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Abstract—Traditional computer assisted learning is influ-
enced by novel user interfaces, such as tangible user inter-
faces, support cognitive processes and concept modelling, 
assisted by multiple representation. The manipulative prop-
erties of the tangible user interface’s physical manipulatives, 
for example, enhance passage between physical and virtual 
representations. It therefore provides a transition between 
stages in the reasoning process. In social modes of learning, 
physical manipulatives provide assistance in all social 
modes: individual, pairs, small groups and teacher up front. 
Computer supported collaborative learning is provided in 
the physical presence of learners manipulating on the same 
tabletop device. A systematic review of scientific articles 
applying qualitative and quantitative approaches was un-
dertaken. The content analysis was conducted to examine 
pedagogical approaches based on the two models of Bruner 
(1966) and Gagné (1985).   

Index Terms—Computer assisted learning, Representations 
in learning, Socio-cultural theories of learning and instruc-
tion, Tangible interaction, Tangible user interface. 

I. INTRODUCTION 
Contemporary society is facing demands to enhance 

learning processes to achieve high learning outcomes and 
learner competence whilst recognising learners’ diversity 
and accessibility needs. The interface between human and 
computer is an essential part of this process, providing 
technology accessibility and new approaches to learning 
and teaching. Education in general and computer educa-
tion in particular are facing severe changes [1, 2]. Global-
ly, researchers are investigating new ways to bring com-
puter literacy to everyone. Many forms go far beyond the 
typical classroom format, including a variety of learning 
and teaching methods and learning environments. “De-
mand pull” for high quality, timely and relevant education 
is higher than ever.  

Education is, however, also being affected by the 
“technology push”. Because communication, construction 
and circulation of information and knowledge are part of 
cognition and learning, teaching and learning are being 
affected by the dramatic changes in communication tech-
nology. Like any other field that is involved with con-
struction, circulation of information and networking, edu-
cation is also being disrupted by new technologies. It is 
being affected in a similar way to other communication 

and information industries such as telecommunication, 
media and entertainment. 

In this paper, we focus on how a very specific technol-
ogy - that of tangible user interface (TUI) - can be used to 
enhance teaching and learning. In the next section we 
present the technology itself and in section 3 we present a 
conceptual model that deploys theories of learning and 
instruction, providing a framework for classification and 
analysis of the TUI in teaching and learning. Against this 
background, state of the art in teaching and learning using 
touch technology is presented in Section 4. A review of 
articles about the use of TUI in web of Science, IEEE 
Explore, ACM Digital Library, Springer, Elsevier was 
undertaken. Findings are presented and analysed in the 
Section 6. 

Pervasive computing is changing traditional computer 
assisted learning. Novel user interfaces support cognitive 
processes and concept modelling, assisted by multiple 
representation. The manipulative properties of the tangible 
user interface’s physical manipulatives, for example, en-
hance passage between physical and virtual representa-
tions. It therefore provides a transition between stages in 
the reasoning process. In social modes of learning, physi-
cal manipulatives provide assistance in all social modes. 
Computer supported collaborative learning is provided in 
the physical presence of learners manipulating on the 
same tabletop device. 

II. TABLETOP USER INTERFACES WITH TANGIBLE AND 
TOUCH INTERACTION 

Technology has a fundamental role in learning. Multi-
media technology and ICT are pervasive in our lives and 
children use technology daily. Use of multimedia and ICT 
at an early stage and gaining relevant competences are 
necessities for today’s careers. 

Not only do personal computers, tablets and mobile de-
vices represent the technology used in learning, classroom 
learning incorporates different traditional teaching aids for 
learning mathematics, chemistry, geography, etc. With 
technological advances, many traditional teaching aids 
acquire embedded technology (e.g. electronic circuits, 
sensors and buttons) or virtual representations (e.g. com-
puter activities). 

Hand manipulation in the physical world enables learn-
ers to interact with the digital environment and the key-
board and mouse still constitute the prevalent computer 
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interface. There are two fundamental actions associated 
with a mouse: point & click and drag & drop [3-5].  

