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Abstract—In the machine learning field, high-dimensional 
data are often encountered in the real applications. Most of 
the traditional learning algorithms are based on the vector 
space model, such as SVM. Tensor representation is useful 
to the over fitting problem in vector-based learning, and 
tensor-based algorithm requires a smaller set of decision 
variables as compared to vector-based approaches. We also 
would require that the meaningful training points must be 
classified correctly and would not care about some training 
points like noises whether or not they are classified correct-
ly. To utilize the structural information present in high 
dimensional features of an object, a tensor-based learning 
framework, termed as Fuzzy Least Squares support tensor 
machine (FLSSTM), where the classifier is obtained by 
solving a system of linear equations rather than a quadratic 
programming problem at each iteration of FLSSTM algo-
rithm as compared to STM algorithm. This in turn provides 
a significant reduction in the computation time, as well as 
comparable classification accuracy. The efficacy of the pro-
posed method has been demonstrated in ORL database and 
Yale database. The FLSSTM outperforms other tensor-
based algorithms, for example, LSSTM, especially when 
training size is small. 

Index Terms—Alternating projection, Least square support 
tensor machines, Support tensor machines, Tensor learning. 

I. INTRODUCTION  
With the development of our society, a tremendous 

amount of data have continuously flooded into our socie-
ty. The explosive growth of data has generated an urgent 
need for new techniques and new skills in the data mining 
areas. Machine learning is an important branch of data 
mining. In the machine learning areas, the representation 
of data is one of the core tasks. High dimensional data are 
often encountered in the real applications. Thus, how to 
efficiently represent image data has a fundamental effect 
on the classification. Most of the traditional learning algo-
rithms are based on the vector space[1,2], such as SVM 
and LSSVM.  

However, in practice, images are intrinsically matri-
ces(the second order tensor). A lot of objects need to be 
expressed in tensor. For example, the gray image and the 
gray image sequence can be represented by the second 
order tensor and the third order tensor (the examples can 
be seen in Fig. 1 and Fig. 2, respectively). To represent the 
images appropriately, it is important to consider trans-
forming the vector patterns to the corresponding matrix 
patterns or second order tensors before classification. In 
this way, it has the following drawbacks: (1) Destroying 
the data structural information, (2) Leading to high dimen-

sional vectors, (3) Occurring over-fitting problem. In other 
words, some implicit structural or local contextual infor-
mation may be lost in this transformation. Moreover, the 
higher the dimension of a vector pattern is, the more space 
is needed for storing it.In recent years, because of the 
above three main drawbacks, algorithms based on tensor 
space have attracted significant interest from the research 
community. Several algorithms have been extended to 
deal with tensors, such as support tensor machine (STM) 
[3-9], multi-linear principal component analysis (MPCA) 
[10], multi-linear discriminant analysis (MDA) [11], ca-
nonical analysis correlation of tensor (CAC) [12] and non-
negative tensor factorization (NTF) [13]. With utilizing 
the tensor representation, the number of parameters esti-
mated by the tensor-based learning can be greatly reduced. 
Therefore, the tensor-based learning algorithms are espe-
cially suitable for solving the small-sample-size (S3) prob-
lem, where the number of samples available for training is 
small and the number of input features used to represent 
the data is large. At the same time, involving high-
dimensional data can also reduce the computational com-
plexity observed in problems.  

 
Figure 1.  A gray image can be represented by a matrix 

 
Figure 2.  3rd order tensor representation of a gait sequence. 

