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Abstract—We present a general learning model explaining 
in more depth how we learn (or fail to learn) models and 
theories. It specifically addresses the phenomenon of 
preconceptions introduced by the constructivist pedagogical 
approach. Nature of cognitive conflicts as well as existence, 
birth and resolution of preconceptions are clarified through 
a two-stage model based on the formalization of validity 
conditions of models and theories. Illustration of our 
hypotheses is provided by various examples, from limited-
range models to wide-range scientific theories. Specific 
consequences on research are also discussed. 

Index Terms—artificial learning, learning model, 
preconceptions, metamodel, research modelling 

I. 

II. 

A. 

INTRODUCTION 
This paper presents an original learning model 

characterized by the following elements: 
- it focuses on models and theories as the object of  

learning and/or teaching (i.e. as a specific type of 
knowledge) 

- it reproduces and explains the fundamental 
phenomenon of preconceptions (or mis-
conceptions), i.e. the fact that the learning process 
sometimes fails because a cognitive conflict occurs 
between the new knowledge to be installed and the 
previous knowledge already owned by the learner. 

In other words, we present a model explaining "how we 
learn (or fail to learn) models". The self-referring property 
of the model in this proposal will of course be addressed 
in the paper.  

The paper is structured as follows. 
Section II will precise our definitions of the main 

concepts used in this paper: models (their use, nature, 
scope, relation with learning and knowledge), metamodels 
and preconceptions. 

The next two sections will detail the two levels of our 
original learning model, which respectively concern  
model validity (Section III) and model learning (Section 
IV). 

At last, Section V will discuss the possible application 
of our conclusions in scientific research. 

MAIN CONCEPTS AND DEFINITIONS 

Models and reality 
First of all, let us define what we call a "model". In the 

context of this paper, a model is firstly an object M 
representing another object R we call "reality" (Fig. 1). 
The reality and the model are two objects, of material or 

cognitive nature, that can each be observed in some way 
and that are linked by the following relation: to some 
extent, the model can be used as a substitute (in terms of 
behaviour) to the reality [3] (see also §II.B).  

As an example from the physics domain, a lumped-
element schematic circuit of a power supply is a model 
(M) of this power supply (R). The schematic circuit M is a 
substitute to the power supply R since it can be used to 
predict the values of the electrical variables that can be 
measured on R. 

As an example from the education theory domain, in 
the first half of the XXth century the behaviourist approach 
exposed the idea that a stimulus/response/reinforcement 
loop (M) applied by a teacher should result in a learning 
activity by the student [9]. (The validity of this theory is 
not of concern here, see also Section III.) 

We illustrate this "substitution" capability of a model 
by an arrow as in Fig. 1. 

 

reality model 

 
Figure 1.  

B. 

Any model is linked to a "reality". 

Since the previous definition is very general, let us now 
try to precise what we include as models in this paper. 

Models nature and use (scope of the paper) 
Because they reproduce and/or explain (to some extent) 

reality, models allow us to derive strategies to control our 
environment. This "control" function seems us to be the 
main purpose why humans build models. (For a deeper 
discussion about models, control and learning, we refer 
the reader to [14].) 

In this perspective, a first category of models are 
objects that (in addition to the definition of §II.A) are 
directly "executable" or "computable", i.e. that 
automatically produce output values in response to input 
values. Such a computation is nothing else than a 
simulation of the corresponding reality via the model, an 
operation that gives as result a prediction of the behaviour 
of the reality. A lumped-element electrical circuit is an 
example of such type of models. 

We also include as "models" objects that express one or 
several relations between some sub-elements of a reality. 
The proposal "the Earth rotates around the Sun" 
(classically known as the "heliocentric model") is an 
example of it. Even if they are not directly computable, 
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such models often allow to derive some predictions about 
the represented reality's behaviour, so that the control 
purpose we associated to models remains. 

As a last point, we'll consider here that there is no 
fundamental difference between a model and a theory, a 
theory simply being a specifically complex, coherent and 
widely applicable model [16]. (This last property makes 
already and implicitly appear the interesting concept of 
"applicability range" of a model, which will be the core of 
our discussion in Section III.) 

Accordingly to the above definitions, models we 
address in this paper as objects to be learned vary from 
models with a rather limited range (e.g. electrical 
schematic circuit of a device, block diagrams of all kinds, 
equations and formulas, etc) to wide-range scientific 
theories (e.g. relativity theory, classical or quantum 
physics, etc). 

C. Models multiplicity 
From the above definitions, it is obvious that any model 

has some "properties" in common with the reality it 
represents. More than "properties", we prefer the term 
"behavioural aspects" (or more simply "aspects"), stating 
for an association of output values to input values of an 
object (a model or a reality) in a –at least supposed– 
cause-to-effect link. 

