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Abstract—Peer grading is an approach increasingly adopted 
for assessing students in massive on-line courses, especially 
for complex assignments where automatic assessment is im-
possible and the ability of tutors to evaluate and provide feed-
back at scale is limited. Unfortunately, as students may have 
different expertise, peer grading often does not deliver accu-
rate results compared to human tutors. In this paper, we de-
scribe and compare different methods, based on graph min-
ing techniques, aimed at mitigating this issue by combining 
peer grades on the basis of the detected expertise of the asses-
sor students. The possibility to improve these results through 
optimized techniques for assessors’ assignment is also dis-
cussed. Experimental results with both synthetic and real 
data are presented and show better performance of our meth-
ods in comparison to other existing approaches. 

Index Terms—Peer Grading, Assessment, MOOCs, e-Learn-
ing, Graph Mining. 

I. INTRODUCTION 
Massive Open Online Courses (MOOCs) are becoming 

increasingly popular with millions of students enrolled, 
thousands of courses offered and hundreds of educational 
institutions involved. According to [1], they represent a 
continuation of the trend in innovation, experimentation 
and use of technology initiated by distance and on-line 
learning, to provide learning opportunities for large num-
bers of learners. 

Due to their scale, MOOCs introduce new technical and 
pedagogical challenges that require overcoming the tradi-
tional e-learning model based on tutor assistance to main-
tain a cheap and unrestricted access to high quality re-
sources. Because of both the high numbers of students en-
rolled and the relatively small number of tutors, in fact, tu-
tor involvement during delivery stages has to be limited to 
the most critical tasks.  

In [2], the key challenges that MOOCs designers and 
providers are facing are analysed. Among these challenges, 
assessment is one of the most prominent. Given their dis-
crepancy in number, it is not possible for the tutors to fol-
low up with every student and review assignments individ-
ually. This also represents a major obstacle to the credential 
programs launched by MOOC players and targeted to peo-
ple that want to achieve credits toward a degree or earn cre-
dentials to show to prospective employers. 

A typical approach to overcome the assessment problem 
is to use close questions in exams and assignments so that 
grading can be done automatically [3]. Unfortunately, au-
tomated grading is limited, disappointing and insufficient, 
with no partial marks and, in some cases, with no detailed 

explanations of answers. It may result particularly unsatis-
factory when applied to complex tasks like the evaluation 
of the students’ ability of proving mathematical statements, 
expressing their critical thinking over an issue, demonstrat-
ing proficiency in skills like creative writing, etc. [4][5]. 

For these tasks, an approach that is gaining a growing 
consensus is Peer Grading where students are required to 
grade a small number of their peers’ assignments as part of 
their own assignment. The final grade of each student is 
then obtained by combining information provided by peers. 
The positive aspect of this approach is its capability of eas-
ily scale to any size: the number of assessors in fact natu-
rally grows with the number of students. Conversely the use 
of peer grading may be seen as unprofessional and unrelia-
ble given that it is based on grades assigned by unreliable 
graders (students) lacking the needed expertise, both didac-
tical and on the specific subject to be assessed. 

This paper aims at mitigating this issue by defining new 
alternative approaches, based on graph theory, to combine 
together peer grades coming from students, different from 
standard operators like median or mean. Described meth-
ods are capable of weighting grades provided by students 
according to assessors’ proficiency in the subject matter. In 
this way the opinion of high-skilled students has a greater 
impact on the final grade than that of low-skilled ones.  

Moreover, smart student-assessor assignments methods 
are presented. Differently from random assignment, such 
methods try to balance the number of reliable and unrelia-
ble assessors throughout the set of assignments. This way, 
situations where a student is evaluated only using grades 
proposed by unreliable assessors are avoided and the relia-
bility is constant among all assessments.  

The paper is organized as follows. The next section pre-
sents related work on peer grading as well as some existing 
aggregation approaches proposed by recent literature. Sec-
tion 3 presents the approaches we defined both for the ag-
gregation of peer grades and for the assessors-assessee as-
signment. Defined approaches are evaluated in Section 4 
with synthetic data and, in Section 5, with data coming from 
an experiment with real students. Obtained results are com-
pared with results coming from other methods discussed in 
Section 3. Eventually, Section 6 summarizes conclusions 
and outlines on-going work. 

II. RELATED WORK 
Peer grading has been used for many years as a tool to 

improve learning outcomes. The literature reports on many 
learning benefits for peer-assessors like the exposure to dif-
ferent approaches, the development of self-learning abili-
ties, the enhancement of critical thinking, etc. [6].  
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Even if some studies suggest a good correlation between 
peer grading results and instructor ratings in conventional 
classrooms and online courses (at least for specific, high 
structured domains) [7], there is still a general concern on 
the use of peer grading as a reliable strategy to approximate 
instructor marking in massive contexts like MOOCs. More-
over, students themselves seem to distrust the results of 
peer grading. 

