditional bagging ensemble
method. It reveals further that the proposed BESTrees framework can achieve an
optimized performance when trained with the appropriate hyperparameters and
hill climb metrics.

Keywords—machine learning, Weka, ensemble, student prediction, bagging,
optimization techniques, hyperparameters, BESTrees, decision tree

1 Introduction

Every educational institution aims to attain an exceptional record of student accom-
plishments and deliver the best knowledge, tools, and skills. Recognizing students who
necessitate additional assistance and taking suitable actions to improve their perfor-
mance is critical to reaching that goal [1]. It may include predicting and examining
student performance which can support educators in finding weaknesses and improving
academic records [2]. Recent research studies have focused on developing Machine
Learning (ML) prediction models that can detect patterns that expressively impact stu-
dents’ performance, dropout, collaboration, and engagement [3].

ML algorithms train a model from past data to generate predictions or decisions
without being overtly programmed. With minimal human intervention, it can detect
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patterns and generate predictions built on historical data and accumulated experiences.
It is generally subdivided into individual machine learning algorithms or commonly
known as single classifiers (such as Naive Bayes and Decision Trees), traditional
ensemble learning methods, and combined boosting and multi-boosting ensembles [4].
However, individual classifiers are often overwhelmed by over-fitting and get stuck on
a small learning rate; and these issues persist as motivating reasons for performance
enhancement among researchers. As a result, ensemble learning became the learning
method that can improve the performance of a collection of individual classifiers to
solve similar learning tasks [5].

Ensemble learning frequently integrates numerous ML strategies into an ML frame-
work to decrease inconsistency and systematic error while improving results. Its lead-
ing success directed several studies to explore the dominance of ensemble learning due
to its capability to accomplish improved prediction performance than a single algorithm
[6]. Specifically, bagging is the utmost frequently used variant of ensemble learning
for performance improvement in classification tasks [7]. Bagging or bootstrap aggre-
gation is an approach for accumulating multiple versions of an unbalanced estimator,
each generated from a bootstrap sample. It causes several learner patterns to develop
a combined predictor whose output is obtained by blending the results of each created
subspace using majority voting. Its goal is to improve the base classifier’s performance,
to reduce variation, and to circumvent overfitting.

In recent years, a notable amount of research introduced new bagging variants to
balance the missing properties of the prior ones. For example, in the study of Sahoo
et al. [8], they proposed a roadmap to unravel common issues in the cargo shipping
sector by forecasting the delay and by giving freight forwarders an advantage over their
competitors. Furthermore, they bared that merging predictions attained by single clas-
sifiers into bagging ensemble improves overall accuracy while reducing error. Sumana
et al. [9] proposed a Hybrid Ensemble Classifier Model (HECM) based on Bagging
and Boosting to assess three UCI Repository benchmark datasets. The results verified
that their suggested framework performed better than any prevailing framework. It also
enhanced the performance of the classifiers involved spanning from 2% to 30.14%
compared to standard ensemble models. Similarly, Saad [10] suggested a bagging
ensemble framework to predict the appraisal of employees in determining their salary
and incentive. The framework assisted the top management in deciding on a suitable
performance that matches the correct wage. Moreover, it was utilized in identifying
underachieving employees who necessitate management action. Experimental results
reveal that a single classifier whose accuracy reached 94.21% improved further up to
99.16% when utilized in a bagging ensemble.

Most of these researches have focused only on choosing a base classifier and utiliz-
ing it in a bagging ensemble model to improve its predictive accuracy. On the contrary,
this study proposed an optimized framework by analyzing various hyperparameters of
the bagging ensemble algorithm, eventually maximizing its predictive accuracy. Fur-
thermore, it aimed to investigate ways to optimize the bagging ensemble to achieve
improved accuracy over a traditional bagging ensemble. The main objectives of the
present study were (i) to optimize the bagging ensembles’ hyperparameters and (ii) to
utilize them in predicting students’ academic performance.
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The other parts of this paper cover four (4) sections. Section 2 covers the review of
some related studies. Section 3 discusses the proposed methodology. Section 4 deliber-
ates on the outcome of the experiments. Lastly, Section 5 discusses the conclusion and
future plans.