A symmetrical proposal –far less obvious for many 
people– is that a model doesn't possess all the properties 
of the corresponding reality. This fact, explicitly 
confirmed for example in [6], is inherent to the definition 
of a model as a distinct object of the represented reality: if 
the model had all the properties of the reality, it would be 
the reality itself.  

A second argument can be given in reference with the 
control purpose of models (§II.B): simulating a model 
fundamentally consists in obtaining a prediction of the 
reality's behaviour with a given benefit (in terms of delay, 
complexity, real consequences, etc) over the direct use of 
the reality. Such a benefit is only possible, in the principle, 
if the model is different from the reality: using a model 
has only a meaning if this one is discordant with the 
reality on some aspects. 

Our conclusion is that any model is partly identical and 
partly different (in terms of behaviour) of the reality it 
represents, which seems to us the very meaning of the 
relation (the arrow in Fig. 1) between a model and its 
reality.  

As a direct consequence, many different models –each 
capturing different aspects– may always be associated to a 
same reality [16]. This principle is illustrated in Fig. 2.  

As an example, many different electrical equivalent 
circuits can be associated to a same real electrical 
transformer [12]. Similarly, various educational 
approaches (behaviourist, cognitivist, socio-constructivist, 
etc), each with its own benefits, have been followed to 
analyze a teaching situation [9][11]. 

With the concurrent existence of various models for a 
same reality arises the question of the validity of each of 
these models: this is the object of Section III. 

reality

model 1

model 3

model 2

 
Figure 2.  

D. 

E. 

Several models may be linked to a same reality. 

Models, knowledge and learning 
It is important to understand that models, in this paper, 

will play a twofold role in reference to learning: 
- firstly, we'll expose one specific and original 

model to represent (and hopefully to better 
control) the real actions of learning and teaching: 
this model will be the result of our analysis. It is 
composed of two subparts respectively presented 
in Sections III and IV. 

- secondly, models in general will be considered as 
the object (more exactly as one possible object) of 
a learning activity. In other words, models 
addressed in this paper (including the learning 
model we expose) are considered as knowledge.  

Various arguments support this last idea:  
- many examples of models and theories cited in this 

paper are part of usual physics or educational 
theory courses 

- uncomputable models described in §II.B (a relation 
between concepts) correspond to the definition of 
"principles" presented as a specific level of 
knowledge in some taxonomies of pedagogical 
contents [2][10] 

- these taxonomies also cite "concepts" as another 
type of knowledge: we'll precisely mention, in 
§IV.G, that a tight parallel may be made between 
concept learning and model learning 

- Cornuéjols explicitly mentions learning as 
"building models" [5]. 

In such a perspective, we'll limit ourselves from now on 
to models of cognitive nature, i.e. to models that exist (1) 
as ideas in someone's mind or (2) as an appropriate data 
structure and content in an artificial system. Learning can 
then be viewed as the fact, for an individual (let's call it a 
"student"), to gain access to a new model (a new 
knowledge) he didn't possess before; and teaching as the 
fact, for another individual (let's call it a "teacher"), to 
transmit (independently of the way this operation is 
obtained) a given model to a student.  

Hence in the next paragraphs (and more specifically in 
Section IV), we'll particularize the Fig. 2 to a situation 
where different models of a same reality are distributed 
among various individuals involved in a teaching relation. 

Preconceptions 
In order to explain why a teaching/learning activity 

sometimes fails (which is the real situation R we try, as a 
teacher, to better control), educational theory has proposed 
the idea of "preconceptions". 
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In this paper, the term "preconception" states for a 
knowledge (more specifically here: a model) owned by 
the student and acting as an obstacle ("epistemological 
obstacle" [1]) for him to gain access to the teacher's 
model. Oppositely to other knowledge elements than can 
be directly articulated by the student to his previous 
knowledge, in case of preconception the teacher's model 
enters in conflict ("cognitive conflict") with previous 
knowledge of the student that however seemed previously 
efficient to him. To solve this conflict and access higher 
level knowledge, the student must go throughout a 
"rupture" ("epistemological rupture") by destroying in part 
his previous knowledge ("deconstruction"). This rupture 
often appears as a specifically difficult task. 

A very classical example of preconception in physics 
consists in thinking that material objects, in the absence of 
applied forces, spontaneously stop their movement. 
However Newton's law, a very fundamental law in 
physics, oppositely tells that the spontaneous state of an 
object (if no force is applied) is a constant speed [7]. 