In order to address the issue of accuracy of peer grading, 
several approaches, at various stages of development, have 
been proposed so far. For example, the Calibrated Peer Re-
view (CPR) method [8] proposes a calibration step to be 
performed by students before starting to assess other stu-
dents’ assignments. During the calibration, each student 
rates the same small set of assignments that have been al-
ready rated by the instructor. The discrepancy between 
grades provided by a student and the instructor measures 
her accuracy in assessment and is then used to weight sub-
sequent assessments provided by that student. The more ac-
curate is an assessor the more weight is given to her judg-
ment in the peer grading task.  

CPR has been experimented in several contexts demon-
strating to be an effective instructional tool. Despite that, it 
requires additional work from those students who are asked 
to take part in the calibration step. Moreover, this method 
does not take into account the progresses that students make 
over time until a new calibration step is performed. For this 
reason, additional approaches have been defined able to au-
tomatically tune peer grades based on different parameters. 

In [9], three probabilistic models for tuning peer-pro-
vided grades are presented. Such models estimate the relia-
bility of each assessor as well as her bias (i.e., a score re-
flecting the assessor’s tendency to inflate or deflate her 
grade) based on the analysis of grading performance on 
special “ground truth” submissions that are evaluated either 
by the instructor or by a big number of peers (hypothesising 
that the mean of many grades should tend toward the cor-
rect grade). Reliability and bias of each student are then 
used to tune the provided grades to other (non ground-truth) 
submissions. 

A similar approach has been applied in [10], where a 
Bayesian model has been used to calculate the bias of each 
peer assessor in general, on each item of an assessment ru-
bric and as a function of the assessor grade assigned by the 
instructor. As in the previous case, obtained biases are used 
to tune the grades provided during peer grading. Differently 
from the previous method, bias calculation is based on the 
results of a whole round of assessment rather than on just 
few “ground truth” submissions so, in the calibration step, 
the instructor should rate all the submissions. 

The Vancouver algorithm [11] measures the grading ac-
curacy of a student by comparing the grades given by her 
to each assignment with the average grade for that assign-
ment. Differently from the other approaches, the assessor 
accuracy is used as a modifier of the assessor’s grade rather 
than of the assesee’s in order for the student’s grade to re-
flect not only the quality of her homework but also the qual-
ity of her work as a reviewer. 

The PeerRank method [12] builds a grade for a given 
student by weighting the grades proposed by her assessors 
on the basis of the grades received by assessors themselves. 
In other words, the grade received by a student is consid-
ered a measure of her ability to correctly rate other students. 
Given that students’ grades recursively depend on other 

student’s grades, an iterative graph-mining algorithm based 
on an equation similar to that used in PageRank [13] is pro-
posed for their calculation. 

Differently from other methods, PeerRank does not re-
quire any instructor’s intervention. Indeed, there is no need 
to have a ground truth of professionally graded assign-
ments. The same author has also proposed an improvement 
to the basic method that includes, as a component of the 
final grade of a student, the accuracy of proposed evalua-
tions with respect to the average grades proposed by other 
peers. Such component is seen as an incentive for students 
to grade correctly. 

Given the promising results shown in [12], we have im-
plemented the PeerRank algorithm and have used it as the 
starting point for this study. Preliminary results have been 
already published in [14]. In the next sections, we discuss 
the methods that we have defined for improving peer grad-
ing results as well as obtained experimental results. 

III. THE DEFINED METHODS 
In a typical peer grading scenario an assignment is given 

to n different students. Each student elaborates her own so-
lution (e.g. an essay, a set of answers to open-ended ques-
tions, etc.) generating a submission. Each student has then 
to grade m different submissions (with m < n) coming from 
other students (maybe based on an assessment rubric). 

The assignment of submissions to assessor students is 
performed in accordance to an assessment grid i.e. a Bool-
ean n × n matrix A where Ai,j = 1 iff student j has to grade 
the submission of the student i. The matrix A has the fol-
lowing properties:  

1. the sum of the elements in each row and column is 
equal to m (i.e. each student grades and is graded 
by m other students);  

2. the sum of the elements in the main diagonal is 
equal to 0 (i.e. none evaluates himself). 

The assessment grid can be seen as the adjacency matrix 
of an m-regular directed graph where each node represents 
a student and each arc represents an assessment to be per-
formed by a student on another one.  

The easiest way to build the assessment grid is by filling 
it at random with an algorithm that preserves the properties 
above. A feasible algorithm starts with a null matrix and 
initialises its elements according to the following equation: 

 𝐴"#$ %&'(),+ &),% = 1  (1) 

for each 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚, where mod indicates the 
remainder after division of the first term by the second one. 
The obtained matrix is then randomly shuffled in several 
iterations by selecting a couple of rows (or columns) i and 
j so that Ai,j = Aj,i = 0 and swapping them.  