2 Background and related works

Student’s academic performance is vital in defining educational success at all levels.
With this, several studies focused on finding factors and strategies to predict their per-
formance [11]. To accomplish this goal with minimum human involvement, researchers
employ ML prediction models to recognize students who struggle to learn and take pre-
ventive actions to aid them. As a result, it has become a critical need among educational
institutions to offer such models for various objectives, such as distinguishing students
on the verge of failing, improving passing rate, examining study trends, and many oth-
ers [5]. Similarly, several researchers attempted to find the best classifier for predicting
academic performance. Experimental results reveal that the ensemble learning model
dominates in this area because it combines multiple classifiers’ predictions to create the
finest classification model [12].

The ultimate aim of the ensemble method is to lessen the possibility of choosing
underperforming single classifier while advancing the outcome of a single algorithm
by combining several individual algorithms into an ensemble model [13]. Building
ensemble classifiers for high-dimensional and large-dataset problems is tremendously
beneficial; finding an individual classifier in a single step is impossible due to the prob-
lem’s scale and intricacy [7]. Moreover, ensembles yield improved results when the
classifiers involved are diverse, which means that the ensemble classifiers should gen-
erate dissimilar errors on different subsets of data [9] [14].

Ensemble models are categorized into three types: bagging, stacking, and boost-
ing. Bagging is concerned with making many decisions on different samples of the
same dataset and calculating the average prediction; stacking is concerned with fitting
various models on the same data while using another model to learn the combined
predictions [15]. Similarly, boosting entails adding ensemble members successively to
correct prior predictions made by other models, yielding the average of the predictions.
However, comparative studies on the performance of various ensemble learning mod-
els have discovered that bagging outperforms boosting and stacking [16—17]. Bagging
can significantly decrease the ML model’s prediction error and variance when utilized
with a base learner generation [17-18].

Bagging ensemble or bootstrap aggregation advances the precision of the base clas-
sifier by increasing the stability and by decreasing the variance of the utilized frame-
work. It is an exceptional ensemble approach for unbalanced learning algorithms like
Decision Trees and Neural Networks, where slight fluctuations in the training data set
can result into big predictions [19]. It consists of two major components: aggregat-
ing the model and bootstrap sampling. Bootstrap sampling entails utilizing n samples
based on a dataset through selection with replacement, ensuring independence among
various testing datasets. Moreover, the model aggregation uses whichever achieved the
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maximum instance as the final classification result among the outcome of multiple base
learners [20].

For more than a decade, researchers seeking to improve prediction accuracy over
single classifiers focused on bagging ensembles. Wang et al. [17] explored the ensemble
method’s effectivity on credit scoring problems using varied single classifiers trained
on company credit datasets. They revealed that bagging outdoes boosting and stacking.
Likewise, Aydogmus et al. [21] investigated the performance of bagging ensembles
using various single classifiers and revealed that bagging outperformed their base clas-
sifiers. Furthermore, the experimental results of their predictive models demonstrated
that bagging can improve the model’s performance while decreasing the error rate.

Similarly, Olalekan et al. [22] investigated an ensemble bagging model with J48 and
a Simple Cart model on the hypothyroid dataset. Compared to single classifiers, exper-
imental results showed that the models achieved effective and accurate predictions.
Another study [23] proposed an improved bagging ensemble selection that uses the
unstable component to decrease the ensemble’s variance. Their study’s experimental
results based on ten company datasets demonstrated that using the out-of-bag sample as
the hill climb set generates a more effective ensemble model than the standard ensem-
ble model. Equally, Ngo et al. [24] proposed evolutionary bagging ensemble learning
which iteratively improves the ensemble by growing bag diversity. The outcome of
testing on several benchmark datasets showed that the evolutionary bagging ensemble
outperforms the ordinary bagging ensemble.