As a more local example, we observed repeatedly in an 
engineering school evaluation that several students modify  
the correct result of their calculation (turning it wrong) of 
a RC circuit –one of the simplest electrical circuit– 
because they implicitly think that "the voltage may not be 
negative when the source is always positive". This last 
proposal, which is not correct for the RC circuit, may be 
viewed as a preconception.  

The concept of preconception applies to individual's 
knowledge as well as to scientific knowledge. On the 
scientific side, introduction of Einstein's relativity theory 
or of the heliocentric model (against the geocentric one 
stating that "the Sun rotates around the Earth") may, 
among many other examples, be considered as 
epistemological ruptures. More examples from biology or 
mechanics can still be found respectively in [1] and [7].  

F. Metamodels 
Let us finally introduce the notion of metamodel we'll 

use in further sections. In this paper, we call "metamodel" 
a model representing… models in what they possess as 
generic properties. Since this definition is not easy to 
manage, it can be said that a metamodel is a set of 
proposals about models in general. The elements we gave 
in §II.A to §II.D (example: "a model can be used as a 
substitute to the corresponding reality") are part of our 
own metamodel. 

Figure 3 (to be compared to Fig. 1) illustrates the fact 
that a metamodel (on the right) is the specific case of a 
model having as represented object (or reality, on the left): 
models themselves. 

 

models metamodel

 
Figure 3.  

G. 

A metamodel is a model representing models (note the 
dotted reflexive arrow and the "models" appearing as reality on the left). 

Compared to other models, a metamodel has the 
additional property of being reflexive: it refers (or applies) 
to itself since it belongs to the type of realities it 
represents (models). This specific property is represented 
by the dotted arrow in Fig. 3. 

Structure of the proposed learning model 
The learning model we propose throughout this paper is 

composed of two related subparts or "levels" (Fig. 4): 
- the lowest level (noted MMetaLim) is a metamodel: it 

details what is a model (in general) according to 
our hypotheses. It will be opposed in Section III to 
another metamodel (MMetaBin, §III.A), both of them 
focusing on model validity. 

- the highest level of our model (noted MPrecon and 
presented in Section IV) details the process of 
learning models. Exploiting the metamodel of 
Section III, it presents a coherent set of hypotheses 
about how preconceptions exist, appear, generate 
cognitive conflicts and can be resolved. 

 

models

model
learning MPrecon 

MMetaLim 
see §III 

see §IV 

 
Figure 4.  

III. 

A. 

The two-stage structure of the learning model presented in 
this paper 

LOW-LEVEL SUBPART: THE LIMITABLE 
METAMODEL 

This section focuses on models validity, which is the 
keypoint of the low-level subpart of our learning model.  

The binary metamodel 
From our experience, models and theories (knowledge) 

are often thought to be either "valid" or "invalid", "right" 
or "wrong". This is specifically true in a teaching context, 
in which assessments are often based on binary 
("right"/"wrong") evaluations. This is also the case in a 
scientific context where refuted theories are often 
considered wrong.  

Comments we directly collected from colleagues 
showed us that the behaviourist pedagogical approach, for 
example, has for many teachers a very clearly "wrong" 
status [9][11]. Another evidence is the term 
"misconceptions" used by Espinoza to mention models 
underlying errors made by students in mechanics [7]: the 
prefix used ("mis-") clearly indicates that these models are 
considered wrong. (This last example is specifically 
interesting since knowledge identified as misconceptions 
denotes at the same time historical obstacles of the 
scientific discipline as well as obstacles encountered by 
today students.) 

In this context, learning and teaching appear as the fact 
to replace a "false" knowledge (owned by the student) by 
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a "true" knowledge (initially owned by the teacher). Such 
a vision seems to us very common and refers to a validity 
status of a model that is (1) intrinsic to the model itself 
and (2) of binary nature (the model is either valid or 
invalid). A third property, based on the idea that if two 
models are different they can not be simultaneously right, 
is that (3) for a same reality, only one valid model may 
exist at a time. These three properties about model validity 
define what we call the "binary metamodel" (MMetaBin). 

Figure 5 illustrates this way of thinking: even if 
different models of a same reality may be formulated 
(e.g.: "the Earth is flat" and "the Earth is spherical"), only 
one is valid. 

 

reality 

model 1 

model 3 

model 2 

invalid

invalid

valid

 
Figure 5.  

B. 

C. 

In the binary metamodel, a model is valid or invalid 

Limitations of the binary metamodel 
It is easy to illustrate that the binary metamodel is 

rather poor to describe validity aspects of models and 
theories we use in reality.  

As a very simple example, anyone can experiment that 
most of our daily actions can be very efficiently 
performed considering that "Earth is flat" (which is a 
model according to our definition of §II.B). Hence in 
many circumstances, this model can be thought to be 
valid, at least in its function of reality control.  