The grades proposed by students are then collected in the 
grades matrix G where Gi,j is the grade proposed by the stu-
dent j for the student i and 0 £ Gi,j £ 10. In an ideal peer 
grading setting, every student performs the grading task so, 
the final grade gi of each student i is obtained starting from 
the matrix G, by averaging all the grades obtained by peers 
(a matrix row) with the following equation: 

 𝑔% =
)
"

𝐺%,'+
'5) 		∀	1 ≤ 𝑖 ≤ 𝑛. (2) 
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Figure 1.  Graph interpretation of peer grading. Each node represents a 
student, each arc connects an assessor with an assessee (according to the 
assessment grid), the weight on each arc is a proposed grade (according 
to the grades matrix). 

The same equation can be applied to non-ideal settings 
(when some students skip the grading task) by averaging on 
the total number 𝑚%

9 < 𝑚 of grades proposed for i. Some au-
thors propose to average all obtained grades apart the best 
and the worst [11]. Other authors use the median in place 
of the average. Despite that, the average is the most used 
aggregator and is the baseline against which we compare 
other aggregators proposed in next subsections.  

It is worth noting that the grades matrix can be seen as a 
weighted m-regular directed graph where each node repre-
sents a student and each arc is the grade proposed by a stu-
dent for another student. Figure 1 illustrates a sample peer 
grading setting with 6 students (n = 6) and 2 submissions to 
be rated by each (m = 2). 

A. PeerRank 
In [12] the author proposed to weight the grade that each 

assessor student gives to another student by her own grade 
i.e. to use the grade of a student as a measure of her ability 
to grade correctly. In other words, the grade 𝑔%	of a student 
i is so that: 

 𝑔% =
;<,=∙?==→<

?==→<
  (3) 

where both summations are performed over all students j 
having evaluated i (indicated with j®i) i.e. so that Ai,j = 1. 

Given that the grades of all assessor students are them-
selves weighted averages of grades obtained by their own 
assessors, an iterative process, named PeerRank, was pro-
posed to calculate the final grade of each student. Let be 𝑔%A 
the grade of the student i at the t-th iteration, the grade of i 
at the iteration t + 1 is defined as follows:  

 𝑔%A&) = 1 − 𝛼 𝑔%A + 𝛼
;<,=∙?=

E
=→<

?=
E

=→<
  (4) 

where 0 £ a £ 1 is a constant affecting the convergence 
speed and 𝑔%F is initialised according to Equation 2.  

Equation 4 takes into account that each student only eval-
uates m peers according to the assessment grid. This is a 
more realistic setting with respect to the one described in 
[12] where each student was assumed to evaluate any other 

student. The author has also demonstrated useful properties 
for the defined grade updating rule as well as that after a 
limited number of iterations, it converges to stable values. 

Given that the proposed equation does not incentivize 
students to evaluate their peers accurately, the same author 
defined an updated version of Equation 4 as follows: 

			𝑔%A&) = 1 − 𝛼 − 𝛽 𝑔%A + 𝛼
;<,=∙?=

E
=→<

?=
E

=→<
	+ 𝛽

)F( ;=,<(?=
E

=→<

"
  (5) 

where 0 £ b £ 1 is a constant, so that a + b £ 1, that weights 
the reward given to a student according to the inverse nor-
malised absolute error in the grades provided by her. 

If b = 0 then Equation 5 degenerates to Equation 4. For 
b > 0, if 𝐺',% = 𝑔'A for all j, then the grades assigned by i are 
all exact and the contribution of the third addendum is 
10×b. At the opposite, if 𝐺',% − 𝑔'A = 10 for all j then the 
grades assigned by i are completely wrong and the contri-
bution of the third addendum is 0. 

B. F-PeerRank  
The PeerRank rule, described by Equation 5, prescribes 

that the influence of the grade of an assessor student on any 
grade she proposes is linear. For sake of simplicity we can 
decompose Equation 5 as the sum of tree different compo-
nents as follows: 

 𝑔%A&) = 1 − 𝛼 − 𝛽 𝑔%A + 𝛼𝛾%A 	+ 𝛽𝛿%A  (6) 

where the constants a and b have the same meaning as in 
Equation 5, 𝛾%A is the contribution coming from peer graders 
while 𝛿%A is the incentive for accurate grading. 

In order to improve the quality of the final grades, we 
propose an updated rule named F-PeerRank that applies a 
super-linear modifier to the grades proposed by peer asses-
sors by modifying the 𝛾%A component as follows: 

 𝛾%A =
;<,=∙K ?=

E
=→<

K ?=
E

=→<
. (7) 

The function f that affects the contribution of rates pro-
posed by other peer has the purpose of minimizing the con-
tribution of low skilled student while maximising those of 
high skilled ones. In [14] we have proposed the ExpPeer-
Rank rule where f(x) = 𝑒M with good results on synthetic 
data. As we will see in section 4, on real data an alternative 
rule (that we name PowPeerRank) where f(x) = xn (for some 
n) outperforms the ExpPeerRank rule. 