With the recent wide-spread adoption of tablet comput-
ers, touch-based interaction is becoming an important 
aspect of the user interface. Its positive acceptance by 
users, together with the high technological achievement of 
recent tablet computers, has resulted in wide spread use of 
tablets in classrooms worldwide. Multitouch systems, 
such as those offered by tablet computers, offer several 
advantages by providing more dynamic content and con-
trol capabilities, while at the same time enabling users to 
use their fingers. As tablet use has increased, tabletop 
learning environment touch technology has also entered 
learning, with large multi-touch screens enabling collabo-
rative learning on a single device [6]. 

The introduction of GUIs requires alternative human-
computer interactions [7]. The rich digital world invites 
users to reach in, and another form of user interaction with 
the computing systems emerged around two decades ago, 
one that utilizes human ability to manipulate physical 
objects – the so-called tangible interaction or tangible user 
interface (TUI). Nevertheless, this approach has not en-
tered the educational main stream although recent exten-
sive publications prove its importance in the history of 
learning technologies.  

Tangible interaction allows the utilization of users’ mo-
tor skills for manipulating digital content. Using both 
hands to interact with the computer has motor and cogni-
tive benefits in the learning process [2]. Children learn 
without being aware of it during play involving computer 
mediated direct physical manipulation of physical objects 
(physical representations). A TUI provides children with a 
process of exploration using a variety of objects and mate-
rials to support pupils' learning experience in achieving 
learning goals.  

Tangible interaction is based on hand manipulation of 
physical objects, enabling users to interact with the digital 
world. Physical objects provide physical attributes [8], 
such as visual, tactile, and auditory attributes, as well as 
spatial properties, such as location, orientation and con-
figuration. 

Furthermore, tangible interaction explores other human 
senses, such as hearing and touch, to enhance users’ expe-
riences and learning. Interaction with computing systems 
using physical objects and hand manipulation to represent 
and control digital data has demonstrated great potential 
over the last two decades [2, 7]. 

How tangible interaction supports learning is explored 
through theories of learning and instruction and pedagogi-
cal practices deploying the design frameworks by:  

- Support for physical interaction, 
- Rich multimedia feedback, 
- High-level of realism. [8] 
Touch based interfaces offer dynamic content and con-

trol capabilities, where tangible systems offer several 
benefits by providing more accurate manipulation and 
faster learning of control actions. Recent attention has 
been devoted to hybrid tangible interfaces that combine 
tangible and classical (GUI) interfaces and offer teachers 
and learners the flexibility to use the most appropriate 
interaction style in a particular situation [9, 10]. The pro-
posed hybrid approach offers many possibilities and chal-
lenges for the future research. Tangible and touch can be 

also considered in a hybrid manner by enabling tangible 
interaction on a capacitive multi-touch display [11]. 

The idea of interaction with a computing system using 
physical objects to represent and control digital data has 
proved to be very powerful. It opens a natural way for 
children and students to interact with computer systems. 
In addition, it has been demonstrated that it can be used in 
wide variety of learning processes. 

III. CONCEPTUAL MODEL FOR LEARNING WITH 
INTERFACES 

Knowledge can be defined as the ability to give a prop-
er response when confronted with a real world problem 
[12]. The response is a result of processes in the mind. In 
some cases, the response is information (i.e. spoken, writ-
ten word); in others, a material activity (i.e. doing some-
thing).  

A. The meaning triangle 
The oldest model that relates the real world to our un-

derstanding of it and to the words and symbols we use to 
communicate about it is the Aristotle/Ogden meaning 
triangle [13, 14]. Fig. 1. Things or objects (we shall call 
these “O”) are items from the real world. Experiences in 
the psyche or concepts (“C”) are ideas we hold about 
things in our minds. Words and other symbols (“S”) are 
used to so that we can communicate about our thoughts 
denoting real world objects.  

         
a) 

 
b) 

Figure 1.  The (semiotic) meaning triangles: a) Aristotle and Ogden,    
b) Richards. 

In this context learning could be defined as equipping 
the student with useful “ideas in the psyche” so that real 
world situations can be understood and reacted to appro-
priately. Learning can happen in two ways – by “being in 
the world” (in the Heidegger’s terms) and by learning 
what would happen if we interacted with the world. 
Learning while “being in the world” takes place with the 
interactions on the C-O side of the triangle. In such a way, 
for example, a child learns that if you stop holding an 
object in mid-air it will fall down. Perhaps it will also 
break when it hits the ground.   
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Another kind of learning takes place when we listen, 
view or read about models of the real world. Models are 
communicated to us using symbols, words, drawings, 
mathematical equations etc. In this way we may learn 
about Newton’s law of mass and gravity. This kind of 
learning is happening along the C-S side of the triangle. 
We would remain on this side of the triangle even if we 
are looking at pictures of an apple tree and apples falling 
down from it while Isaac Newton is lying below it. 

