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PAPER

Learning Mathematics with Large Language Models: 
A Comparative Study with Computer Algebra Systems 
and Other Tools

ABSTRACT
Artificial intelligence (AI) has permeated all human activities, bringing about significant 
changes and creating new scientific and ethical challenges. The field of education could not 
be an exception to this development. OpenAI’s unveiling of ChatGPT, their large language 
model (LLM), has sparked significant interest in the potential applications of this technology 
in education. This paper aims to contribute to the ongoing discussion on the role of AI in 
education and its potential implications for the future of learning by exploring how LLMs 
could be utilized in the teaching of mathematics in higher education and how they compare 
to the currently widely used computer algebra systems (CAS) and other mathematical tools. 
It argues that these innovative tools have the potential to provide functional and pedagogical 
opportunities that may influence changes in curriculum and assessment approaches.
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large language models (LLMs), ChatGPT, bard experiment, computer algebra systems (CAS), 
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1	 INTRODUCTION

More than half a century has passed since the beginning of the use of digital tech-
nologies in the teaching and learning of mathematics. In the early 1970s, the attempt 
to introduce simple calculators into higher education led to a debate about their 
value and appropriateness, while their use would inevitably change the context 
of the mathematics classroom. Etlinger’s observation in 1974 highlighted the dual 
potential of technology, encompassing functional utility in generating responses 
and pedagogical significance in augmenting the learning process [1]. Subsequently, 
technology introduced a plethora of mathematical tools to educators, including soft-
ware specifically designed for calculations, graphing, and precise diagrammatic 
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representation. These tools hold promising prospects for facilitating advantageous 
shifts in teaching and learning methodologies, leading to the transformation of the 
teacher’s role and the redefinition of the tasks given to the students.

In the following decades, research on the one hand and advancements in soft-
ware development on the other brought to the fore new digital technologies that 
could be integrated into the mathematics classroom. These technologies include com-
puter algebra systems (CASs), dynamic geometry software, and statistical packages. 
This development has sparked rich discussions about the roles of these tools and 
their optimal utilization in educational settings. Noteworthy is the work of Pierce 
and Stacey in [2], who identified the opportunities that arise from the integration of 
mathematical software into the educational process. However, even in the present 
era, research such as [3] highlights that the utilization of mathematical software in 
higher education remains limited, primarily due to the absence of a comprehensive 
framework associated with the integration of technology in mathematics education.

While the development of a precise framework for integrating such technologies 
into mathematics education is still ongoing, the emergence of artificial intelligence 
systems, particularly large language models (LLMs), brings forth yet another digital 
technology to be considered. The recent widespread adoption of LLMs, exemplified by 
models such as ChatGPT, and their unrestricted usage have already initiated numer-
ous discussions and debates regarding the positive and negative perspectives [4]. 
Thus, the following question arises: Since open access to these models cannot limit or 
prohibit their use, how can they be effectively incorporated into the realm of math-
ematical education to enhance teaching and learning? Therefore, there is a need to 
identify the teaching and learning opportunities offered by LLMs and explore their 
influence on the curriculum and classroom dynamics, particularly in higher educa-
tion settings for science and engineering studies. Mapping the opportunities offered 
by the use of LLMs can be a starting point for further research exploring the effective-
ness and impact of the integration of LLMs on students’ learning outcomes. In addi-
tion, there is a prospect of highlighting specific areas where educational technology 
can capitalize on the rich possibilities offered by LLMs, including tailored learning 
experiences, real-time feedback, and the enhancement of digital skills.

The next section of this paper provides a concise overview of CASs and other math-
ematical problem-solving tools that are currently utilized as teaching and learning aids 
in the mathematics classroom. This is followed by an exploration of the emerging arti-
ficial intelligence tools that hold promise in the same context. Subsequently, in order to 
compare LLMs to these other tools and illustrate their capabilities and limitations, four 
practical problem-solving cases from calculus, linear algebra, and numerical analysis—
addressed with all three different tools—are presented. It is then attempted to map the 
new opportunities arising from the integration of LLMs in mathematics education and 
discuss their potential to enhance the teaching and learning of mathematics.

2	 THEORETICAL	BACKGROUND

2.1	 CAS	in	higher	education	mathematics

In recent decades, the significant progress that has been made in the develop-
ment of numerical and symbolic mathematical software, including CASs, has led to 
transformative shifts in teaching methods and problem-solving approaches in higher 
education mathematics [5] [6]. A CAS is a specialized software designed to perform 
symbolic mathematical calculations, such as algebraic manipulations, calculus, and 
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matrix operations. The first CAS was created at MIT in the late 1970s and was known 
as Mascyma. Today, there is a wide range of such programs available, both as free/
open-source software (e.g., Axiom, Erable, Fermat, Maxima, OpenAxiom, Reduce, 
etc.) and proprietary software (e.g., Derive, Mathematica, Mathcad, and Maple). CASs 
have been widely utilized in various fields such as engineering, finance, physics, 
and chemistry, enabling researchers and professionals to quickly perform complex 
calculations. As highlighted in the literature [7, 8], users should verify the results pro-
duced by a CAS by cross-checking them with multiple CASs and/or by using digital 
mathematical libraries (DML).

Since the early 1980s, efforts have been made to integrate CASs into education, 
prompting investigations into their methods and suitability as educational tools. 
Initial research yielded encouraging results concerning their use [9] [10]. In addition, 
researchers referred to the opportunities that CASs offer both teachers as a means to 
transform their teaching approach and to students who have in their quiver a tool 
for calculating, modeling, and understanding mathematical concepts [11–13].