C. BestPeer 
Bringing this reasoning to the extreme, we can imagine 

to assign the maximum influence only to the best grader for 
each student and no influence at all to any other proposed 
grade. This is the case of another rule we propose, named 
BestPeer. It calculates the grade gi for any student i with 
one of the previous methods and then assigns to each stu-
dent the final grade 𝑔%9 according to the following rule: 

 𝑔′% = 𝐺%,OP?"OM
=→<

?=  (8) 

where the function argmax (argument of the maximum) re-
turns the value j so that  𝑔' is maximized. 
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This method is capable of performing particularly well 
when, for each student, at least one good grader is available. 
Unfortunately, this condition cannot be granted with the 
random assessor-assessee assignment proposed in Equation 
1. So, in the next sub-section, we discuss an alternative as-
signment method that, under certain conditions, can over-
come the limitations of the random assignment. 

D. Smart Assignment 
The randomized assessor-assessee assignment can gen-

erate settings in which some student is assessed by only un-
reliable graders (i.e. students with a low grade). In this case, 
even weighting the grades, the overall peer-assessment per-
formance may be poor. Balancing reliable graders among 
students is a feasible approach to overcome this issue but, 
unfortunately, we have no information about the grades 
when the assessment grid is built. 

To overcome this issue it is possible to initialize the as-
sessment grid based on grades coming from previous as-
sessments. To do that, a feasible algorithm starts with a null 
matrix and initialises its elements according to the follow-
ing equation: 

 𝐴"#$ "(%())&'()),+ &),PO+S(%) = 1  (9) 

for each 1 ≤ 𝑗 ≤ 𝑛 and 1 ≤ 𝑖 ≤ 𝑚 and where rank(i) is the 
position of the i-th student in the student ranking i.e. the list 
of the students ordered decreasingly on the average grade 
obtained in previous assessments. 

Equation 9 does not ensure the fulfilment of the second 
property of assessment grids. For this reason an additional 
check is needed and, if Ai,i = 1 for some i: 1 £ i £ n, then the 
closest column j so that Ai,j = 0 and: 

 ∃𝑧	|	𝐴W,% = 0	𝑎𝑛𝑑	𝐴W,' = 1		  (10) 

is selected and the values of Ai,i and Ai,j are swapped as well 
as values of Az,i and Az,j. In other words, the assessor i does 
not assess himself but the student z assigned to the closest 
performer j that, in return, takes care of evaluating i. 

A second option for optimizing the assessor-assessee as-
signment is to proceed incrementally (i.e., to perform the 
assessment session in m rounds). At the first round, each 
student is randomly assigned just one student to grade. At 
each subsequent round students are ranked in two lists: 

1. list 1 orders students, decreasingly, on the average 
grade obtained in the preceding rounds (it so ranks 
the students basing on their quality as graders); 

2. list 2 orders students, increasingly, based on the av-
erage grades obtained by their graders in the pre-
ceding rounds (it so ranks the students based on the 
quality of obtained grades). 

Then, for the subsequent round, each student from list 1 
has to grade the student from the list 2 with the same rank. 
This ensures that, in each step, the best graders are assigned 
to the students that, in the previous steps, have obtained 
grades from the worst ones. Some additional checks must 
be made to ensure that no student evaluates herself and that 
no student evaluates another student more than once.  

This method has the advantage that it does not need any 
information about past assessments. Conversely, its incre-
mental nature requires that every grade is assigned for a 

given round before starting the next one. This constraint can 
be very expensive, especially in massive contexts, when 
some student may be late in providing grades or may not 
provide grades at all. For these reasons we decided to focus 
our attention just on the first method. 

IV. EVALUATION WITH SYNTHETIC DATA 
In order to evaluate the performance of the defined meth-

ods, we made seven experiments with synthetic data. In all 
experiments 100 students are supposed to have submitted a 
solution to an assignment composed of 10 questions. For a 
correct answer a student gains 1 point while for a wrong 
answer she gains 0 points. The real grade of each student 
is then an integer belonging to [0, 10]. 

Each student has then to evaluate the submissions of m 
other peers. In our model, we suppose that each student i 
with a real grade 𝑔% has probability 𝑔% 10 of marking cor-
rectly each answer of a peer submission. So if the student i 
grades the submission of a student j (with real grade 𝑔'), 
then the proposed grade Gj,i is a random variable so that: 

 𝐺',%	~	𝐵(𝑔', 𝑔% 10) + 𝐵(1 − 𝑔', 1 − 𝑔% 10)	  (11) 

where B(m, p) represents a binomial distribution of m trials 
with probability p. 

Each experiment is made of several iterations. For each 
iteration, real grades are randomly assigned (with different 
probability distributions). Then, the assessment grid is built 
(according to different methods) and the grades matrix is 
randomly filled according to the probability distribution 
given in Equation 11. The final grades are then calculated 
(according to different methods) and compared to real 
grades by calculating the Root Mean Square Error (RMSE). 
The details and the results of each experiment are discussed 
in the next sub-sections. 

A. Binomial distribution of real grades 
In this experiment, the real grades are assigned according 

to a binomial distribution: each student, for each of the 10 
questions of her assignment, has a probability p to answer 
correctly and 1 – p to answer wrongly. In other words, the 
real grade of a student i is assigned according to: 

 𝑔%	~	𝐵	 10, 𝑝 . (12) 

In each step of the experiment a probability p is chosen 
and 1000 iterations are performed. For each iteration, the 
real grades are assigned as described above (with probabil-
ity p). Then a 100´100 assessment grid is randomly gener-
ated according to Equation 1 so that each student evaluates 
4 other peers (m=4). A grades matrix, including all pro-
posed grades, is then randomly generated from the distribu-
tion given in Equation 11.  