Our civilization mostly aims at teaching in a scientific 
way. The aim typically is not that a student will get a 
“feeling” of how fast things drop or at what load bridges 
collapse but to provide models and knowledge using 
which she or he could theoretically predict to a certain 
precision what the effect of some action would be. Evolu-
tionally, for millions of years we have been used to learn 
on the C-O side of the triangle. No one explained things to 
us with pictures, models and theories. Only in the last 
couple of millennia have we become used to learning by 
listening to someone and in the last few hundred years we 
have learned by reading. 

B. Pedagogy in the meaning triangle 
Not surprisingly, the learning on the C-O side is very 

efficient and a lot of effort in pedagogy has been dedicated 
to combining C-S and C-O kinds of learning or to make 
the C-S learning more closely resemble the C-O. If we 
analyse Bruner’s [15] model of learning which includes 
enactive, iconic and symbolic levels, we see that combin-
ing different representational models is trying to build on 
human ability to learn naturally on the C-O side. 

Schools are full of tangible objects with which student 
experiment: in physics; doing chemistry tests; touching 
stuffed animals in biology. Even math is taught with bean 
calculators in the beginning. According to constructivism, 
learning undertakes the construction of mental models 
which explain to the learner what and how [16]. The move 
from objectivism to constructivism is underlined by the 
paradigm that knowledge is constructed and interpreted by 
the learner and is not an external object). The cognitivist 
view of research of cognitive processes and mental mod-
els highlights the role of cognitive tasks in learning. Brun-
er’s [15] notion is of representations in learning which 
support learners’ comprehension and its transition be-
tween the external representations and abstract conceptu-
alisation.  

The role of models and modelling is to support the sci-
entific in pedagogical process when exploring real life 
(tangible or intangible), applying a variety of symbol 
systems. The model supports interaction between the real 
world and the learner’s “psyche”. The learning process, 
according to constructivist view, is based on the learner’s 
engagement and active role when interacting with learning 
contents. The transmission of knowledge is replaced by 
construction of knowledge. The social context in the 
learning process and the notion of shared and/or distribut-
ed knowledge facilitates the recognition of the socio-
cultural environment in learning and the role of peers. 
Students are influenced by the context and social context 
makes an important contribution to their learning process 
[17]. In the process of construction of knowledge, the 
model is transferred from the “psyche” of individual 
learner to the shared space. In the learning process, this 
supports the individual learner’s learning by explaining, 

exchanging, justifying with peers, and with those more 
experienced than themselves. 

 Understanding of teaching as transmission of infor-
mation which supports simple forms of knowledge has 
moved towards the constructivist model of instruction, 
fostering construction of knowledge which facilitates a 
higher level of knowledge. (In Bloom’s taxonomy this 
corresponds to the higher levels of application in new 
situations, evaluation and synthesis). Teaching and learn-
ing methods include inquiry learning, experimental learn-
ing, problem based learning, case studies, project work, 
simulations and games, hands-on laboratory exercises, and 
virtual laboratory activities . Computers support visualisa-
tion in learning and provide a more natural passage from 
problem visualization to problem analysis and forecasting 
solutions than do the paper and pen tasks which are usual-
ly required of students at the beginning a formal deduction 
[18]. 

Computer based dynamic modelling and dynamic visu-
alization assist manipulation, and experimenting with 
models and simulations provides visual feedback. Casual 
relations are simulated with controlled and isolated varia-
bles in dynamic and simplified models. Simple and com-
plex conceptual structures and processes can be presented 
gradually in a controlled setting. Following the construc-
tivist teaching, computer modelling facilitates construction 
and reconstruction of knowledge and concepts, fostering 
qualitative understanding of science concepts.  Conditions 
for setting a constructivist simulation based approach are 
contextual understanding and solving authentic problems 
for application of new knowledge. Learning based on 
representations can significantly improve concept under-
standing if structured to identify students’ existing con-
ceptions, thus facilitating them to think actively and set 
hypotheses prior to experimenting. Collaboration activity 
provides sharing with peers [17] when evaluating in pro-
gressing towards concept understanding.  Complexity of 
dynamic visualisations requires planning of the learning 
process with a focus on specific variables and generation 
of hypotheses between variables prior to undertaking the 
experiment and following with evaluation and discussion 
of the results [19]. 