In the same way, Alan et al. [25] employed bagging ensemble classifiers for predict-
ing birth modes such as cesarean section or normal delivery, an innovative strategy for
predicting birth modes. Experimental results revealed that bagging ensembles outclass
the single classifiers in this classification task. Likewise, Mosavi et al. [26] explored the
predictive accuracy of various ensemble models for predicting potential groundwater
zones, consisting of two boosting models and two bagging models. Their study discov-
ered that the bagging models outperformed the boosting models.

The research results in the literature verified the superiority of bagging ensemble
methods over standard individual algorithms and other ensemble counterparts. How-
ever, prior work in this area focused mainly on selecting single classifiers as the base
classifier of the bagging ensemble, with little to no further optimization of the proposed
framework. This study aimed to fill this gap by providing a bagging ensemble frame-
work that would optimize its hyperparameters and ensure that the model can lessen
bias and variance and improve its prediction accuracy better than a non-optimized one.

3 Materials and methods

The subsections below provide a high-level discussion of the proposed methodology
utilized in this study.

3.1 The dataset

This study utilized the Math language course student dataset from the University
of California Irvine’s (UCI) repository, freely available in CSV format on their dataset
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repository [27]. If interested, the dataset may also be retrieved here [28]. It includes
395 academic records and 32 columns from secondary schools in Portugal, containing
student demographics, marks, social, and other educational information. The dataset is
frequently used to unravel classification tasks in which the target class is students’ final
grades containing numeric values from 0 to 20.

3.2  Data pre-processing

Data pre-processing is a mining method that translates raw data into a functioning
and efficient format. It defines the steps essential to convert or encode data so that any
algorithm implemented can effortlessly construe the data’s features. For example, in
this dataset, the numeric value (1-20) of the Final Grade attribute, the target class, was
converted to ‘P’ (>=10) and ‘F’ (<10) nominal values. Then, the nominal values (‘Yes’
or ‘No”) of the other attributes were transformed into binary values (0 and 1). This
process is required because machine learning algorithms, at their core, tend to function
well on numerical data [29].

3.3  Feature selection techniques

The role of the feature selection technique is to improve classifying data by elim-
inating properties that slightly impact prediction results. In addition, the decrease in
properties reduces the data size; thereby, lessening the execution time [30]. This study
used Chi-Squared Attribute Evaluator to identify the attributes that highly correlate
with the predicted class, the Final Grade. It determined whether the correlation between
two categorical variables in the sample reproduces their natural association in a dataset
for categorical features (also known as nominal variables).

In addition, this study also utilized the Information Gain Attribute Evaluator, which
helps measure the attribute’s value by gauging the information gain about the target
class. It is the consequence of the interaction of two values. The equality of the numer-
ator and denominator values shows their independence, resulting in a 0 result. A higher
information gain attribute suggests higher diversity [31].

These two feature selection techniques will rank the attributes based on their con-
tribution to the target variable. Figures 1-2 show the top attributes chosen by Chi-
Squared Attribute Evaluators and Information Gain Attribute Evaluator, respectively,
using Ranker as the search method implemented using 10-fold cross-validation. Both
evaluators agree that the top five (5) attributes based on merit are G2, G1, failures,
GoOut, Mjob, and guardian. These five selected attributes will then be used to predict
students’ performance in the Portuguese course dataset.
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Fig. 1. Ranking of top attributes using Chi-Squared Attribute Evaluator
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Fig. 2. Ranking of top attributes using Information Gain Attribute Evaluator
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As a result, Table 1 describes the dataset attributes based on the selected top five
features of the evaluators and the target class.

Table 1. Dataset selected attributes

Attribute Description Values

Gl Grade of first period 0-20 (numeric)

G2 Grade of second period 0-20 (numeric)

Failures Number of class failures 0-3 (numeric)

GoOut Meet with friends and go out 1-5 (numeric)

MlJob Job of the mother Teacher, Health, At home, Services Other

(nominal)
FG Final grade (target class) P, F (nominal)

3.4  Model implementation

Before applying a machine learning algorithm to a dataset, one must explicitly define
the hyperparameters to control the learning process. Hyperparameters are used to spec-
ify the model’s learning capacity. An ML model’s hyperparameters must be calibrated
to fit into various problems. Consequently, selecting the best hyperparameter config-
uration of a model can yield supreme performance [32]. For hyperparameter optimi-
zation, the strategies commonly used are Grid Search, Random Search, and Bayesian
Optimization [33-34].