For each iteration, the final grade of each student is cal-
culated as the Average of grades proposed by peers (Equa-
tion 2), with PeerRank (Equation 5), with PowPeerRank 
and ExpPeerRank rules (that are special cases of the F-
PeerRank rule described by Equations 6 and 7) and with the 
BestPeer method (Equation 8). In particular, for PowPeer-
Rank we have selected f(x) = x2 in Equation 7 while we have 
used ExpPeerRank as the base method to obtain a first esti-
mation of student grades in BestPeer. 
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Figure 2.  Experiment IV.A: performance in terms of RMSE of all meth-
ods on a binomial distribution of grades with different values for p (prob-
ability of answering correctly a question). 

 For each iteration, the RMSE between final and real 
grades is calculated over the 100 students. The obtained 
values are then mediated over all iterations.  

Figure 2 plots the performance obtained by applying the 
five methods to the defined marking model in terms of 
mean RMSE against the probability p used to generate the 
real grades. As it can be seen both PeerRank and ExpPeer-
Rank outperform the Average method for p > 0.6. Con-
versely, the performance of all methods is quite similar for 
0.5 ≤ p ≤ 0.6 while, for p < 0.5 the best method remains the 
Average.  

Obtained results show that both PeerRank based meth-
ods need p > 0.5 to get any useful signal out of the data. It 
is worth noting that p = 0.5 means that students are answer-
ing (or marking) questions just as well by tossing a coin. 
This means that, in real contexts, assuming that p > 0.5 is 
not a so restrictive constraint. Moreover, as it can be seen, 
PowPeerRank performs a little better than PeerRank while 
ExpPeerRank outperforms both. Instead, BestPeer is better 
than other methods only for p > 0.9.  

The best choice for this distribution of grades seems to 
be ExpPeerRank that ensures, in best cases, a decrease in 
RMSE of about 1 grade with respect to the baseline Aver-
age method. This means that, on average, each student will 
have a final grade closer to the real one of approximately 1 
point over 10. 

B. Uniform distribution of real grades 
In this experiment, the real grades are assigned according 

to a uniform distribution rather than a binomial one: each 
student receives an integer random grade to the whole as-
signment from a minimum min (so that 0 ≤ min ≤ 10) to a 
maximum of 10. Hence the real grade of a student i is as-
signed according to: 

 𝑔%	~	𝑈	 𝑚𝑖𝑛, … , 10  (13) 

where U(S) defines a discrete uniform distribution over S. 
Figure 3 plots the performance, in terms of mean RMSE 

against the minimum grade min, obtained by applying the 
five methods to the defined marking model with m=4 (m 
peers to be graded by each student) and f(x) = x2 for the 
PowPeerRank rule.  

  
Figure 3.  Experiment IV.B: performance in terms of RMSE of all meth-
ods on a uniform distribution of grades with different values for min (min-
imum grade for an assignment). 

Also in this case ExpPeerRank outperform the other 
methods in almost all conditions while PowPeerRank is a 
little more performant than PeerRank. Only for min = 0 the 
performance of all methods is quite the same.  

It is interesting to note that BestPeer behaves better than 
in the experiment described in IV.A, with a RMSE lower 
or equal to PeerRank. The best performance is obtained 
when min ≤ 5 (high variance of real grades) and with min ≥ 
8 (high average real grade).  

This can be explained by the fact that, when there is a 
high variance in student levels, there is a high probability 
that a peer is evaluated also by unreliable graders that affect 
the quality of the final grade in all methods (at different lev-
els) apart from BestPeer where only the best grade is se-
lected. This advantage disappears when min increases be-
cause in that case, proposed grades increase their average 
quality. 

C. Smart assignment and binomial grades distribution 
This experiment replicates the Experiment IV.A with the 

difference that the assessment grid is generated according 
to Equations 9 and 10 rather than to Equation 1. In the 
model, we assume that the average grade obtained in previ-
ous assessments (needed to generate the student ranking) is 
equal to the assigned real grade. This is a simplification that 
supposes that students maintain a constant performance 
across several assignments. Given that, the results of this 
experiment can be considered as an upper bound of the re-
sults obtainable with smart assignment in real contexts.  

Figure 4 plots the performance obtained by applying the 
defined methods to the marking model with random 
(dashed lines) and smart (plain lines) assignment methods. 
Given that the performance of PowPeerRank is quite simi-
lar to that offered by the standard PeerRank method, we 
have removed this method from the plot to maintain the 
readability higher.  