TUI merges the characteristics of hands-on learning in 
physical and virtual contexts and as such provides trans-
fers between enactive, visual and symbolic levels of repre-
sentations and modelling.  

With the advent of computers there appeared a possibil-
ity to replace the real world with in-silico representations. 
Instead of tackling the real world items, learners would 
manipulate symbolic representations of these objects on 
screen. The cognitive distance between these objects and 
real world experiences would be much lower than be-
tween a mathematical representation of the problem and 
its real world occurrence. 

In this article two models are applied for the study of 
TUI in learning and teaching, one focusing on stages in 
learning [15] and one focusing on learning outcomes [20].  
Brunner designed a three stage model to explain how 
humans process information and understand the world 
through motor action, conventionalised imagery and per-
ception and through language and reasoning. Bruner’s 
three stage model of learning [15] has a first enactive 
stage in which the learner manipulates physical objects 
and material directly; a second – iconic – stage in which 
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the learner interacts with images of objects and not direct-
ly with physical objects; and the third – symbolic – stage 
in which the learner no longer applies mental images or 
objects but instead uses symbol systems. Gagné’s taxon-
omy of learning outcomes consists of psychomotor skills, 
verbal information, intellectual skills, cognitive strategies 
and attitudes [20]. 

C. Hypothesis 
The hypothesis for the use of touch interfaces in user 

interface design is that the symbolic world of computers 
becomes much more similar to the real world. It makes it 
possible to get the learning effects and methodologies of 
learning on the C-O axis by using the much cheaper, com-
puter generated C-S axis.  

While almost any computer can display very realistic 
projections of the real world, specialised hardware and 
touch interfaces are needed to manipulate the projections 
with the same ease and lack of barriers as is the case when 
really manually manipulating the world. 

We identified touch, hands and fingers as the most im-
portant interface for human beings to physically manipu-
late the physical world. The use of touch and fingers is 
therefore also the most important technology for manipu-
lating computer generated symbolic representations of the 
real world and thus accumulating knowledge about it.   

IV. LEARNING WITH TANGIBLE USER INTERFACES 
The beginnings of TUI research dates back to 1995 

when [21] presented Graspable User Interfaces, later 
termed Tangible User Interfaces by [22]. In [23] proposed 
that the idea is to eliminate the distinctions between input 
and output device. After nearly two decades, tangible 
interaction is still relevant and follows the idea of combin-
ing digital information, physical object and environment. 

Two handed manipulation enables users to utilize their 
natural ability to grasp and move physical objects as well 
as providing easy control of multiple parameters [7]. 

Children’s ability to use any interfaces needs special at-
tention due to their developing motor skills, limited reach, 
short attention spans, limited knowledge and experience 
with traditional user interfaces and social protocols [24]. 

Tangible interaction is based on tangible physical ob-
jects enabling users to interact with the digital world. 
Users interact by moving, manipulating, assembling and 
disassembling physical objects. Physical objects provide: 
- Physical attributes: visual attributes, tactile attributes, 

and auditory attributes, 
- Spatial properties: location, orientation and configura-

tion [8] 
External representations have an important role in me-

diating cognition [6]. Physical attributes provide instant 
information about shape and colour, for example.  The use 
of different physical attributes provides information thor-
ough multiple sensory channels. Multimodality of the 
tangible interaction and persistence of the physical world 
enables the use of different communication channels [7]. 
In the virtual (digital) domain, digital objects represent 
virtual entities with particular attributes. With tangible 
interaction, learners are required to establish meaningful 
mappings between artefacts and action [6]. 

Physical space is used for interaction, and exploits spa-
tial reasoning skills [7]. Spatial TUI as tangible user inter-

faces are used to mediate interaction in the virtual (digital) 
domain [25] and offer actions analogous to real-world 
effect or similar action [26]. Users’ experience must help 
them to interpret spatial location and orientation of objects 
immediately and to suggest appropriate manipulation [7]. 