Least Squares support vector machine (LSSVM) was 
proposed by Suykens and Vandewalle [14], which not 
only replaces the inequality with the equality in the defin-
ing constraint structure of SVM, but also replaces the 
absolute error measure by the squared error measure in the 
object function. LSSVM require the solution of a system 
of linear equations rather than a quadratic programming 
problem compared with SVM, which leads to an extreme-
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ly fast than traditional SVM. Due to its extraordinary 
generalization and computational time, LSSVM has been 
a powerful tool for solving binary classification problems 
in machine learning. However, in many practical engi-
neering applications community, the training data is often 
corrupted by those abnormal outliers and noise. Moreover, 
some sample points are misplaced on the wrong side by 
accident. In this case, the traditional SVM may not be able 
to classify the contaminated data correctly. Because due to 
over fitting, SVM is particularly sensitive to outliers. 
Fuzzy support vector machine (FSVM) [15-17] is an ef-
fective method to deal with this problem. In FSVM, each 
training sampling is associated with a fuzzy membership 
and different memberships represent different contribu-
tions to the learning of decision surface. It can reduce the 
effects of outliers by fuzzy membership functions. Sam-
ples with a higher membership value can be thought of as 
more representative of that class, while those with a lower 
membership value should be given less importance. Abe 
and Inoue proposed FSVM for multiclass problem, which 
was the extension from the binary classification problem 
and was applied to multi-class text categorization[18].  

In this paper, we propose a novel method called fuzzy 
Least squares support tensor machine (FLSSTM), which 
is a tensor version of LSSVM, or fuzzy version of LSSTM. 
LSSTM is based on the tensor space, which directly ac-
cepts order-2 tensors as inputs, without vectorization. 
Obtaining a classifier in the tensor space not only retains 
the data structure information, but also helps overcome the 
overfitting problem encountered mostly in vector-based 
learning. In comparison to solving a QPP at every itera-
tion of the STM algorithm, FLSSTM solves a system of 
linear equations in an iterative fashion, which eventually 
converges to an optimal solution after a few iterations. Its 
applications include problems involving inputs of higher 
dimensions, for e.g., image classification and text catego-
rization. 

The rest of the paper is organized as follows. Section II 
provides an overview of LSSVM and Fuzzy membership, 
the necessary background for proposing FLSSTM in Sec-
tion III. Section IV demonstrates experimental result. 

II. LSSVM AND FUZZY MEMBERSHIP 
In this section, we briefly provides a simple introduc-

tion about LSSVM and fuzzy membership. 

A. LSSVM 
Given a set of training samples  

T�={(x1, y1),!,(xl , yl )}! (!
n !Y�)l .  

where n
iX !!  is a training sample and { }1, 1iy ! + " is 

the class label of ix .The classification problem is modeled 
by the following programming[14]: 
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where w is a normal vector ,C is a regularization pa-
rameter. ( )x! is a nonlinear function which maps ix to a 
high dimensional feature space,  

By introducing Lagrange multiples and Applying the 
KKT Conditions, we obtain! through the following linear 
equations:  
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Where 1 2( , , , )TlY y y y= ! , ( ) ( )T
ij i j i jH y y x x= ! ! , 

I is an identity matrix of appropriate dimension, and e is 
a vector of ones of appropriate dimension. 

B. Fuzzy Membership 
In many real-word application community, due to over 

fitting in SVMs, the training process is particularly sensi-
tive to those abnormal outliers in the training dataset 
which are far away from their own class. A key difficulty 
with real dataset is that parts of abnormal outliers are 
noise, which tends to corrupt the samples. In order to 
decrease the effect of those outliers or noises, we assign 
each data point in the training dataset with a membership. 
Samples with a higher membership value can be thought 
of as more representative of that class, while those with a 
lower membership value should be given less importance, 
so that those abnormal data with a low membership con-
tribute to total error term decreases.  

In fact, this fuzzy membership value determines how 
important it is to classify a data sample correctly. Each 
data point is given a fuzzy membership and different 
memberships have different contributions to the learning 
algorithm and models. So, one of the important things for 
machine learning is to choose the appropriate fuzzy mem-
berships. The distance between the sample and its class 
center is used as the basis of measuring the importance of 
the sample. At present, most of people define a fuzzy 
membership basing on the distance between each point 
and its class center[19-20]. 

Recently, fuzzy SVM have been attracting a lot of in-
terest and fuzzy SVM has been shown to be extremely 
successful, but few papers discuss fuzzy membership in 
tensor learning space. It is often that some training points 
are more important than others in the STM classification 
problem. With the tensor data training points, we also 
would require that the meaningful training points must be 
classified correctly and would not care about some train-
ing points like noises whether or not they are classified 
correctly. 