 As it can be seen, with a binomial distribution of real 
grades Average, PeerRank and ExpPeerRank are quite in-
sensitive to smart assignment. Instead, as it might be sup-
posed, BestPeer has a substantial improvement because the 
smart assignment ensures that each student is assessed by 
at least one good grader whose proposed grade is selected 
as the final one. 
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Figure 4.  Experiment IV.C: performance in terms of RMSE of all meth-
ods on a binomial distribution of grades with different values for p and 
different assignment methods (SA stands for Smart Assignment). 

D. Smart assignment and uniform grades distribution 
This experiment replicates the Experiment IV.B with the 

difference that the assessment grid is generated according 
to Equations 9 and 10 rather than to Equation 1, with the 
same assumptions made in Experiment IV.C with respect 
to the average grade obtained in previous assessments. 

Figure 5 plots the performance obtained by applying the 
four methods (also in this case we exclude PowPeerRank 
whose performance is similar to the standard PeerRank) to 
the defined marking model with random (dashed lines) and 
smart (plain lines) assignment methods in case of uniform 
distribution of real grades. In this case, while Average and 
PeerRank result again quite insensitive to smart assign-
ment, ExpPeerRank and (to a greater extent) BestPeer, 
show a good improvement.  

In particular, BestPeer outperforms all the other meth-
ods, especially in configurations with high grades variance 
(min < 5) and high average real grade (min > 6). Only for 
min < 1 its performance is comparable than that of other 
methods. Hence in this case, the best choice seems to be 
BestPeer, whose performance in contexts with a high vari-
ance of student levels is boosted by the smart assignment.  

 
Figure 5.  Experiment IV.D: performance in terms of RMSE of all meth-
ods on a uniform distribution of grades with different values for min and 
different assignment methods (SA stands for Smart Assignment). 

 
Figure 6.  Experiment IV.E: performance in terms of RMSE of all meth-
ods on a binomial distribution of grades with different values for m (num-
ber of assessors per student) and Smart Assignment. 

E. Variable assessors and binomial grades distribution 
The number m of submissions that each student has to 

evaluate is one of the main parameters that must be defined 
to setup a peer grading session. On one hand, this number 
should be kept as small as possible to avoid overloading the 
students, with the risk that they do not respond adequately 
to the exercise providing rough, partial or void estimations. 
On the other hand, this number corresponds to the number 
of assessors for each submission. Taking this into consider-
ation, m should be kept as big as possible to have sufficient 
information to estimate the final grades. 

To determine how the selection of m impacts on the per-
formance of defined methods, we have performed another 
experiment where the real grades are assigned according to 
a binomial distribution with probability p = 0.7 (a reasona-
ble value in real contexts). In each step, the number m of 
assessors for each student is chosen from 1 to 12 and 1000 
iterations are performed. For each iteration, real grades are 
assigned, then an assessment grid is generated according to 
Equations 9 and 10 (smart assignment) so that each student 
evaluates m peers. A grades matrix, including all proposed 
grades, is then randomly generated from the distribution 
given in Equation 11. 

Figure 6 plots the performance obtained by applying the 
five methods to the defined marking model in terms of 
mean RMSE against the number of assessors m. As ex-
pected, the error decreases when the number of assessor in-
creases but the decrease is smoother as m increases.  

With Average, PeerRank and PowPeerRank algorithms, 
the increase in performance after the 4th assessor is negligi-
ble. ExpPeerRank offers good improvement until the 6th as-
sessor while BestPeer has sensible improvements until the 
10th assessor. Moreover, this latter becomes more perfor-
mant of both PeerRank and PowPeerRank starting from the 
12th assessor.  

This fact can be explained by considering that the num-
ber of assignments evaluated by the best graders increase 
when more assessors are added. The impact on rules other 
than BestPeer is limited given that the resulting grades are 
obtained by considering also grades proposed by other as-
sessors while the most positive impact is on BestPeer that 
only considers the grade assigned by the best grader. 
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Figure 7.  Experiment IV.F: performance in terms of RMSE of all meth-
ods on a uniform distribution of grades with different values for m (num-
ber of assessors per student) and Smart Assignment. 

F. Variable assessors and uniform grades distribution 
This experiment replicates the preceding one but the real 

grades are assigned according to a uniform distribution and 
each student receives an integer random grade to the whole 
assignment from a minimum of 6 to a maximum of 10 (i.e. 
min = 6 in Equation 13). 

Figure 7 plots the performance obtained by applying the 
five methods to the defined marking model (with smart as-
signment) in terms of mean RMSE against the number of 
assessors m. Also in this case the error decreases when the 
number of assessors increases and the decrease is smoother 
as m increases.  

It should be noted that the BestPeer method outperforms 
the other methods for m ³ 4. Moreover, for BestPeer, the 
RMSE asymptotically goes to 0 when the number of asses-
sors increase. This is due to the same reasons already ex-
plained in the previous section and the effect is more evi-
dent with this distribution thanks to the high average level 
of the simulated class that results in a high number of reli-
able graders. 

G. Best Peers and support methods 
As described in Section III.B the BestPeer method cal-

culates the final grade for any student with one of the other 
methods, then assigns to each student the grade coming 
from the assessor with the best final grade. In the previous 
experiments we used ExpPeerRank as support method for 
BestPeer. In this last experiment we wonder if ExpPeer-
Rank is the best possible choice, at least in the configuration 
of Experiment IV.B. 