Furthermore, other research highlights a more nuanced perspective on the poten-
tial impact of CASs on education [14]. These investigations study the impact of CAS on 
learning outcomes and attempt to identify the advantages and challenges associated 
with their integration into mathematics teaching. The instrumental approach serves 
as a conceptual framework that supports the research and integration of CAS in edu-
cation [15, 16]. According to this perspective, CAS are considered tools with which 
students can acquire mathematical knowledge, and at the same time, teachers have 
an essential role in orchestrating their use to facilitate student learning, turning CAS 
into an “instrument”. The use of CASs is distinguished based on their pragmatic and 
cognitive value, with students using them primarily for reasons of efficiency and 
answer validation. However, there is a growing tendency to utilize CASs scientifi-
cally, i.e., delegate the calculations to the tool and allow students to focus on explor-
ing mathematical concepts and interpreting the results obtained from the tool [14]. 
This shift in approach highlights the importance of promoting deeper mathematical 
understanding and conceptual reasoning.

Finally, advances in CASs’ technology, including the integration of AI, have opened 
up new possibilities for users [17], enabling the automatic discovery and proof of 
geometric properties and providing tutorials for solving mathematical problems. As 
a result, CASs are a critical component of the toolbox for modern mathematicians 
and engineers.

2.2	 Online	problem-solving	tools	in	higher	education	mathematics

There are numerous online platforms available that facilitate the solving of sci-
entific problems by providing not only the solutions but also the step-by-step pro-
cess leading to those solutions. Examples of such platforms include Wolfram|Alpha, 
Mathway, Symbolab, Cymath, and others. These platforms offer the capability to 
input math problems in natural language or unstructured formats, and they employ 
CASs to generate relevant answers. In recent times, numerous researchers have been 
exploring and discussing the advantages and drawbacks associated with the utiliza-
tion of such tools in higher education [18–21]. One distinctive feature of these plat-
forms is their computability, as they employ computational algorithms to process 
and solve problems.

Wolfram|Alpha, the tool selected as a representative of this category in this 
study, stands out as a broader knowledge engine that extends beyond mathematics. 
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It covers a wide range of domains, including science, finance, linguistics, and more. 
Wolfram|Alpha is a computational knowledge engine that automatically provides 
answers to questions while also delivering extensive analyses and graphs through 
its curated data and sophisticated algorithms [22]. Users can input questions in nat-
ural language or use the available tools to perform complex calculations and data 
analyses. Wolfram|Alpha is a reliable tool for scientists, engineers, students, and 
anyone seeking immediate access to scientific knowledge. It is built with the Wolfram 
Language [23], which is a symbolic language deliberately designed with the breadth 
and unity needed to develop powerful programs quickly. To function, it converts 
natural language, where possible, into Wolfram Language and then carries out 
the computations according to its algorithms. As it can be noticed, Wolfram|Alpha 
shares common features and functions with both CASs and large language models.

Wolfram|Alpha has been utilized in the context of mathematical education, 
such as calculus and linear algebra [24–26]. It offers several advantages over CASs, 
including its natural language interface, platform independence, and the fact that 
it functions as a computational knowledge engine aiming to answer broader scien-
tific questions. The capability of Wolfram|Alpha to process calculations expressed 
in natural language has been a long-standing goal of the research community, 
which has pursued it through various projects often involving chatbots. One nota-
ble example is the Sofia AI Project, which features a calculus chatbot capable of 
receiving questions in natural language and returning the corresponding calcula-
tions [27] [28]. The aforementioned research has played a significant role in paving 
the way and igniting interest in exploring the integration of LLMs in mathematics 
education.

2.3	 LLMs	in	higher	education	mathematics

Following the introduction of the ChatGPT, LLMs gained significant attention, 
especially regarding their potential impact on almost every kind of human activ-
ity. These advanced AI models are designed to process and generate human-like 
text by utilizing extensive amounts of pre-existing language data. There are other 
such models, including the Bard experiment, bidirectional encoder representations 
from transformers (BERT), generative pre-trained transformer-2 (GPT-2), extreme 
multilingual language understanding (XLNet), robustly optimized BERT approach 
(RoBERTa), text-to-text transfer transformer (T5), and pathways language model 
(PaLM) [29–32].

Education is a field of human activity that constantly explores and strives to 
integrate new technological tools as soon as they emerge. The utilization of LLMs 
in education is being increasingly discussed due to their potential impact on the 
field. In mathematical education, efforts are being made to discover ways to utilize 
this new technology, particularly for mathematical computations. An exemplary 
precursor to such an artificial intelligence system employing natural language is 
the Sofia AI project, which was mentioned in the previous section [27]. A recent 
study [33] presented an LLM, called Minerva, based on the language model PaLM. 
This model is geared towards problems in mathematics, physics, and engineer-
ing, and its performance has been assessed. They found that the model could cor-
rectly answer almost one-third of the two hundred undergraduate-level problems 
it was fed. Researchers [34] investigated the mathematical capabilities of ChatGPT 
and measured its performance relative to Minerva. The mathematical problems 
posed to the system are not elementary; thus, their resolution poses a significant 
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challenge to AI systems. They concluded that, contrary to formal mathematics, 
where large databases of formal proofs exist (e.g., the Lean’s Library of Formal 
Mathematical Proofs), the datasets of mathematics in natural language used to 
evaluate language models only cover elementary mathematics. The researchers 
infer that on these specific datasets, the mathematical abilities of ChatGPT are com-
paratively lower than those of a graduate student. Furthermore, while the system 
seems to understand the question, it does not always succeed in returning the 
correct solution [35, 36].

3	 SOLVING	MATHEMATICAL	PROBLEMS	USING	CASS,	ONLINE	
PROBLEM-SOLVING	TOOLS	AND	LLMS

The heightened interest in leveraging LLMs in education necessitates an explo-
ration of the extent to which they can substitute or supplement CAS for solving 
mathematical problems, especially within the context of mathematics education. 
For this purpose, problems from calculus, linear algebra, and mathematical anal-
ysis will be presented. These problems will be solved using the aforementioned 
tools in order to derive a comparative evaluation of their capabilities. Specifically, 
the selected tools for the study were Maxima (CAS), the computational knowledge 
engine Wolfram|Alpha as a representative of the online problem-solving tools, and 
ChatGPT-4 as an LLM. It should be noticed that in the case of the LLMs, the Bard 
experiment was also tested, and the results it generated were similar to those of 
ChatGPT. However, it was chosen to report only the interactions with ChatGPT, as it 
is currently the more widely used and easily accessible of the two.