When dealing with binary classification problems by 
STM, all training tensor are presumed to belong entirely 
to either positive class or negative class, in other words, 
they are assumed to have equal weight or relevance. How-
ever, in fact, each training point no more exactly belongs 
to one of the two classes. It may 90% belong to positive 
class and 10% belong to negative class. This may be asso-
ciated a fuzzy membership 0 1is< ! with each training 
point iX . 

Each data point is given a fuzzy membership and dif-
ferent memberships have different contributions to the 
learning algorithm. How to choose the appropriate fuzzy 
memberships is very important. The distance between the 
sample and its class center is used as the basis of measur-
ing the importance of the sample. At present, most of 
people define a fuzzy membership basing on the distance 
between each point and its class center. 
Given a set of training samples  
T�={(X1, y1,s1),!,(Xl , yl ,sl )}! (!

n1!n2 !Y ! s�)l .  
where 1 2n n

iX
!"!  is a training sample, { }1, 1iy ! + " is the 

iJET ‒ Volume 10, Issue 8, 2015: "Interactive Computer Aided Learning" 5



PAPER 
A FUZZY LEAST SQUARES SUPPORT TENSOR MACHINES IN MACHINE LEARNING 

 

class label of iX and [0,1]is !  is the fuzzy membership 
degree of iX belonging to iy . 

Denote the mean of positive class as +X and the mean 
of negative class as -X .Let the radius of positive class 
and negative class as follows:  

{ }
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Where 0! > is used to avoid the case 0is = . 

III. FUZZY LEAST SQUARE SUPPORT TENSOR MACHINES 
As we all know, the tensor data are also usually con-

taminated by noise which caused the disturbance and 
measurement, and those tensor data which near to the 
class boundary are most affected by noise. In a spirit simi-
lar to LSSTM, the standard STM for pattern classification 
is not robust to noise, then we develop a Fuzzy model of 
LSSTM in the tensor space model, which is called Fuzzy 
Least square support tensor machines (FLSSTM). 

A. Reformulate LSSTM 
Given a set of training samples for classification: 

1 2
1 1 1{( , , ), , ( , , )} ( ) .n n l

l l lX y s X y s s= ! " # #! " "# $  
where 1 2n n

iX ! "! ! is a training sample, iy is the class 
label of iX and [0,1]is !  is the fuzzy membership degree 
of iX belonging to iy . The classification problem is mod-
eled by the following programming: 
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where 0C > is a regularization parameter and i! is a 
slack variable, is is the membership generalized by some 
outlier-detecting methods. It should be emphasized that 
the weights tensor Tuv is a rank-one matrix. For solving 
the optimization problem (6), firstly we introduce La-
grange multipliers ( 1, , )i i l! = !  and construct the La-
grangian function as follows: 
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Due to 
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F
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The Lagrangian function (7) can be rewritten as fol-
lows: 
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The KKT necessary conditions for the optimality are: 
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From equations (9) and (10), it is obviously that u and 
v rely on each other, and cannot be solved with traditional 
methods. Like STM, we use alternating iterative algo-
rithm[3,4]. 

We first fix u  . Let 2
1 u! = and T

i ix X u= ,Let D be a 
diagonal matrix where ii iD y= .The optimization problem 
(6) can then be reduced to the following QPP:  
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Where ( )1 2, , ,
TT T T

mX x x x= ! ,and e is a vector of ones 
of appropriate dimension. It can be seen that (13) is simi-
lar in structure to LSSVM. For solving(13), we consider 
its Lagrangian as : 
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Applying the KKT necessary and sufficient optimiza-

tion conditions by equating , ,L L L
v b !
" " "

" " "
to be equal to 0, 

we obtain the following: 

1
Tv X D! "=                                (15)  
0Te D! =                                (16)  

CS! "=                                (17)  
Substituting the values of ,v b and ! form (15) (16) and 