This study utilized the BESTrees algorithm, a bagging ensemble selection strategy
introduced in Weka. Weka is a free, open-source machine learning tool created by the
New Zealand’s University of Waikato. BESTrees is an ensemble learning algorithm that
supports regression and classification problems and that employs the bagging ensemble
selection strategy [35]. The base learner of the BESTrees algorithm is a CART-like
decision tree algorithm. In addition, the user of this algorithm can select through the
interface of Weka some various target evaluation metrics used to optimize any ML
framework. The pseudocode of BESTrees [36] is given in Figure 3. It starts with data-
set S trained on classifier £ using 7 number of bootstrap samples. Then, it produces
the model using the entire S, bootstrap sample and chooses the hill climb set from the
respective S, out-of-bag instances [37]. In addition, each E, performs an ensemble
model selection M based on base classifiers’ performance on S_ .

Procedure BESTree_Training

(input: Training set S; Ensemble classifier E; Integer T (number of bootstrap samples)
output: Trained Ensemble Classifier E)

l.fori=1toT

2. Sp = bootstrap sample from S // sample with replacement

3. Soob =out of bag sample

4, train base classifiers in £ on Sp

5. Ei=BESTree_Selection(M, S)

6. Return E

Fig. 3. BESTrees training pseudocode
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Figure 4 shows the flow of methodology used in this study. First, the dataset was
subjected to various data pre-processing techniques to smoothen the noise and to trans-
form it into a well-formed dataset. Then, based on the feature selection techniques
implemented in the previous step, students’ final grades would be predicted using the
five selected attributes (G1, G2, Failures, GoOut, and MJob). In addition, these attri-
butes would be trained using the Weka BESTrees algorithm which implements a bag-
ging ensemble method using a decision tree as its base classifier.

As seen in Figure 5, this study would test eight (8) hill climb metrics of the BESTrees
algorithm and select one that optimizes the performance of the given dataset. The hill
climbing metrics is a local exhaustive search algorithm that moves toward increasing
elevation/value to find the mountain’s peak or the best solution to the problem [38]. It
ends when it reaches a maximum value for which no neighbor has a higher value [39].

Pre-Processing

I

Feature Selection
| Precision Accuracy
| Recall Y Weighted TP |
BESTrees Algorithm

| FScore l Root Mean Square Error |
All Metrics rToTTToTTeTT T ] ROC Curve |

| maxDepth, numBags,

1

BESTrees HillClimb Metrics i numFeatures, I BESTrees HillClimb Metrics
: numTreesPerBag ]

Performance Evaluation

:

Predictive Model
R

Fig. 4. The proposed framework

1JET — Vol. 18, No. 10, 2023 157



& weka.gui.GenericObjectEditor X

weka.classifiers.meta.BESTrees

batchSize 100

debug |False

doNotCheckCapabilities [False

hillclimbMetricMethod | Optimize with RMSE

Optimize Correlation Coefficient
maxDepth o timize with RMSE

Optimize with ROC
Optimize with precision
Optimize with recall
Optimize with fscore

| JREINEY

>

numBags

numDecimalPlaces

Optimize with all metrics
Optimize with weighted TP v

numExecutionSlots

Fig. 5. BESTrees hill climb metrics

The hill climb metrics of BESTrees are precision, recall, fscore, accuracy, root mean
square error, roc curve, or all metrics. Using one of these metrics alternatingly, it can
perform a hill climb procedure by creating a bagging ensemble that maximizes a given
performance metric on out-of-fold predictions. Then apply the same mapping to test
predictions and make an ensemble-averaged/weighted set of test predictions. This set
of test predictions should outperform any single model’s predictions.