It emerges that in relatively simple operations and symbolic calculations such as, 
for example, arithmetic operations, basic integrals, and equations, all types of tools 
yield reliable results. Hence, with ChatGPT and Wolfram|Alpha users are allowed 
to solve a simple problem stated in natural language, without having to know the 
CAS commands. For instance, to compute ∫ xe dxx  in Maxima, a user needs to know 
the ‘integrate’ command and its syntax: integrate(x*exp(x),x). On the 
other hand, in Wolfram|Alpha and ChatGPT, the user can pose the question “What 
is the integral of xexp(x)?” and receive the correct answer, along with the calcula-
tion method.

However, in slightly more complex calculations, such as computing high powers 
of integers or more intricate integrals, ChatGPT seems to fall short [23] [34], unlike 
Maxima and Wolfram|Alpha which return correct results. Yet, in ChatGPT, the user 
can point out the erroneous result and guide the LLM to generate the correct answer.

The following subsections present the attempts to solve four typical problems 
from the curriculum of an undergraduate mathematics course using the aforemen-
tioned tools.

3.1	 Problem	1:	The	inverse	of	the	square	matrix

As an example, we try to compute the inverse of the square matrix
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A. With a CAS (Maxima) the user needs to enter the following commands:

(%i) A:matrix([1,-1,1],[-2,1,-3],[1,-2,1]);
(%i) invert(A);

Maxima returns 
5 1 2

1 0 1

3 1 1

�
�

� �

�

�

�
�
�

�

�

�
�
�
 which is indeed the correct answer.

B. With Wolfram|Alpha the user requests:

Compute the invert matrix of [[1, -1, 1], [-2, 1, -3], [1, -2, 1]]

� Wolfram|Alpha returns the correct result. It also provides the step-by-step solu-
tion using the Gaussian elimination method.

C. With ChatGPT the user asks:

Compute the invert matrix of [[1, -1, 1], [-2, 1, -3], [1, -2, 1]]

 ChatGPT replies as follows:
 To�find�the�inverse�of�the�matrix,�we�can�use�the�following�formula:
 A^ - 1 =�(1/det(A))�*�adj(A)
 where�det(A)�is�the�determinant�of�A,�and�adj(A)�is�the�adjugate�matrix�of�A.
 First,�let’s�compute�the�determinant�of�the�matrix:
det(A)�= 1*(11 - (-2)(-2)) - (-1)(-2(-3)) + 1*(-2*(-2) - (-1)*(-3)) = 1 -�6 + 2�= -3

 �Next,�we�need�to�compute�the�adjugate�matrix�of�A,�which�is�the�transpose�of�the�
matrix�of�cofactors�of�A.�The�matrix�of�cofactors�is�obtained�by�taking�the�determi-
nants�of�the�2 × 2�matrices�formed�by�deleting�each�element�of�A,�and�multiplying�
them�by�the�corresponding�sign�(-1)^(i + j),�where�i�and�j�are�the�row�and�column�
indices�of�the�element.

 So,�the�matrix�of�cofactors�is:
 C�= [[1, -1, 1], [-2, -1, 2], [1, -1, 1]]
 Taking�the�transpose�of�C,�we�get:
 adj(A)�= [[1, -2, 1], [-1, -1, -1], [1, 2, 1]]
 Finally,�we�can�compute�the�inverse�of�A�using�the�formula�mentioned�above:
 �A^ - 1 =�(1/det(A))�*�adj(A)�= (-1/3) * [[1, -2, 1], [-1, -1, -1], [1, 2, 1]]  

= [[-1/3, 2/3, -1/3], [1/3, 1/3, 1/3], [-1/3, -2/3, -1/3]]
 �Therefore,�the�inverse�of�the�matrix�[[1,�-1, 1], [-2, 1, -3], [1, -2, 1]] is [[-1/3, 2/3, 

-1/3], [1/3, 1/3, 1/3], [-1/3, -2/3, -1/3]].
 �The system describes all steps correctly based on the appropriate methods, but 

the final result it produces is numerically wrong. If the user points out that the 
answer is wrong, ChatGPT regenerates its response using either the same or a 
different method but still returns a numerically wrong final answer.

 �In order to overcome this pitfall, a user may ask ChatGPT to solve the problem 
using a CAS for the calculations:

Compute the invert matrix of [[1, -1, 1], [-2, 1, -3], [1, -2,�1]].� 
Use�Maxima�for�your�calculations.

 �ChatGPT in this case does not describe the way to solve the problem but 
provides the Maxima commands that should be used without executing 
them. The user themselves may use these commands and solve the problem 
in Maxima.
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3.2	 Problem	2:	Find	the	minimum-maximum	value	of	a	two-variable	function

As an example, we try to find the min-max of the function f x y x y( , ) ( )� � �1 2 2

A. With a CAS (Maxima) the user needs to enter the following commands:

(%i) f(x,y):=1-(x^2+y^2);
(%i) dfx:diff(f(x,y),x);
(%i) dfy:diff(f(x,y),y);
(%i) sol:solve([dfx=0,dfy=0],[x,y]);
(%i) h1:determinant(hessian(f(x,y),[x]));
(%i) h2:determinant(hessian(f(x,y),[x,y]));
(%i) subst([sol[1]],h2);
(%i) subst([sol[1]],h1);

  With these commands though, Maxima performs the calculations and returns 
the numerical results. To find the solution of the problem, the user should apply 
the relevant mathematical theory to see that the maximal value is on the point 
(0, 0) and the maximal value of the function is 1.