Integration of technologies differs between many sys-
tems introduced [6, 7]. TUI systems can be classified into 
three main categories or levels of integration (Fig. 2): 

1. Discrete  
2. Collocated  
3. Embedded  
The three groups are organized based on input and out-

put location. 
 

 
a) 

 
b) 

 
c) 

Figure 2.  Types of tangible interaction: a) Discrete, b) Collocated and 
c) Embedded [7] 

The first and second categories share many similarities 
in the way physical manipulatives are placed on a surface 
such as a tabletop. In the first case, the output (display) is 
usually positioned vertically, e. g. a computer screen [18] 
or TV set [27].  

In the second category, the output is collocated with the 
input usually resulting in display being part of the surface 
(e.g. large touch screens or projected surface). [28] use 
Thinker Lamp in vocational training, where a projector 
displays the output on the table top and a mounted camera 
above follows the action on the tabletop. Schneider et al, 
[29] evaluate BrainExplorer, allowing students to learn 
neuroscience by interacting with a tangible user interface 
where camera and Wiimote track the actively on the tab-
letop with a projector underneath displaying multimedia 
information. The project TagTiles, a game for training 
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non-verbal cognitive skills, uses simple feedback by LED 
lights and audio output [30]. 

The third, embedded category, represents a tangible us-
er interface where the system is embedded within the 
object, such as the use of physical objects augmented with 
sensors and LCD displays [31]. Interacting cubes with 
sensors and LCD displays were also introduced by SynFlo 
using Sifteo cubes [11], or other simple input/output 
switches, buttons and lights as in FlowBlock [32].     

Differences between the discrete and collocated alterna-
tives are on one hand technical in nature but also influence 
learning. As [33] reports, the two location modes have key 
implications for learning, where research shows that the 
discrete category gives users more time to think, while the 
collocated resulted in more dynamic access and collabora-
tion. Collocated seems to better enable working in small 
groups and pairs.   

Recent developments with touch and gesture interac-
tions present tabletop computing devices as next genera-
tion education technology [34, 35]. 

V. METHODS 
A systematic review of scientific articles applying qual-

itative and quantitative approaches was undertaken. All 
published articles in selected relevant journals and confer-
ence proceedings were included based on data collection 
in WOS and on a manual search in selected relevant jour-
nals and conference proceedings. The first stage of review 
was undertaken in the WOS database and in IEEE Ex-
plore, ACM Digital Library, Springer and Elsevier. The 
keywords used were: tangible interaction, tangible user 
interface and education or learning and/or computer sup-
ported learning. Based on the results from the first phase 
the conference articles were included from ACM digital 
library and journals for manual search were selected. The 
manual search was undertaken in the second phase. The 
journals were selected based on appearance of articles 
identified in the first phase. The journals were: Journal of 
Educational Technology and Society, Personal and Ubiq-
uitous Computing, IEEE Transaction on Learning Tech-
nologies,  International Journal of Human-Computer Stud-
ies, British Journal of Educational Technology, Computer 
Assisted learning. Criteria for inclusion of articles from 
ACM digital library and journals in the review was that 
article presents a pedagogical empirical research.  The 
period covered was from 1995 to 2013. All articles were 
analysed based on reading full papers. The content analy-
sis was conducted to examine pedagogical approaches 
based on the two models of Bruner [15] and Gagné [20] 
and presented in a Fig. 3. Articles are examined by sub-
ject, learners and level of education and objectives, modes 
and methods of teaching and learning (Table 1). 

VI. FINDINGS AND DISCUSSION 
The manipulative properties of tangible user interfaces’ 

physical manipulatives, for example, enhance passage 
between physical and virtual representations. In the rea-
soning process they therefore provide for the transition 
between reasoning stages and learning stages/levels 
(Bruner, 1966). In social modes of learning, physical ma-
nipulatives provide assistance in all social modes; individ-
ual, pairs, small groups and teacher up front. Computer 
supported collaborative learning is provided in the physi-

cal presence of learners manipulating on the same tabletop 
device. 

We use the socio-cultural theory of learning and in-
struction in our/the discussion of cognition and learning in 
this new environment. 

In the review process the following topics were identi-
fied: 
- Cognitive processes and multiple representations 

assisted by tangible and touch interaction in learning. 
- Social process and social modes and computer sup-

ported collaborative learning supported by tangible 
and touch interaction. 