(17) into the equality constraints of (13) yields the follow-
ing system of linear equations for obtaining ! : 
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Where 1S ! is a diagonal matrix where 1 1
ii iS s! != .Then 

, ,v b! can be computed using (15)(16) and (17) respec-
tively. 
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We observe that solving (13) requires the inversion of 
an l l! matrix at (18), which is non-singular due to the 
diagonal perturbation introduced by the term 1 /S C! . 
Optionally, when 2l n!  , we can instead use the Sherman 
Morrison Woodbury identity to invert a smaller 2 2n n!  
matrix for obtaining the value of! , this contributes to the 
significant computational time. 

Once v is obtained, Let 2
1 v! = and !xi = Xi v , On the 

similar lines, u can be computed by the following QPP: 

2
2, ,

1 1min
2 2

T T

u b
u u C S

!
" ! !+  

s.t. D( !Xv + eb)+! = e                 (19)  

Where !X = !x1
T , !x2

T ,!, !xm
T( )
T

,Solving (19) in a similar 
fashion as (13). Thus, u and v can be obtained by iterative-
ly solving the optimization problems (13) and (19). 

B. The Algorithm of FLSSTM 
The algorithmic procedure is formally stated below: 
Inputs: the data set  

1 2
1 1 1{( , , ), , ( , , )} ( ) .n n l

l l lX y s X y s s= ! " # #! " "# $  

Outputs: the hyperplane ( ) , 0Tf X uv X b= + = . 

Algorithmic Procedure: 

Step1. Initialization: Let T(1, ,1)u = ! , 2
1 u! = , 

and T
i ix X u= , ( )1 2, , ,

TT T T
lX x x x= ! , 

Step2. Computing v : v can be computed by solving the 
following problem: 

1, ,
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2 2

T T

v b
v v C S

!
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Step3. Computing u : By step 2, let 2
2 v! =  and 

!xi = Xiv , !X = !x1
T , !x2

T ,!, !xl
T( )
T

, u can be computed by 
solving the following problem: 

2, ,

1 1min
2 2

T T

u b
u u C S

!
" ! !+  

s.t. D( !Xv + eb)+! = e   

Step4. Iteratively computing u  and v : By step 2 and 
step 3, we can iteratively compute u  and v  until they 
tend to converge. 

IV. EXPERIMENTAL RESULTS 
In this section, in order to verify the effectiveness of the 

proposed FLSSTM, We will compare the results of 
FLSSTM with the vector-based classification method 
FLSSVM and tensor-based classification method LSSTM. 
All the algorithms have been implemented in 
MATLAB7.8 (R2009a) on Ubuntu running on a PC with 
system configuration Intel Core5 Duo (2.60GHz) with 2 
GB of RAM. The data sets to be used are taken from the 
UCI Repository.  

A. Experiments Preparation 
For each size of the training set, ten independent runs 

are performed and their classification accuracies on the 
sets are averaged. We randomly select our training images 
from the entire set and repeat the experiment 10 times. 
The parameterC is obtained by cross validation, and the 
range of the regularization constant C is from 62!  to 
62 with each step by multiplying 2 . All experiments are 

primarily focused on the second order tensors, namely 
images in the form of matrix. We initialize both u and 
v are vectors of ones of appropriate dimensions. At the 
same time, the kernel function used in LSSTM and 
FLSSTM are both the linear kernel function, i.e., 

T( , )i iK x x x x= with respect to ( )x x! = . Accuracy and 
the Running time are used to estimate the performance of 
each algorithm. The Accuracy is defined as follows: 

FNTNFPTP
TNTP=Accuracy

+++

+  

TP, TN, FP, FN represent the number of positive data 
points which are correctly classified, the number of nega-
tive data points which are correctly classified, the number 
of positive data points which are falsely classified, the 
number of negative data points which are falsely classified, 
respectively. 

In our experiments, we choose two databases which are 
represented in Table I. 