B. With Wolfram|Alpha the user requests:

Find�the�min�max�value�of�1 - (x^2 + y^2);

  Wolfram|Alpha performs several calculations and returns the results. Among 
those, the user can find the global maximum value 1 at the point (0, 0).

C. With ChatGPT the user asks:

Find�the�min�max�values�of�1 - (x^2 + y^2);

 ChatGPT replies as follows:
 �To�find� the�min-max� values� of� the� two-variable� function� f(x,� y)�= 1 - (x^2 + y^2), 
we�need�to�find�its�critical�points,�which�occur�when�the�partial�derivatives�with�
respect�to�x�and�y�are�equal�to�zero�or�are�undefined.

 Let’s�compute�the�first�partial�derivatives�of�the�function:
  ∂f/∂x = -2x ∂f/∂y�= -2y
 Now,�let’s�find�the�critical�points�by�setting�the�partial�derivatives�equal�to�zero:
  -2x = 0 => x = 0 -2y�= 0 =>�y�= 0
 The�only�critical�point�is�at�(x,�y)�=�(0,�0).
 To�classify�this�critical�point,�we’ll�compute�the�second�partial�derivatives:
  ∂²f/∂x² = -2 ∂²f/∂y²�= -2 ∂²f/∂x∂y�= 0
 Now,�we’ll�compute�the�discriminant,�D,�using�the�following�formula:
 D�= (∂²f/∂x²)(∂²f/∂y²)�- (∂²f/∂x∂y)²
 D�= (-2)(-2) - 0² = 4
 �Since�D�>�0�and�∂²f/∂x² = -2�is�negative,�the�critical�point�(0,�0)�corresponds�to�a�
local�maximum.

 Now�let’s�find�the�function�value�at�this�local�maximum:
 f(0,�0)�= 1 - (0^2 + 0^2) = 1
 �Thus,�the�local�maximum�value�of�the�function�f(x,�y)�= 1 - (x^2 + y^2) is 1 at the 
point�(0,�0).

 �Since�the�function�represents�a�paraboloid�that�opens�downward,�there�is�no�mini-
mum�value�for�the�function.�As�(x,�y)�moves�away�from�the�origin,�the�function�will�
continue�to�decrease,�approaching�negative�infinity.�Therefore,�the�function�has�a�
local�maximum�value�of�1�at�the�point�(0,�0)�but�does�not�have�a�minimum�value.

 �ChatGPT in this case returns the correct result along with all the steps and cal-
culations it followed to reach the solution.
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3.3	 Problem	3:	Double	integrals	over	general	regions

As an example, we try to calculate the double integral of the function sin(x)/x over 
the triangular region bounded x = 0, y = x, and x = 1.

A. With a CAS: If using Maxima for this calculation, one should manually express 
the region of integration by drawing it as illustrated in Figure 1. This region is 

� � � � � �{( , ) | � � }x y x y x2 0 1 0� ��� . Then, the user calculates the double integral 

as integrated integral 
0

1

0

( , )
R

x sinxf x y dA dy dx
x

 
 =
  

∫ ∫ ∫∫ .

(%i) draw2d(grid=true, xaxis=true,  
yaxis=true, xrange=[0,1.5],  

yrange=[0,2,color=black, fill_color=grey,  

filled_func=x, explicit (0,x,0,1),  

filled_func=false, explicit(x,x,0,1.5),  

point_size=1, point_type=filled_circle,  

points([[1,1]]), label([“(1,1)”,1.2,1]));

Finally, by applying the Maxima commands, the user obtains the correct result.

(%i) f(x,y):=sin(x)/x;
(%i) integrate(integrate(f(x,y),y,0,x),x,0,1);
(%o) 1-cos(1)

B. With Wolfram|Alpha the user requests:

Calculate� the� double� integral� of� the� function� sin(x)/x� over� the� triangular� region�
bounded�x = 0,�y = x�and�x = 1

� Wolfram|Alpha does not return any answer and requests that the user rephrases 
the problem.

C. With ChatGPT the user asks:

Calculate� the� double� integral� of� the� function� sin(x)/x� over� the� triangular� region�
bounded�from�x = 0,�y = x�and�x = 1

 ChatGPT replies as follows:
 �Since�the�region�is�bounded�by�x = 0,�y = x,�and�x = 1,�the�limits�for�x�are�0�to�1,�and�
for�y,�it�will�vary�from�0�to�x.�The�double�integral�can�be�set�up�as�follows:

  ∫∫[sin(x)/x]�dy�dx
 Now�let’s�set�the�limits:
  ∫(x = 0�to�x = 1)�∫(y = 0�to�y = x)�[sin(x)/x]�dy�dx
 �Notice�that�there�is�no�‘y’�term�in�the�function,�so�we�can�treat�the�inner�integral�as�
a�constant�with�respect�to�y.�Thus,�the�integral�becomes:

  ∫(x = 0�to�x = 1)�[sin(x)/x�* ∫(y = 0�to�y = x)�dy]�dx
 Integrating�the�inner�integral�with�respect�to�y:
  ∫(y = 0�to�y = x)�dy = [y]�(from�0�to�x)�= x
 Now,�the�double�integral�simplifies�to:
  ∫(x = 0�to�x = 1)�[sin(x)/x�*�x]�dx
 The�x�terms�cancel�out,�and�the�integral�becomes:
  ∫(x = 0�to�x = 1)�sin(x)�dx
 Now,�integrate�sin(x)�with�respect�to�x:
  ∫�sin(x)�dx�= -cos(x)

Fig. 1. Region of the integral
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 Evaluate�the�integral�from�0�to�1:
 [-cos(x)]�(from�0�to�1)�= -cos(1)�- (-cos(0))�= -cos(1)�+ 1
 So,�the�value�of�the�double�integral�over�the�given�region�is�approximately�- cos(1)�+ 1
 �ChatGPT in this case returns the correct result along with all the steps and cal-

culations it followed to reach the solution.