We have so repeated Experiment IV.B only with 
BestPeer adopting different support methods. Obtained re-
sults are plot in Figure 8 against the standard Average 
method. As it might be supposed, ExpPeerRank (the 
method with the best performance in the majority of con-
figurations) seems to be the best choice.  

V. EVALUATION WITH REAL STUDENTS 
To evaluate the effectiveness of the defined methods also 

with real users, we have applied them on peer grading data 
coming from a real on-line course held in Spring 2014 at 
the Open University of Catalonia (UOC) [15].  

 
Figure 8.  Experiment IV.G: performance of BestPeer (BP) with differ-
ent support methods on a uniform distribution of grades with different 
values for m and Smart Assignment (against standard Average). 

The on-line course had 58 students enrolled and was di-
vided in 7 subsequent modules. After having completed the 
study of a module, each student received an invitation to 
answer three open questions. When the answers were col-
lected, each student had to access each classmates’ answers 
and evaluate it according to a 5-point scale (A, B, C+, C-, 
D) before approaching the subsequent module. 

The core of the peer grading component was developed 
in Java and integrated in the UOC learning management 
system. It integrates two external Web survey applications: 
Google Forms to collect the answers to module questions 
and LimeSurvey to let students evaluate peers’ answers to 
module questions. To exchange data between the two tools 
a comma separated value exchange model has been 
adopted and the Super CSV package has been selected to 
deal with such format in Java. 

Table I shows the main statistics collected for each mod-
ule. As it can be seen, the number of active students per 
module (students providing answers to module questions) 
has decreased about 70% over time: from 41 in module 1 
to 12 in module 7 (on a total of 58 enrolled students). De-
spite it may seem discouraging, this result is in line with the 
problematic drop-out rate suffered by on-line courses (the 
mean drop-out ratio at UOC is about 50%).  

Only a part of the active students also executed the peer 
grading task. The second row of Table I reports on the num-
ber of students that, for each module, succeeded in evaluat-
ing (at least some of) their peers. The remaining rows of 
Table I report the mean grade obtained by students for each 
question of each module normalized between 0 and 10. If 
we consider that the three questions are graded separately, 
data for 21 separate assignments is available.  

TABLE I.  MAIN STATISTICS OF THE PERFORMED EXPERIMENT 

Modules 1 2 3 4 5 6 7 

Active students 41 28 23 20 21 18 12 

Peer Assessors 30 24 15 14 16 11 11 

Mean grade (question 1) 7.3 8.0 7.5 7.3 7.8 7.5 7.5 

Mean grade (question 2) 7.0 7.3 7.5 7.5 7.3 7.5 7.3 

Mean grade (question 3) 7.5 7.8 7.3 7.8 7.3 7.8 7.5 
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In the experiment, students were asked to grade all their 
peers. Conversely, in a MOOC peer grading setting, stu-
dents would be asked to evaluate only a small subset of 
other students. In the absence of an assessment made by an 
expert tutor, this peculiarity allows us to calculate the ap-
proximate real grade 𝑔% of a student i as the mean grade 
obtained by her over the whole population of assessors.  

According to [9], we have assumed that the mean of 
many student grades should tend towards the correct peer 
grade, especially for the first two modules where each sub-
mission were graded by 30 (for module 1) and 24 (for mod-
ule 2) peer assessors. 

Starting from such data we have then performed two dif-
ferent experiments as detailed in the next subsections. Once 
the assignment is selected among the 21 available, each ex-
periment is made of several iterations. Given an assign-
ment, for each iteration we have supposed that just m grades 
were proposed (randomly selected among those available) 
for each active student. This allow us to simulate the real 
conditions of a MOOC peer grading task. 

So, for each iteration, the assessment grid is built by ran-
domly selecting m assessors for each active student and the 
grades matrix is filled with grades proposed by that stu-
dents. The final grades are then calculated (with different 
methods) and compared to the approximate real grade (ob-
tained as previously described) by calculating the RMSE. 

The purpose of the experiments is to determine which of 
the defined methods can estimate with better accuracy the 
approximate real grade (obtained by averaging all availa-
ble evaluations) using only a small number m of randomly 
selected evaluations per submission. Considering that the 
approximate real grade is, in turn, an estimation of the real 
grade, we are indirectly finding the best estimator of the 
real grade. 

A. Fixed number of peer assessors 
This experiment is made of 7 steps (one for each module) 

and 21 sub-steps (corresponding to the three questions for 
each module). For each sub-step, 1000 iterations are per-
formed. In each iteration, 4 assessors are randomly selected 
for each submission (m = 4) and the assessment grid and 
the grades matrix are filled as previously explained. The 
dimension of such matrices is equal to the number of active 
students in the related module (from 41´41 in the first step 
to 12´12 in the seventh). 