TABLE I.   
THE DESCRIPTION OF DATA SETS 

Data sets Data size Class Atrribute 
ORL face data 400 40 32!! 32 
Yale face data 165 15 100!! 100 

B. Experiments on the ORL database 
The ORL database [21] of the face images has been 

provided by AT&T laboratories from Cambridge. It con-
tains 400 images of 40 individuals, with varying lighting, 
facial expression (open or closed eyes, smiling or not 
smiling) and facial details (beard or gender, glasses or no 
glasses). All images were normalized to a resolution of 
32!32pixels with (1024) gray levels. Since we are inter-
ested in testing the effectiveness of tensor-based algo-
rithms when the dimension of the data is large and the 
available training set is small, we do not perform cropping 
or resizing of the images which reduces the number of 
features in the data and histogram equilibrium was applied 
in the prepare processing step. The effect of histogram 
equilibrium on a particular example image is displayed in 
Fig. 3. 

                
Original Image                Normalized Image 

Figure 3.  The effect of applying histogram normalization step on a 
sample image 

Since we consider the binary problem of learning a 
classifier, we randomly chose two classes images to dis-
tinguish. For each binary classification experiment, we 
consider a subset of ten images of both the subjects for 
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training (training ratio is 10%, 20%, 30%, 40%, 50%), 
while the rest is considered for testing. Table II shows the 
mean recognition rates and standard deviations of all algo-
rithms in our experiments with different ratio of training 
sets and test sets on ORL database. From the Table II, it 
can be seen that when training ratio is small, FLSSTM 
outperforms FLSSVM and LSSTM, and the advantage of 
FLSSTM gradually reduced when training set becomes 
larger. When training ratio is 10%, the maximum differ-
ence of the accuracy between FLSSTM and FLSSVM is 
7.78%. However, the maximum difference of the accuracy 
between FLSSTM and LSSTM is only 1.67%. The supe-
riority of tensor-based algorithms gradually reduced when 
training sets become larger. From table II, it can be seen 
obviously that the maximum difference of the accuracy 
between FLSSTM and FLSSVM is 1.56% when training 
ratio is 50%. 

C. Experiments on the Yale database 
The Yale database [22] of the face images has been 

provided by Yale University. It contains 165 images about 
15 individuals, where each person has 11 images. These 
images with varying lighting condition (left-light, center-
light) and facial expression (happy, sad, normal, sleepy, 
surprised, wink). All images were normalized to a resolu-
tion of 100!100 pixels with (10000) gray levels. One 
object from Yale database is displayed in Fig. 4. 

 
Figure 4.  Eleven facial samples from a subject within the Yale data-

base 

We consider eleven particular examples of binary clas-
sification in Yale database. It consists of three subject 
pairs with similar facial features (smile, beard, glasses), 
and three subject pairs with distinct facial features. A list 
of the eleven selected subject pairs is given in Table III. 
For each binary classification experiment, we consider a 
subset of eleven images of both the subjects for training 
(training ratio is 10%, 20%, 30%), while the rest is con-
sidered for testing. 

The efficacy of FLSSTM has been compared with 
FLSSVM and LSSTM on Yale image classification data-
base. Table IV and table V show the mean recognition 
rates and standard deviations of all algorithms in our ex-
periments with different size of training sets and test sets 
on Yale database. From Table IV we can see that the per-
centage accuracy comparisons for the binary classification. 
It is evident from the Table IV that FLSSTM roughly 
outperforms LSSTM in most of the cases. From table IV, 
it can be seen obviously that the maximum difference of 
the accuracy between FLSSTM and LSSTM is 6.5% 
while the minimum difference of the accuracy is only 
3.23% for the different subject pairs when the training 
ratio is 10%. Compared with FLSSVM, the advantage of 
FLSSTM is also evident, the maximum difference of the 
accuracy between FLSSTM and FLSSVM is 8.11% while 
the minimum difference of the accuracy is only 0.83% 
when the training ratio is 10%. The superiority of 
FLSSTM algorithms gradually reduced when the training 

ratio is 30%. In fact, FLSSTM is outperforming LSSTM 
or FLSSVM especially in cases when the two subjects 
appear quite dissimilar and the training size is small. 