3.4	 Problem	4:	Least	squares	method

As an example, we try to find the linear least squares model for the data [0.2, 
0.52], [0.5, 0.9], [0.6, 1], [0.9, 1.3],[1, 1.5], [1.1, 1.7]

A. With a CAS (Maxima):

(%i) A: matrix ([0.2, 0.52], [0.5, 0.9], [0.6, 1],
   [0.9,1.3],[1,1.5],[1.1,1.7]);
(%i) load (lsquares);
(%i) ls_model:lsquares_estimates(A, [x,y], y=a*x+b,
   [a,b]);
(%i) float(ls_model);

� Maxima returns [[a = 1.248725212464589, b = 0.258413597733711]] which is 
indeed the correct answer.

B. With Wolfram|Alpha the user requests:

Find� the� linear� least� squares� model� for� the� data� [0.2,� 0.52],� [0.5,� 0.9], 
[0.6,�1],�[0.9,1.3],�[1,1.5],�[1.1,1.7]

� Wolfram|Alpha returns the correct result. But it does not provide the step-by-
step solution.

C. With ChatGPT the user asks:

Find� the� linear� least� squares� model� for� the� data� [0.2,� 0.52],� [0.5,� 0.9], 
[0.6,�1],�[0.9,�1.3],[1,�1.5],�[1.1,�1.7]

 ChatGPT replies as follows:
 �To�find�the�least�squares�model�for�the�given�data,�we�need�to�fit�a�linear�equation�of�
the�form�y�= mx +�b�to�the�data�points.�The�least�squares�method�minimizes�the�sum�
of�the�squared�residuals�between�the�predicted�y-values�and�the�actual�y-values.

 Let’s�calculate�the�least�squares�model�for�the�given�data:
 Data�points:�[0.2,�0.52]�[0.5,�0.9]�[0.6,�1]�[0.9,�1.3]�[1,�1.5]�[1.1,�1.7]
 �Step�1:�Calculate�the�mean�of�x�and�y�values.�Sum�of�x-values:�0.2�+�0.5�+�0.6�+�0.9�+ 

1 +�1.1�=�4.3�Sum�of�y-values:�0.52�+�0.9�+ 1 +�1.3�+�1.5�+�1.7�=�6.92
 �Mean�of�x-values:�4.3�/�6�=�0.7167�(rounded�to�4�decimal�places)�Mean�of�y-values:�
6.92�/�6�=�1.1533�(rounded�to�4�decimal�places)

 �Step�2:�Calculate�the�deviations�of�x�and�y�values�from�their�means.�Deviation�of�
x-values:�[0.2�-�0.7167,�0.5�-�0.7167,�0.6�-�0.7167,�0.9�-�0.7167,�1�-�0.7167,�1.1�- 
0.7167]�= [-0.5167,�-0.2167,�-0.1167,�0.1833,�0.2833,�0.3833]

 �Deviation�of�y-values:� [0.52�-� 1.1533,�0.9�-� 1.1533,�1�-� 1.1533,�1.3�-� 1.1533,�1.5�
-1.1533,�1.7�-�1.1533]�= [-0.6333,�-0.2533,�- 0.1533,�0.1467,�0.3467,�0.5467]

 �Step�3:�Calculate�the�sum�of�the�squared�deviations�of�x-values�and�the�product�of�
deviations�of�x�and�y�values.�Sum�of�squared�deviations�of�x-values:� (-0.5167)^2  
+ (-0.2167)^2 + (-0.1167)^2 +�(0.1833)^2 +�(0.2833)^2 +�(0.3833)^2 =�0.425�Product�
of� deviations� of� x� and� y� values:� (-0.5167)� * (-0.6333)� + (-0.2167)� * (-0.2533)� 
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+ (-0.1167)� * (-0.1533)� +� (0.1833)� *� (0.1467)� +� (0.2833)� *� (0.3467)� +� (0.3833)� * 
(0.5467)�=�0.6249

 �Step� 4:� Calculate� the� slope� (m)� and� y-intercept� (b)� of� the� least� squares� line.� 
m =�product�of�deviations�of�x�and�y�values�/�sum�of�squared�deviations�of�x-values�
=�0.6249�/�0.425�= 1.4694�(rounded�to�4�decimal�places)

 �b�=�mean�of�y-values�- (m * mean of x-values) =�1.1533�-�(1.4694�*�0.7167)�=�0.1012�
(rounded�to�4�decimal�places)

 Therefore,�the�least�squares�model�for�the�given�data�is:�y�=�1.4694x�+�0.1012
  The system describes all steps correctly based on the appropriate methods, but 

the final result it produces is numerically wrong.
  Upon observing these four fundamental mathematical problems, various issues 

arise regarding the reliability of the results generated by LLMs. The following 
section presents both the advantages and disadvantages of the aforementioned 
approaches and introduces strategies that aim to enhance the efficiency and 
validity of computations while also maximizing the pedagogical benefits asso-
ciated with the use of large language models.

4	 FUNCTIONAL	AND	PEDAGOGICAL	OPPORTUNITIES	OF	LLMS

In the last few decades, CASs have been widely used in mathematics education, 
serving as valuable tools that offer several opportunities for students as well as edu-
cators [2] [3] [9] [11] [13] [15]. Recent technological advancements, notably in the 
realm of AI, have extended these opportunities further and even introduced new 
ones. In particular, LLMs have emerged as a significant development in the field of 
AI, revolutionizing the way students interact with mathematical concepts and pre-
senting new opportunities and challenges in mathematics education.

Although it is acknowledged in Section 3 that LLMs may not consistently meet 
the desired level of reliability, they still demonstrate potential functional and peda-
gogical opportunities. Furthermore, the combination of LLMs with CASs and DMLs 
shows promise in addressing specific functional concerns. In the upcoming section, 
we will delve into strategies for effectively and reliably integrating LLMs into math-
ematics education and research.