For each iteration, the final grade of each student is cal-
culated as the Average of grades proposed by selected peers 
(Equation 2), with PeerRank (Equation 5), with PowPeer-
Rank and ExpPeerRank rules (Equations 6 and 7) and with 
the BestPeer method (Equation 8). The RMSE between fi-
nal and real grades is calculated for each iteration over the 
active students.  

Table II summarizes the performance obtained by the de-
fined methods on the experimental data. The reported 
RMSE values are mediated over all iterations for each sub-
step and over all stub-steps for each step. 

As it can be seen both PeerRank and PowPeerRank out-
perform the Average method in all conditions. They show 
a better accuracy in predicting the approximate real grade 
even with a small number of available evaluations for each 
student. Conversely, the performance of ExpPeerRank and 
especially those of BestPeer are worst. 

TABLE II.  PERFORMANCE OBTAINED ON EXPERIMENTAL DATA 

Module 
RMSE per method 

Average Peer 
Rank 

PowPeer 
Rank 

ExpPeer 
Rank BestPeer 

1 1.00 0.96 0.94 1.40 2.13 
2 0.87 0.82 0.81 1.16 1.87 
3 0.88 0.83 0.82 1.13 1.82 
4 0.82 0.77 0.77 1.01 1.80 
5 0.81 0.76 0.75 1.02 1.74 
6 0.80 0.76 0.75 1.07 1.87 
7 0.65 0.61 0.61 0.77 1.49 

Mean 0.83 0.79 0.78 1.08 1.81 
 
This latter result can be explained by the fact that, with 

both ExpPeerRank and BestPeer, the final grade of each 
student is extremely influenced by the grade proposed by 
one grader: the most reliable. This moves the final grade 
away from the approximate real grade obtained by medi-
ating all available evaluations. In particular, BestPeer suf-
fers from an approximation issue too. Indeed, by just con-
sidering the grade proposed by the best grader, the final 
grade results in an integer from 1 to 5 (a point from the 5-
point scale) normalized in the interval [0,10].  

It should be noted that, when the total number of active 
student decreases (as the progressive module number in-
creases), the performance of all methods improves. This be-
haviour is explained by the fact that the number of evalua-
tions used for prediction is fixed (m = 4) while the total 
number of evaluations (used to calculate the approximate 
real grade) decreases. Therefore, the ratio of available data 
over the whole set increases, resulting in better perfor-
mance. 

B. Variable number of peer assessors 
In this experiment the attention is focused just on one as-

signment (i.e. the first question of the first module) but the 
number m of assessors for each submission in increased 
from a minimum of 2 to a maximum of 10. In each step, the 
number m of assessors for each student is chosen in this 
range and 1000 iterations are performed. For each iteration 
the assessment grid and the grades matrix have been gen-
erated as in the previous experiment and the final grades are 
calculated according to the defined methods. 

Figure 9 plots the performance obtained by the five 
methods in terms of mean RMSE against the number of as-
sessors m. As in experiments 5 and 6 (executed on synthetic 
data), the error decreases when the number of assessor in-
creases and the decrease is smoother as m increases. An ex-
ception is BestPeer that has uniform performance regard-
less of the selected number of assessors. This can be ex-
plained through the same approximation issue pointed out 
in the preceding sub-section. 

As it can be seen, both the PeerRank and PowPeerRank 
methods show better performance with respect to the aver-
age aggregation rule. Indeed, the performance gap between 
these methods decreases with the increase of the number of 
assessors i.e. when the quantity of information available to 
the methods becomes closer to the information used to cal-
culate the approximate real grade.  
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Figure 9.  Performance in terms of RMSE of the defined methods on ex-
perimental data coming from the first assignment (module 1, question 1) 
with an increasing number of assessors per student. 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we have proposed different aggregation 

methods based on graph mining techniques for peer-assess-
ment as well as a smart assignment method aimed at bal-
ancing good graders among students. The assumption of 
this work, confirmed by other studies, is that the grade ob-
tained by a student is not only a measure of proficiency in 
a given subject but also a measure of her ability to grade 
correctly. A limitation of this approach is that additional 
factors that may affect the student’s ability to grade (e.g. 
the grader’s tendency to inflate or deflate proposed grades, 
the general attitude to review other’s work) are disregarded. 
Such parameters will be considered in a future work. 

Experimental results with simulated data show that the 
ExpPeerRank method outperforms other methods in most 
configurations (with random or smart assignment) while, in 
particular circumstances (uniform distribution of grades) 
the BestPeer method with smart assignment performs bet-
ter. Experimental results with real data, show instead a pre-
dominance of PowPeerRank over the other methods. Nev-
ertheless, these latter results should be considered only pre-
liminary given that they are calculated against approxi-
mated real grades rather than against grades assigned by ex-
pert tutors.  

This simplification obviously advantages the average ag-
gregation rule over the other methods. Taking this into con-
sideration, the performance achieved by the defined meth-
ods in the experiment with real students can be considered 
as a lower bound to the performance obtainable in experi-
ments specifically designed to assess the reliability of a 
peer grading task. A future experimentation will overcome 
these limitations by also involving expert tutors. 
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