As presented in Figure 6, the BESTrees algorithm would train the dataset alongside
hill climb metrics and various hyperparameters such as maxDepth, numBags, numFea-
tures, and numTreesPerBag to optimize the predictive accuracy of the proposed frame-
work. Note that the values of the hyperparameters used in this study would be based on
a manual search. Then the performance of the model would be tested using ten folds
cross-validation. Eventually, the selected final predictive model is the combined hill
climb metrics and hyperparameters that gain the highest outcome based on F-measure
and accuracy.
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Fig. 6. BESTrees hyperparameters

4 Results and discussion

The proposed framework used the free and open-source Weka software developed
by New Zealand’s University of Waikato. Using Weka’s BESTrees package, the model
predicted students’ final grades. It uses a bagging ensemble selection strategy alongside
various pre-defined hill climb metrics and hyperparameters to optimize the model’s
performance.

4.1  Performance accuracy of BESTrees algorithm and single classifiers

To choose the appropriate model for predicting students’ performance, various mod-
els tested were evaluated based on accuracy and F-measure performance metrics. Accu-
racy is a performance metric that calculates the percentage of correct predictions out of
all predictions made [41]. Similarly, the harmonic mean of the model’s precision and
recall is the F-measure, as illustrated in Equations (1) and (2), respectively. If inter-
ested, view the details of the confusion matrix here [5] involving variables such as True
Positive (TP), False Negative (FN), True Negative (TN), and False Positive (FP).

TP+TN
Accuracy = (1
TP+FP+FN+TN

1JET — Vol. 18, No. 10, 2023 159



2 x (Recall x Precision)

F — Measure =

— )
Recall + Precision

Table 2 displays the results of the trained models using BESTrees and individual
algorithms using ten-fold cross-validation. This study utilized single classifiers based
on their dominance in the literature. As revealed in the table, the traditional bagging
ensemble using RepTree (BET), commonly known as Decision Tree, gained an accu-
racy of 91.645% and an F-Measure of 0.918, which is way higher than the single clas-
sifiers. Furthermore, BET’s accuracy increased to 91.899% when used as BESTrees
containing default hyperparameters and metrics. It confirms the general observation
that the bagging ensemble performs better when compared to single classifiers. In addi-
tion, it also demonstrates that the BESTrees optimization technique can be effective in
increasing further the accuracy of a traditional bagging ensemble method.

Table 2. Performance accuracy of BESTrees and single classifiers

Algorithm Accuracy F-Measure
J48 90.633 0.907
Multilayer Perceptron (MP) 89.620 0.895
Naive Bayes (NB) 87.089 0.870
Support Vector Machine (SVM) 90.633 0.907
K-Nearest Neighbor (KNN) 83.544 0.835
Logistic Regression (LR) 90.380 0.904
Bagging Ensemble using RepTree (BET) 91.645 0.918
BESTrees with default hyperparameters 91.899 0.920

4.2  Performance accuracy of BESTrees with hyperparameter optimization

Table 3 compares the accuracy of the BESTrees algorithm built on a consolidation
of hill climb metrics and hyperparameters. The values of the hyperparameters assigned
to maxDepth, numBags, numTreesPerBag, and numFeatures were based on a man-
ual search. The experiment started with default values assigned to the hyperparame-
ters, such as maxDepth = —1, numBags = 10, treesPerBag = 10, and numFeatures = 0,
respectively. Then, in each iteration, these hyperparameters’ values were gradually
increased to determine the best configuration that responds well to the dataset. In addi-
tion, setting maxDepth =—1 and numberFeatures = 0 means that we allow the algorithm
to determine the depth of the tree and auto-select correlated dataset attributes in training
the model.

As shown in the experiments reflected in Table 3, the hill climb metrics such as pre-
cision, recall, F-Score, weighted TP, and all metrics gained the highest predictive accu-
racy of 91.90% executed at a total time of 0.07 seconds. However, results show that
there is only a slight increase in accuracy compared to the performance of BESTrees
with default hyperparameters in Table 2. We may have yet to find the best matching
hyperparameters and metrics to maximize the trained model’s predictive accuracy.

160 http://www.i-jet.org



Table 3. Performance accuracy of BESTrees and single classifiers

Hyperparameters

Hill Climb .