4.1	 Functional	opportunities

The functional limitations of LLMs in performing reliable mathematical calcula-
tions can potentially be addressed by integrating them with complementary tools. 
Figure 2 illustrates an approach to utilizing LLMs, where users present mathemati-
cal problems in natural language by posing one or more questions. The solution gen-
erated by the LLM is then reviewed and refined by the user. To ensure the accuracy 
of the calculations, one possible method is to involve a CAS by querying the LLM to 
generate the corresponding commands. The calculations can then be independently 
verified by running these commands in the CAS.

Problem
Verify the results with

one or more CASs
or/and DMLs.

State the problem to the LLM
and ask for its solution

State the problem to the LLM
and ask for the CAS commands

to solve it.

Fig. 2. An approach to utilizing LLMs to solve a mathematical problem
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Another way to overcome the possibly unreliable ChatGPT results is to utilize the 
recently available Wolfram Plugin. As per Wolfram in [23] [37], a way to harness 
the shared natural language interface between Wolfram|Alpha and LLMs, such as 
ChatGPT, is to enable ChatGPT to interact with Wolfram|Alpha in a human-like man-
ner. This involves converting the natural language input from ChatGPT into a precise, 
symbolic computational language, allowing Wolfram|Alpha to effectively utilize its 
computational knowledge. The interface for this collaboration can be achieved using 
OpenAI Plugins [38]. By activating the specific Wolfram Plugin, as shown in Figure 3, 
ChatGPT will generate the correct answer for problem 1 in Section 3.

Fig. 3. Posing problem 1 to ChatGPT using Wolfram plugin

While CASs serve as useful tools for performing calculations, they often fall 
short both in providing the necessary guidance on problem-solving steps and in 
assisting students understand the underlying concepts. On the contrary, the new 
LLM tools empower their users to actively engage in interactive communication 
by expressing mathematical problems in natural language. Moreover, users can 
pose follow-up questions in order to get more elaborate explanations and insights 
into the solution process. As a result, LLMs offer explanations for the underlying 
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concepts, bridging the gap between conceptual understanding and step-by-step 
problem-solving. Consequently, LLMs appear to offer valuable advantages in both 
dimensions crucial for addressing mathematical problems: comprehending the 
underlying concepts and employing the appropriate mathematical calculations to 
find solutions.

The aforementioned approach to the functional utilization of LLMs in mathe-
matical problem-solving allows for the exploration of their potential implications in 
mathematics education. Similarly to [2], there is evidence that the adoption of these 
innovative tools will lead to substantial transformations, not only in the instructional 
content but also in the assessment methods used to evaluate the learning outcomes.

Table 1 presents a concise overview of the primary capabilities and limitations of 
CASs, online problem-solving tools, and LLMs, as inferred from their application in 
solving the sample mathematical problems outlined in Section 3.

Table 1. Functional capabilities and limitations of CAS, Online problem-solving tools and LLMs

Capabilities Limitations

Computer 
Algebra Systems  
(e.g., Maxima, Maple)

– Producing more reliable results.
– Generating 2D and 3D graphical 

representations.
– Providing a functional 

environment with the ability to 
save calculations in worksheets.

– They do not provide information 
on the steps required to solve each 
kind of problem.

– Users must be familiar with 
its commands.

Online problem-
solving tools 
(e.g., Wolfram|Alpha,  
Mathway)

– Processing questions in 
natural language.

– No need for explicit commands.
– Producing more reliable results.
– Displaying intermediate results.
– Generating 2D and 3D graphical 

representations.
– Integration with LLMs.

– They cannot fully understand 
questions in natural language.

– Lack of a worksheet-type working 
environment.

Large Language Models 
(e.g., ChatGPT, Bard)

– Processing questions in 
natural language.

– No need for explicit commands.
– Displaying intermediate results 

along with the solution method.
– Providing commands for execution 

in a CAS to enhance reliability in 
calculations.

– Ability to connect with 
Wolfram|Alpha for reliable 
computations.

– Unreliable numerical calculations
– Lack of a worksheet-type working 

environment.
– Graph generation is not yet 

supported.

The following section investigates the pedagogical prospects that may arise from 
employing LLMs, with the objective of assessing their alignment with the opportu-
nities outlined in the pedagogical map for mathematics analysis software developed 
by Pierce and Stacey [2].

4.2	 Pedagogical	opportunities

In the context of mathematical education for students in engineering and 
the sciences, most academic institutions have embraced the integration of digi-
tal technologies, particularly CASs, in both instructional and learning processes.  
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The emergence of this innovative technological possibility prompted a reassess-
ment of the pedagogical framework in mathematics education. Pierce and Stacey 
[2] investigated the pedagogical opportunities for educators and learners stemming 
from the utilization of mathematical software and provided insight for further  
research [3, 39–41]. These pedagogical opportunities were structured at three dis-
tinct levels. Firstly, there are opportunities for enhancing teaching and learning 
activities, encompassing various tasks that can be accomplished through the use of 
the software. Secondly, the software creates opportunities for innovative teaching 
and learning approaches, allowing educators to explore new instructional methods 
and strategies. Lastly, the subject matter of mathematics itself is positively influenced, 
with the software enabling deeper exploration and understanding of mathematical 
concepts. Drawing upon their work, an endeavor will be undertaken to discuss the 
potential fit of LLMs within this context. Figure 4 presents a pedagogical map for 
the use of LLMs in mathematics education that will be analyzed in the subsequent 
paragraphs.

Functional OpportunitiesPedagogical Opportunities

Assessment ChangeCurriculum Change

In the subject matter of
Mathematics

In teaching and learning
approaches

In the context of teaching and
learning activities

Fig. 4. LLMs’ potential impact on pedagogy, curriculum, and assessment

In the context of teaching and learning activities. The cultivation of pen-and-
paper skills is reinforced as students are afforded the opportunity to observe and 
analyze the responses generated by LLMs. These responses not only offer students 
an answer to a mathematical problem but also provide a detailed description of 
the steps involved in reaching this solution. However, as evidenced, LLMs occa-
sionally produce incorrect computations. This flaw creates a pedagogical opportu-
nity in which students engage in critical evaluation of the solutions by verifying 
them either by hand or by using external resources such as CAS or Wolfram|Alpha. 
Simultaneously, students are allowed to engage in interactive discourse with LLMs, 
enabling them to pose multiple inquiries and seek elucidations regarding the pre-
sented outcomes.