- Recognising diversity and individual differences, 
learners’ needs and the potential of tangible and touch 
interaction in computer assisted learning. In contem-
porary society, inclusion of people with disabilities in 
the mainstream education is supported by use of novel 
interfaces.  

A. Socio-cultural theories of learning and instruction 
supporting novel teaching and learning approaches 

The socio-cultural paradigm is based on the notion of 
the human mind being connected to societal and cultural 
forms where reality is represented by symbolism that is 
distributed and shared. Meaning making is culturally situ-
ated and underlined by cultural symbol systems. Cultural 
resources for (for example ICT) influence cognition and 
learning. ICT transforms ways of knowledge construction 
and circulation in the society. The socio-cultural view of 
learning has two assumptions: (1) The learner co-creates 
and negotiates meaning and knowledge in the socio-
cultural context by the use of symbol systems [17]. (2) 
meaning making and learning is mediated by cultural 
resources or tools: physical and psychological, [17].  

B. Cognitive and social processes for diversity 
The reviewed articles were analysed based on Gagné’s 

taxonomy of learning outcomes. Gagné holds that motor 
skills correspond to the psychomotor domain. Verbal 
information corresponds to the first two levels of Bloom’s 
cognitive taxonomy: knowledge and comprehension [36]. 
Intellectual skills consist of: discrimination – differentiat-
ing and distinguishing between different contents and 
objects according to certain characteristics; concrete con-
cepts – recognising and identifying classes of contents and 
objects; defined concepts – inserting new items using 
existing classification; rules and principles – applying 
relationship (casual) in thinking and problem solving; and 
higher order rules – applying complex rules to solve new 
problem or reasoning situations. Cognitive strategies con-
sist of metacognition, creative thinking, critical thinking 
and innovation. Attitudes correspond to Bloom’s affective 
learning outcomes [36].  

In the Fig. 3 (Appendix) articles are presented based on 
the Gagné’s taxonomy of learning outcomes and Bruner’s 
three levels of learning. The Table 1 (Appendix) presents 
all analysed articles by subject, learners and level of edu-
cation and objectives, modes and methods of teaching and 
learning. 

Based on Gagne’s taxonomy of learning outcomes, 
most articles were identified in intellectual skills and cog-
nitive processing, few in psychomotor skills and one in 
verbal skills (Fig. 3). Articles examine cognition as situat-
ed in a social context. TUI supported collaborative learn-
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ing is recognised as essential for quality learning out-
comes and is a focus of all articles under examination. 
Collaborative learning provides a natural learning context 
where knowledge is co-constructed and shared and social-
ly negotiated [17]. The outcomes of the individual and the 
group are interrelated. 

Cognition is socially situated and deploys representa-
tional systems combining different stages and the af-
fordance of physical manipulation supporting tactile expe-
rience and virtual manipulation supporting visual experi-
ences. The enactive level is that on which children’s cog-
nition is supported by motor action which can be whole 
body movement or fine motor movement [37-39]; voca-
tional students learn logistics through bimanual manipula-
tion while transferring from concrete action to symbol/ic 
level [28]; and medical students simulate surgery using 
bimanual manipulation and learn brain concepts while 
transferring from enactive experience to symbol/ic [40]. 
Iconic representations were applied by using TUI objects 
for manipulation [41], or virtual representations for tangi-
ble or intangible real life or hypothetical processes, solv-
ing real life problems. Both iconic representations are also 
applied in parallel [42]. A TUI can support bridging the 
gap between theory and practice [28, 40] or can facilitate 
learning and use of computer programming on the iconic 
level as, for example, when children in pre-school learn 
computer programming using objects and icons [42, 43] 
and using whole body movement [37]. The symbolic level 
is connected with intellectual skills and cognitive pro-
cessing. The majority of reviewed articles combine all 
three levels of representations aiming at learning on a 
symbolic level for intellectual learning objectives and 
cognitive strategies (Fig. 3). 

External representations facilitate cognition and learn-
ing. According to [6], spatial organisation of the learning 
environment with regard to location of physical and virtu-
al representations affect mapping between artefacts and 
action. They have identified difficulties for children learn-
ing physics in transfering to symbolic representations [6]. 
The location influences the dynamics, and how transfers 
between the representation stages in which correspond-
ence and modality influence mapping are undertaken. 
Whether the display is positioned vertically or horizontal-
ly influences collaborative work.[6] have identified the 
collocated working environment as productive for collab-
orative learning. 