From table IV and table V, it can be seen obviously that 
the introduction of fuzzy membership improves the classi-
fication ability, the results have been provided on the 
small training size but not the large training size. The 
main reason lies in less the information for classifying 
planes when the training size is small, the fuzzy member-
ship can increase the test accuracy when building a classi-
fier. The superiority of fuzzy membership gradually re-
duced when training sets become larger. 

TABLE II.   
THE COMPARISON BETWEEN LSSTM, FLSSVM AND FLSSTM 

Training ratio Recognition rates and standard deviations with differ-
ent methods 

 LSSTM FLSSVM FLSSTM  
10% 77.22±1.95 71.11±13.5 78.89±2.34  
20% 79.44±3.60 72.29±15.3 83.75±3.23  

30% 87.86±3.81 88.57±10.2 91.43±4.52  
40% 94.72±3.73 92.50±6.15 94.17±6.86  
50% 95.56±3.95 94.00±5.16 94.00±5.98  

TABLE III.   
SUBJECT PAIRS CONSIDERED FOR BINARY CLASSIFICATION 

Subject pairs with 
Similar facial features Dissimilar facial features 
 (2,7) (1,4) 
(6,14) (5,11) 
(8,13) (12,15) 

TABLE IV.   
MEAN RECOGNITION RATES (%) AND STANDARD DEVIATIONS ON 

YALE DATABASE 

Training 
ratio 

Methods  Recognition rates with Similar facial fea-
tures 

 (2,7) (6,14) (8,13)  
10% LSSTM 

FLSSVM 
FLSSTM 

83.89±1.87 75.33±2.37 78.06±1.61 
75.33±16.5 73.50±13.3 79.50±20.6 
85.50±1.58 77.39±2.73 80.83±1.79  

20% LSSTM 
FLSSVMF
LSSTM 

92.16±3.89 82.72±6.54 88.89±4.59 
88.95±11.8 80.86±8.61 91.11±14.2 
95.00±1.76 81.67±3.75 91.17±2.87  

30% LSSTM 
FLSSVMF
LSSTM 

95.63±7.25 85.00±5.65 93.82±5.23 
95.14±6.34 82.99±7.07 96.70±3.23 
94.37±1.98 85.62±4.22 95.00±2.64  

TABLE V.   
MEAN RECOGNITION RATES (%) AND STANDARD DEVIATIONS ON 

YALE DATABASE 

Training 
ratio 

Methods  Recognition rates with Dissimilar facial 
features 

 (1,4) (5,11) (12,15)  
10% LSSTM 

FLSSVM 
FLSSTM 

83.78±12.6 83.44±1.32 68.94±2.02 
82.94±14.9 89.11±18.6 64.06±13.6 
87.39±1.88 89.94±1.11 72.17±3.35  

20% LSSTM 
FLSSVMF
LSSTM 

89.94±3.48 96.11±3.75 75.19±7.40 
90.25±4.46 99.44±1.76 74.75±10.5 
90.31±2.80 96.91±0.76 75.31±4.97  

30% LSSTM 
FLSSVMF
LSSTM 

91.18±4.48 98.96±1.52 85.90±6.65 
90.90±3.66 99.93±0.22 79.17±7.18 
91.32±3.60 97.50±0.94 81.87±6.22  
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We also do the experiments with different database on 
the computing time. The result of running time compari-
sons between STM, LSSTM and FLSSTM, for learning a 
single binary classifier, are showed in Fig.5 and Fig.6. 
From Fig.5 and Fig. 6 it can be seen that the running time 
of FLSSTM is significantly less than STM, and is almost 
the same as LSSTM on both two databases. Results 
demonstrate that FLSSTM provides a significant reduc-
tion in the computational time, as well as comparable 
classification accuracy. The main reason lies in FLSSTM 
and LSSTM require solving a series of linear equations 
rather than a quadratic programming problem as compared 
to STM algorithm. 
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Figure 6.  The computing time of LSSTM, FLSSTM on different data 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we firstly consider the fuzzy membership 