Learning activities that draw on real-world contexts are of great pedagogical 
value, as they can motivate and engage students in mathematical thinking while 
demonstrating the real uses of mathematics [42]. When it comes to real-world prob-
lems, LLMs may be useful in various ways. They can accept a real problem in natural 
language and return the steps of its solution. They can also process real data swiftly 
and provide results (note that the accuracy of the computations must be ensured, as 
mentioned in the previous paragraph). Moreover, LLMs have the ability to generate 
real-world problems in natural language as well as create synthetic datasets to serve 
as test cases [43].
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Large language models can be used to observe the effects of parameters and dis-
cover patterns. Thus, they can be leveraged to find the solution for a problem for 
different values of one or more parameters, pose “what if...” questions, and observe 
regularities. However, in the current version of LLMs, the capability to explore 
regularity and variation graphically, as would be possible with dynamic geometry 
software, is not available. Despite this limitation, LLMs can still be utilized for sim-
ulation purposes as they can generate the commands for implementing the simula-
tion in a CAS.

Large language models, within the context of problem-solving, interact with the 
student textually, numerically, and symbolically. This ability for multiple represen-
tations is significant, as it is believed to enhance student comprehension [44] [45].

In teaching and learning approaches. The use of LLMs in the teaching and 
learning process allows for changes in social dynamics and the didactic contract, 
as educators are no longer the sole authority and students gain greater control over 
their own learning. In this way, educators may assume a facilitator role and guide 
students in effectively utilizing LLMs for purposes such as research and analysis. 
Learners, in turn, may actively engage with LLMs to explore, collaborate, and dis-
cover knowledge. Moreover, LLMs provide instant information and expand the 
range of possible resources available to students and educators, resulting in a more 
knowledge-rich learning environment in which both are allowed to explore various 
perspectives and engage in deeper discussions. In addition, differentiated learning 
is enhanced as the LLMs response is developed based on student questions. In this 
way, LLMs provide tailored content and supplementary explanations that align 
with the specific dialogue established with different students or student groups. The 
need to assess the responses offered by LLMs presents educators with an opportu-
nity to incorporate cooperative and inquiry approaches into the educational process, 
thus enhancing students’ collaborative and critical thinking skills. Furthermore, the 
increased accessibility of information to students facilitated by LLMs encourages 
educators to consider redefining their assessment methods. This shift involves eval-
uating skills and abilities such as critical thinking, creativity, collaboration, and 
problem-solving rather than solely concentrating on the memorization and testing 
of declarative knowledge.

The aforementioned factors play a crucial role in reshaping the didactic contract, 
emphasizing the need to address ethical considerations related to the utilization of 
LLMs. These considerations include source evaluation, plagiarism prevention, and 
compliance with copyright regulations. Moreover, the redesign of the learning envi-
ronment nurtures a new dynamic that enhances learner autonomy and transforms 
the teacher’s role in delivering instruction and implementing assessment methods 
so as to align with the dynamic educational landscape enabled by the integration of 
large language models.

In the subject matter of Mathematics. Similarly to the transformative effect 
that has been observed from the utilization of mathematical software [2], the inte-
gration of LLMs in mathematics education profoundly impacts the content taught, 
the level of comprehension demanded for mathematical concepts, and the interrela-
tionships among these concepts.

The occurrence of errors during LLM calculations creates an environment within 
the classroom that encourages discussions among students, between students and 
instructors, as well as between students and the LLM system. These dialogues 
serve to enhance the understanding of mathematical concepts. Furthermore, LLMs 
provide an opportunity for educators to emphasize the acquisition of concep-
tual understanding rather than mere procedural skills. This approach cultivates 

https://online-journals.org/index.php/i-jet


iJET | Vol. 18 No. 20 (2023) International Journal of Emerging Technologies in Learning (iJET) 65

Learning Mathematics with Large Language Models: A Comparative Study with Computer Algebra Systems and Other Tools

students’ mathematical thinking and facilitates a deeper comprehension of the 
subject matter. For instance, in a scenario involving an optimal linear model prob-
lem, students might initially rely on direct formula-based calculations. However, 
through engagement with LLMs, students gain access to the process of proving 
and constructing these formulas, thereby encountering additional concepts such 
as partial derivatives and multivariable function optimization. As a result, class 
discussions centered on these concepts can arise, effectively reshaping the content 
of mathematical education. Each student can seek further elucidation on these 
concepts from the LLMs, enabling individual knowledge enrichment and stimu-
lating productive classroom discussions that promote a deeper understanding of 
mathematical concepts.

Simultaneously, LLMs provide educators with an opportunity to underscore the 
importance of mastering concepts and applying them practically, moving beyond 
mere skill acquisition. Engaging students in activities where they pose mathematical 
problems to an LLM and examine the provided solutions and explanations allows 
them to concentrate on understanding the related concepts, while skill development 
can be addressed thereafter.

By integrating LLMs into the teaching process, educators can explore alternative 
pathways and educational methodologies. This may involve the instructor asking 
the LLM to create real-world problems or provide solutions to these problems based 
on actual or generated data. Such an approach offers students a comprehensive 
and meaningful learning experience, allowing them to make connections between 
abstract mathematical concepts and practical situations [42]. Consequently, LLMs 
may broaden the scope of the subject and foster a deeper comprehension of mathe-
matical principles.