Articles presenting TUIs for the learning of learners 
with special needs support the inclusion of learners with 
special needs in collaborative learning because they bene-
fit from social context [18, 27], facilitate cognitive devel-
opment [18, 27], and it assists their needs and accessibility 
requirements for learning [41]. 

VII. CONCLUSION 
Tangible user interfaces are popular since first devel-

opments in mid 90’ and still under investigation as 
demonstrated by the increased attention devoted to them 
in the scientific domain in the recent years. In this paper 
we followed the development from first technological 
investigations to recent classroom deployed systems influ-
encing the pedagogical developments and commercial 
products used for play and learning.  

Appropriate user interfaces can relax cognitive load and 
enable students to grasp mental and physical challenges. 

In this article the cognitive and the social process were 
examined, presenting the affordance of TUIs in learning.  

Desktop technology takes advantage of a classroom ta-
ble which is a natural environment for learning activities, 
enabling group activity and collaboration. Because com-
puting is ubiquitous, researchers are searching for new 
ways of accessing and interacting with computers for 
diverse user groups.  

Tangible user interfaces support cognitive processes 
and concept modelling, assisted by multiple representa-
tion. The manipulative properties of physical objects en-
hance passage between physical and virtual representa-
tions, facilitating a transition between stages in the reason-
ing process. In social modes of learning, physical manipu-
latives provide assistance in all social modes applied on a 
single interface. 

In the future adaptable interfaces will further improve 
students’ learning experiences and further evolve ideas of 
collaboration and inclusion. Advanced technologies will 
enable new ways of learning systems and interactions of 
people and devices. These systems will better utilise hu-
man sensing to enhance the dialog with computers. 
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Figure 3.  Articles based on the Gagné’s taxonomy of learning outcomes and Bruner’s three levels of learning 
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TABLE I.   
ARTICLES BY SUBJECT, LEVEL OF EDUCATION, OBJECTIVES AND METHODS 

 
 Authors and year of publication Subject Learners and level Objectives, modes and methods of teaching 

and learning 

1 
Africano, Lunholm, Berg, Nil-
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[44] 
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Preschool 
1st grade primary 
school 

Basic literacies 

2 Price, Falcao, Sheridan, Roussos, 
2009 [45] 

Physics Children aged 11 Learning physical concepts by collocated, 
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3 
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1994 [40] 
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surgery 

4 
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Music Children and adults 
with different sensory 
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modal construction with the sensory puzzle 
(auditory and tactile feedback) for learning 
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5 Ryokai, Casell, 1999 [47] Language and literature  Narrative play: Collaborative storytelling 
activities 

6 
Scarlatos, Dushkina, Landy, 1999 
[48] 

Mathematics; geometry Middle-school aged 
children with difficul-
ties in mathematics 

Geometric puzzle and collaboration 

7 Faber, Hoven, 2012 [39] Social gaming Secondary school Social marble gaming by TUI in open play-
ground supporting physical movement 

8 
Horn, Crouser, Bers, 2012 [42] Computer programming language 

Robotics 
Pre-school aged 5-6 
Children aged up to 16 

Comparing tangible and graphical TUI in 
learning computer programming language and 
robotics concepts 

9 Jackson, Brummel, Pollet, Greer, 
2013 [49] 

Mathematics Fourth grade primary 
school students 

Computer supported collaborative learning; 
game based learning 

10 
Marco, Cerezo, Baldassarri, 
Mazzone, Read, 2013 [27] 

Social skills and psychomotor 
skills in computer gaming 

Pre-school children and 
children with cognitive 
disability aged 7-11 

Development of cognitive and psychomotor 
skills; learning by physical activity, collabora-
tion and computer game 

11 
Sapounidis, Demetriadis, 2013 
[43] 

Robot programming Pre-school Comparing learning by physical manipulation 
of TUI and iconic representations of graphical 
interface 

12 Schneider, Jermann, Zufferey, 
Dilenbourg, 2011 [28] 

Logistics Vocational education Learning to apply theoretical knowledge in 
practice 

13 
Schneider, Wallace, Blikstein, 
Pea, 2013 [29] 

Neuroscience University education Active learning methods vs. Transmissive 
learning in traditional classroom and from a 
textbook 