in the training databases in tensor space, and propose an 
improved tensor-based method FLSSTM algorithm to 
learn better from databases in the presence of outliers or 
noises. For solving the small-sample-size (S3) problems, 
the tensor representation always performs better than the 
vector representation. This is due to the fact that the num-
ber of parameters estimated by STM is much less than that 
of estimated by standard SVM. The similar results hold 
true for the FLSSTM algorithm. The above several numer-
ical experiments show that the tensor-based methods have 

more advantages than vector-based methods for small-
sample-size (S3) problems. 

The formulation of FLSSTM requires to solve a system 
of linear equations at every step of an iterative algorithm, 
using the alternating projection method similar to STM, in 
contrast to solving a QPP. This makes FLSSTM a fast 
tensor-based linear classifier. How to choose a proper 
fuzzy membership function is quite important to solve 
classification problem with FPSVM, in future, we will 
continue to research the method of selecting better fuzzy 
membership function. Then we will research how to apply 
our proposed algorithm to large-scale classification prob-
lems, and how to use the matricization to improve the 
classification accuracy is the important issue. 

ACKNOWLEDGMENT 
The authors gratefully acknowledge the helpful com-

ments and suggestions of the reviewers, which have im-
proved the presentation.  

REFERENCES 
[1] T. Lin, P. Wu, F.M.Gao, Y.Yu, and L.H.Wang, “STUDY ON 

SVM TEMPERATURE COMPENSATION OF LIQUID 
AMMONIA VOLUMETRIC FLOWMETER BASED ON 
BARIABLE WEIGHT PSO,” International Journal of Heat and 
Technology. Vol.33, No.2, pp.51-156, 2015. http://dx.doi.org/ 
10.18280/ijht.330224 

[2] R.Jin,L.S.Hong, C.Wang,L.F.Wu, and W.C.Si, “A Hierarchical 
clustering community algorithm which missed the signal in the 
process of transmission,” Review Of Computer Engineering Stud-
ies, Vol.2, No.3, pp.27-34, 2015. http://dx.doi.org/10.18280/ 
rces.020306 

[3] D. Cai, X. F. He, J. W. Han, “Learning with tensor representa-
tion,” Department of Computer Science Technical Report 
No.2716, University of Illinois at Urbana-Champaign, April 2006. 

[4] D. Cai, X. F. He, J. R. Wen, J. Han, W. Y. Ma, “Support tensor 
machines for text categorization,” Department of Computer Sci-
ence Technical Report No.2714, University of Illinois at Urbana-
Champaign , April 2006. 

[5] Tao D, Li X, Hu W, Maybank SJ, Wu X (2005) Supervised tensor 
learning. In: ICDM 2005: proceedings of the 5th IEEE interna-
tional conference on data mining, pp 450–457 

[6] Tao D, Li X, Hu W, Maybank SJ, Wu X (2007) Supervised tensor 
learning. Knowl Inf Syst 13(1):1–42 http://dx.doi.org/10.1007/ 
s10115-006-0050-6 

[7] I. Kotsia, I. Patras, “Relative margin support tensor machines for 
gait and action recognition,” in International Conference on Image 
and Video Retrieval, Xi’an, China, 2010. http://dx.doi.org/10.11 
45/1816041.1816107 

[8] X. S. Zhang, X. B. Gao, Y. Wang, “Twin support tensor machines 
for MCs detection,” Journal of Electronics (China), 26 (2009) 318-
325. http://dx.doi.org/10.1007/s11767-007-0211-0 

[9] I. Kotsia, W. W. Guo, I. Patras, “Higher rank support tensor 
machines for visual recognition,” Patter Recognition. 45 (2012) 
4192-4203. http://dx.doi.org/10.1016/j.patcog.2012.04.033 