Furthermore, there is a need to cultivate metacognition in mathematics 
education [46]. LLMs can contribute to enhancing metacognition, as they offer the 
capability to summarize knowledge related to a concept and provide examples that 
facilitate the transfer of this knowledge to different contexts. Students’ metacogni-
tive skills are further developed through their active inquiry and formulation of 
appropriate questions to engage with the large language model.

5	 DISCUSSION

The rapid progress in AI and the emergence of LLM tools have attracted a lot of 
research interest in their potential as aids for teaching and learning. Recent stud-
ies demonstrate that LLMs, when utilized effectively, can provide valuable support 
to educators and students across various classes and subjects. While mathematics 
has received comparatively less attention thus far, it is by no means an exception 
to the potential benefits offered by these tools. The present study investigates the 
utilization of LLMs as alternatives or complements to the conventional tools that 
have traditionally been employed in mathematics education in recent decades. It 
argues that these innovative tools have the potential to provide functional and ped-
agogical opportunities that may influence changes in curriculum and assessment 
approaches.

Addressing a mathematical problem encompasses two essential dimensions: 
comprehending the underlying concepts and employing the appropriate mathe-
matical calculations to arrive at solutions. While CASs have proven to be valuable 
tools for the latter, they often lack the ability to assist students in understanding 
the underlying concepts and determining the appropriate problem-solving steps.  
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This is where LLMs can complement CASs by enabling students to actively engage in 
dialogue with them, facilitating the process of solving mathematical problems. The 
explanations provided by an LLM regarding the underlying concepts, along with its 
guidance on problem-solving steps, have the potential to foster both students’ con-
ceptual understanding and their problem-solving skills. Nonetheless, as previously 
discussed, LLMs in their current state do not produce reliable calculation outcomes. 
This issue can be remedied by either manually validating the calculations with a CAS 
or by establishing an interface between the LLM and an online CAS. For instance, for 
ChatGPT, this can be accomplished using the plugin provided by Wolfram|Alpha. By 
harnessing these functional capabilities as well as their limitations, educators can 
reimagine and reshape both the content and assessment approaches to better align 
with the opportunities offered by LLMs, thereby enhancing the overall educational 
experience and outcomes for students.

The utilization of LLMs also holds significant pedagogical potential, impact-
ing teaching and learning activities, approaches, and even the subject matter of 
Mathematics itself. In particular, LLMs facilitate activities that promote critical 
thinking, mathematical reasoning, and pen-and-paper skills in students. These activ-
ities involve observing, analyzing, and verifying the system’s responses, as well as 
exploring the impact of parameters, discovering patterns, posing “what if...” ques-
tions, and identifying regularities. Furthermore, LLMs can be utilized in diverse 
ways for learning activities that leverage real-world contexts, serving to motivate 
and engage students in mathematical thinking, all while showcasing the practical 
applications and real-world uses of mathematics. Lastly, the versatility of LLMs in 
providing multiple representations can be leveraged in problem-solving activities, 
enabling students to interact with the system in textual, numerical, and symbolic 
forms, thereby enhancing their overall comprehension.

The integration of LLMs also allows for more student-centered, inquiry-based 
learning approaches. Educators may facilitate and guide students in using an LLM 
as a means to address research questions, test hypotheses, and discover knowledge. 
Differentiated learning is also automatically provided by LLMs since these systems 
may respond to each student or student group in an individualized way according 
to the dialogue established between them. In a similar manner, LLMs may also serve 
as scaffolding tools, offering each student tailored support to achieve their learning 
goals. This shift towards more constructivist approaches to teaching and learning 
also calls for changes in assessment that should focus more on the evaluation of 
higher-order thinking skills.

The subject matter of Mathematics, in terms of what is taught and in what depth, 
is also affected by the integration of LLMs in mathematics education. Educators may 
choose to further elaborate on mathematical concepts when addressing the calcu-
lation errors frequently made by LLMs in order to ensure students’ understanding. 
LLMs also provide an opportunity for educators to move beyond the mere acquisi-
tion of procedural skills and rather emphasize the importance of deeply understand-
ing mathematical concepts, their interrelationships, and their practical application 
in real-world contexts.

Despite the unique opportunities that LLMs offer, it is of critical importance 
to ensure their responsible and ethical use. This can be achieved by adhering to 
established guidelines and frameworks, such as the “Ethical guidelines on the use 
of artificial intelligence (AI) and data in teaching and learning for educators” [47] 
and “Artificial intelligence and future of teaching and learning: insights and  
recommendations” [48].
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6	 CONCLUSIONS

Over the past half-century, specialized software tools developed for mathematics 
have revolutionized teaching methodologies and redefined the roles of educators 
and students. The recent emergence of LLMs will likely have a similar, if not greater, 
impact. The previous sections discussed the functional and pedagogical opportuni-
ties that arise from harnessing LLMs in mathematics education, highlighting that 
their primary potential lies in offering students personalized learning experiences 
and real-time feedback while actively engaging them in dialogues regarding math-
ematical concepts and their practical application to real-world problems. These 
capabilities can serve as a means to motivate students, encourage their active partic-
ipation, and cultivate their higher-order thinking skills, including problem-solving, 
critical thinking, mathematical reasoning, metacognition, and knowledge transfer 
across different contexts. On the other hand, issues and limitations currently asso-
ciated with LLMs’ use have also been identified. One such key issue is the computa-
tional errors in the results they produce, but this issue, if appropriately utilized by 
the educators, may prove to have a positive impact on students’ learning.

Future research should focus on identifying the teaching and learning opportu-
nities offered by LLMs, assessing their impact on learning outcomes, and developing 
effective strategies for their integration into curricula and course syllabi in higher 
education. The highly important concern of the responsible and ethical use of these 
innovative tools should also be investigated further, so as to ensure that they are 
employed in a considerate and safe way.

With research continuing [49], the increasingly widespread integration of LLMs 
in mathematics education, and the merging of mathematical software with AI sys-
tems, an unprecedented opportunity arises to enhance students’ knowledge and 
skills in a world that is becoming increasingly digital and data-driven.
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