14 
Sitdhisanguan; Chotikakamthorn, 
Dechaboon, Out, 2012 [41] 

Basic skills of recognising shapes 
and colour 

Pre-school autistic 
children age 3-5 

Children with low motor skills using TUI; 
transition from concrete to symbolic abstract 
understanding 

15 

Starcic, Cotic, Zajc, 2013 [18] Mathematics; geometry Pre- primary school and 
first three grades of 
primary school includ-
ing students with learn-
ing difficulties and low 
fine motor skills 

Developing geometry concepts combining 
physical and cognitive activity; Transitions 
through stages of geometry reasoning 

16 Starcic, Zajc, 2011 [50] Mathematic; addition concepts Primary school Learning addition concepts on the interactive 
bale by tangibles 

17 

Fails, Druin, Guha, Chipman, 
Simms, Churaman, 2005 [51] 

Environmental education, lan-
guage learning 

Pre-school age 4-6 Discovery learning, creative story narrative,  
game based learning with comparison of 
desktop and physical environment with 
integrated interactive technology in learning 

18 Sylla, Branco, Coutinho, Coquet, 
2012 [52] 

Health education, oral hygiene Pre-school Manual skills for tooth brushing, understand-
ing of role of tooth brushing 

19 Sylla, Coquet, Branco, Coutinho, 
2009 [53] 

Health education, oral hygiene Pre-school Storytelling, drawing 

20 Zaman, Abeele, 2007 [38] Play Pre-school Psychomotor skills and motivation for game 
based learning with TUI vs. keyboard 

21 Fjeld, Fredriksoon, Ejdestig, Duca, 
Botschi, Voegtli, Juchli, 2007 [10] 

Chemistry, organic chemistry  Learning abstract concepts by TUI based 
manipulation with 3D molecular models 

22 Frei, Su, Mikhak, Ishii, 2000 [54] Mathematics and Computing Primary school Abstract concepts learning by TUI supporting 
various learning styles 
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23 Girouard, Treacy, Hirshfield, 
Ecott, Shaer, Jacob, 2007 [55] 

Mathematics Primary school age 5 - 
12 

Spatial concepts by 3D objects supporting 
physical manipulation 

24 Greenberg, Fichett, 2001 [56] Computing University education Developing physical interfaces 
 

25 Horn, Jacob, 2007 [42] Computer programming and 
robotics 

Primary school Independent program building by physical 
manipulatives 

26 Huang, Do, Gross, 2003 [57] Urban design University education Participatory urban design with local commu-
nity applying TUI 

27 

Raffle, Parkes, Ishii, 2004 [58] Robotics Pre-school children, 
primary school children 
age 5-13 

Manipulating robotic models for pre-school 
children; 
Conceptual abstraction in robotics concepts 
and design 

28 
Wyeth, Wyeth, 2001 [59] Early childhood technology 

education, 
Computer programming 

Pre-school Levels of knowledge: using TUIs, under-
standing them and program with them 

29 
Marshall, Fleck, Harris, Rick, 
Hornecker, Rogers, Yuill, Dalton, 
2009 [60] 

Social skills, psychomotor skills 
using TUI 

Primary school Collaboration and group dynamics using 
physical and digital representations on a 
tabletop 

30 
Resnick, Martin, Berg, Borovoy, 
Colella, Kramer, Silverman, 1998 
[61] 

Mathematics and science concepts Pre-school. Primary 
school 

Digital and physical manipulatives in concept 
learning (lego, breads, balls) 

31 
Stanton, Bayon, Neale, Ghali, 
Benford, Cobb, Ingram, O'Malley, 
Wilson, Pridmore, 2001 [62] 

Language learning Children age 5-7 Storytelling by collaboration and drawing 

32 
Chipman, Druin, Beer, Fails, 
Guha, Simms, 2006 [63] 

ICT collaboration technology 
with a virtual trip to a national 
park 

Primary school Access and manipulate digital information 
and artrifacts 

33 
Marshall, Cheng, Luckin, 2010 
[64] 

Physics University education Learning physics concept comparing physical 
objects to manipulating graphical representa-
tions 

34 Fernaeus, Holander, 2006 [37] Computer programming Primary school chil-
dreen age 10 

Programimng by bodily action 

35 Bakker, Antle, van den Hoven, 
2012 [65] 

music Pre-school childreen 
 

Learning music by tangible and whole body 
movement 
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