[10] H. Lu, K. N. Plataniotis, A. N. Venetsanopoulos, Mpca: multiline-
ar principal component analysis of tensor objects, IEEE Trans-
ations on Neural Networks, 19 (2008) 18-39. 
http://dx.doi.org/10.1109/TNN.2007.901277 

[11] S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, H. J. Zhang,” Multi-
linear discriminant analysis for face recognition,” IEEE Trans-
ations on Image Processing, 16 (2007) 212-220. 
http://dx.doi.org/10.1109/TIP.2006.884929 

[12] T. K. Kim, R. Cipolla, “Canonical correlation analysis of video 
volume tensors for action categorization and detection,” IEEE 
Transations on Pattern Analysis and Machine Intelligence, 31 
(2009) 1415–1428. http://dx.doi.org/10.1109/TPAMI.2008.167 

[13] S. Zafeiriou, “Discriminant nonnegative tensor factorization 
algorithms,” IEEE Transations on Neural Networks, 20 (2009) 
217-235. http://dx.doi.org/10.1109/TNN.2008.2005293 

iJET ‒ Volume 10, Issue 8, 2015: "Interactive Computer Aided Learning" 9



PAPER 
A FUZZY LEAST SQUARES SUPPORT TENSOR MACHINES IN MACHINE LEARNING 

 

[14] [14]J. A .K. Suykens, J. Vandewalle, “Least squares support 
vector machine classifiers,” Neural Process Lett 9:293-300, 1999. 
http://dx.doi.org/10.1023/A:1018628609742 

[15] Chunfu Lin and Shengde Wang, “Fuzzy support vector machines”, 
IEEE Trans. on Neural Networks, vol. 13, no. 2, pp. 464-471,2002. 
http://dx.doi.org/10.1109/72.991432 

[16] T. Inoue and S. Abe, “Fuzzy support vector machines for pattern 
classification”, Proceedings of IJCNN’01, Washington DC, vol. 2, 
pp. 1449-1454, July 2001. http://dx.doi.org/10.1109/ijcnn. 
2001.939575 

[17] H-P Huang and Y-H Liu, “Fuzzy support vector machine for 
pattern recognition and data mining”, International Journal of 
Fuzzy Systems, vol. 4, no. 3, pp. 826-835, 2002.  

[18] S. Abe and T. Inoue, Fuzzy support vector machines for multiclass 
problems, in Proceedings of the Tenth European Symposium on 
Artificial Neural Networks, pp. 113-118. Bruges, Belgium, April 
2002. 

[19] X.H.fan and Z.G.He, “A Fuzzy support vector machine for Imbal-
anced Data classification,” IEEE ICPOIP,2010 International Con-
ference on Optoelectronics and Image Processing. (2010)11-14. 

[20] Wenjuan An, Mangui Liang, “Fuzzy support vector machine 
based on within-class scatter for classification problems with out-
liers or noises”, Neurocomputing110 (2013) 101-110. 
http://dx.doi.org/10.1016/j.neucom.2012.11.023 

[21] The Olivetti & Oracle Research Laboratory Face Database of 
Faces, Available: http://www.carn-orl.co.uk/facedatabase.html. 

[22] Yale University Face Database(Online), Available: 
http://cvc.yale.edu/projects/yalefaces/yalefaces.html 

AUTHORS 
Ruiting Zhang was born in HeBei Province, China, in 

1981. He studies in College of Science, China Agricultur-
al University, 100083, Beijing, China, and he worked in 
Canvard college, Beijing Technology and Business Uni-
versity, His research interests mainly include Machine 
Learning, Support vector machine (ruitingzh@163.com).  

Zhijian Zhou is a professor in College of Science, 
China Agricultural University, Her research interests 
mainly include intelligent control, Support vector ma-
chine.(zhijianzh@163.com). 

This work is supported by the China Agricultural Research System 
(CARS-30) and Beijing Higher Education Young Elite Teacher Project 
(NO. YETP1949). Submitted 07 November 2015. Published as resub-
mitted 05 december 2015. 

 

10 http://www.i-jet.org