Metric max num Trees num Accuracy F-Measure Time
Depth Bags PerBag Features

RMSE -1 10 10 0 91.899 0.920 0.29
2 20 20 2 91.899 0.920 0.27
4 30 30 4 91.646 0.918 0.72
Accuracy -1 10 10 0 91.899 0.920 0.06
2 20 20 2 91.899 0.920 0.22
4 30 30 4 91.899 0.920 0.71
ROC -1 10 10 0 91.392 0.915 0.09
2 20 20 2 91.650 0.917 0.25
4 30 30 4 91.650 0.918 0.78
Precision -1 10 10 0 91.900 0.920 0.07
2 20 20 2 91.140 0912 0.20
4 30 30 4 91.392 0.915 0.75
Recall -1 10 10 0 91.392 0.915 0.06
2 20 20 2 91.140 0912 0.23
4 30 30 4 90.633 0.907 0.72
F-Score -1 10 10 0 91.900 0.920 0.07
2 20 20 2 91.900 0.920 0.21
4 30 30 4 91.900 0.920 0.69
Weighted TP -1 10 10 0 91.900 0.920 0.07
2 20 20 2 91.900 0.920 0.23
4 30 30 4 91.900 0.920 0.70
All Metrics -1 10 10 0 91.900 0.920 0.07
2 20 20 2 91.900 0.920 0.25
4 30 30 4 91.650 0.918 0.76

In another experiment, as illustrated in Figure 7, the accuracy of various classi-
fiers was compared with a decision tree (RepTree), bagging with a decision tree
(BaggingRepTree) as a base classifier, and BESTrees. However, the experiment used
all 32 attributes of the processed dataset. We let the BESTrees algorithm pick up the
essential features of the processed dataset in training the model. Take note that the bag-
ging ensemble is used in conjunction with random feature selection [40]. Every new
subset created is derived with a replacement from the training dataset. Then, the tree
grows using random feature selection based on the newly constructed training set. Each
sampling with replacement contributes to forming an ensemble with reduced variance
and bias.

As seen in Figure 7, BESTrees gained the highest predictive accuracy of 92.41%
compared to the performance of RepTree and Bagging RepTree which yielded 91.9%
and 92.15%, respectively. The improved accuracy obtained by BESTrees using
auto-numFeatures hyperparameters and “Optimize with RMSE” as the hill climb metric
is higher than the performance gained in the experiments performed in Tables 2 and 3.
It shows that the BESTrees framework can achieve an optimized performance when
trained with the appropriate hyperparameters and hill climb metrics.
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Fig. 7. Performance accuracy of BESTrees auto feature selection and single classifiers

5 Conclusion

This study proposed an optimized bagging ensemble framework by analyzing vari-
ous hyperparameters and hill climb metrics, eventually maximizing its predictive accu-
racy compared to a traditional bagging ensemble. The primary goals of the study were
(i) to optimize the bagging ensembles’ hyperparameters and (ii) to utilize them in pre-
dicting students’ academic performance. The proposed model utilized Math language
course student dataset from the University of California Irvine’s (UCI) repository.

In addition, the study used the BESTrees algorithm, a bagging ensemble selection
strategy introduced in Weka. Weka is a free, open-source machine-learning tool cre-
ated by the New Zealand’s University of Waikato. It supports various hyperparameters
and hill climb metrics that can be tweaked to optimize the performance accuracy of a
bagging ensemble method. Comparing the model’s accuracy reveals that the traditional
bagging ensemble using RepTree (BET) is the most accurate, commonly known as
Decision Tree. It gained an accuracy of 91.645% which is way higher than the single
classifiers used in the study.

Furthermore, BET’s accuracy increased to 91.899% when used in the BESTrees
algorithm containing default hyperparameters and hill climb metrics. Likewise, the
proposed framework increased further to 92.41% when it used auto-numFeatures
hyperparameters and “Optimize with RMSE” as the hill climb metric. It shows that
the BESTrees framework can achieve an optimized performance when trained with the
appropriate hyperparameters and hill climb metrics.

Future work could involve evaluating the model using different datasets to study
its predictive accuracy in a different domain. Moreover, the framework must train on
more complex search algorithms, such as grids or random searches, and tweaking all
the available BESTrees hyperparameters and hill climb metrics.
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