Similarly, the idea that the spontaneous state of a 
material object is constant speed (Newton's law, see §II.E) 
doesn't often match our daily experience, unless we live in 
space. 

As a third example from a previous work [12], we 
compared for a same real electrical transformer very 
complex models (finite element method, about 10000 
equations) with far more simple ones (lumped element 
circuits, 10 equations). Predicted electrical values for both 
types of models were identical (within 1%) on main 
electrical aspects, so that both of these models can be 
thought to be equally valid on these aspects. 

These simple examples show that a strictly binary 
metamodel is not able to capture in its whole complexity 
the reality of model validity. Many people will agree with 
this conclusion and will argue that they possess more 
complex metamodels (i.e. proposals about models 
validity) than the strictly binary one. However the 
references we give in §III.A and throughout the paper also 
force to admit that many teaching, learning and research 
activities are implicitly based on this binary metamodel: 
who would admit to say that "Earth is flat" is right? (see 
end of §IV.F for an answer). 

The limitable metamodel 
To clarify this, we formalize a second validity 

metamodel. We call this one the "limitable metamodel" 
(for a reason that will appear later) and note it MMetaLim.  

To any model M (and referring to a reality R), MMetaLim 
associates a validity range describing, by definition, which 
behavioural aspects of the reality R are identically 
reproduced by the model M.  

For our flat earth model for example, this validity range 
is the surface in which you do not measure a difference (to 
a given precision) between the real Earth and a flat Earth 
model. Hence the validity range is the domain in which 
the model may be used to predict the reality's behaviour. 

The validity range hypothesis, which is our key 
hypothesis for the lower level of our learning model, may 
seem obvious. The examples and citations we gave 
previously in this section show it is not the case. Hence let 
us now analyze what differs between the two metamodels. 

The limitable metamodel firstly opposes to the binary 
metamodel in the fact that the notion of validity appears to 
be related, via the model range, to specific aspects we 
want to reproduce at a given moment, to a given precision 
and for a given reality. Validity of a model relates then to 
the use of this model as a substitute to the reality in 
specific circumstances (instead of being related to the 
model itself, see property (1) in §III.A). 

Secondly, the binary validity (property (2) in §III.A) is 
replaced by a multi-valued variable (range): an infinity of 
positions exist between the "pure validity" and the "pure 
invalidity" of the binary metamodel. In the limitable 
metamodel, saying that "Earth is flat" is "valid" or 
"invalid" has in fact no meaning anymore: since any 
model share some properties with the represented reality, 
it is efficient and can be said to be valid; but oppositely 
since any model do not share all aspects of the represented 
reality (§II.C), it could also be said to be invalid. In this 
last vision, however, finding a valid model is impossible 
unless the model is the reality itself. 

This last property allows the association of several 
"valid" (efficient) models to a same reality (which is the 
opposite of the property (3) in §III.A). It is coherent with 
the idea that "Earth is flat" and "Earth is spherical" are two 
fundamentally efficient models, the choice to be made 
depending on the specific circumstances of the targeted 
substitution operation. This situation is the one illustrated 
in Fig. 6 (to be compared to Fig. 5).  

 

reality

model 1 

model 3 

model 2 

range1 

range2 

range3 

 
Figure 6.  In the limitable metamodel, each model has a validity range 

(validity or invalidity do not exist anymore) 

In that vision, learning consists in gathering a library of 
models as vast as possible and to associate to each of them 
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the most appropriate validity range. This is very different 
of the learning vision (§III.A) associated to the binary 
metamodel. 

D. 

IV. 

A. 

Is the binary metamodel "right"? 
Since it opens the way to multiple valid representations, 

adopting the limitable metamodel has very interesting 
implications in learning and research, as we'll see in next 
sections.  

One of the funniest and very coherent one is the fact 
that this adoption does not invalidate the previous, binary 
metamodel (since invalidity does simply not exist 
anymore in MMetaLim): according to the limitable 
metamodel, the binary metamodel may coexist with the 
limitable metamodel but as a poorer representation of the 
real world (or in our vocabulary as a metamodel with a 
smaller validity range). This is specifically true if we try 
to model preconceptions, as we'll see in Section IV. 

The limitable metamodel is moreover reinforced by a 
paradox arising in the binary metamodel itself: if a model 
may only be either valid or invalid and since the binary 
metamodel doesn't capture all the aspects of real models 
validity (§III.B), the binary metamodel, according to 
itself, concludes to its own invalidity. Hence the fact that a 
model is either valid or invalid is… invalid (in the binary 
metamodel). This paradox may be solved by using the 
limitable metamodel, as explained above. 

HIGH-LEVEL SUBPART: THE PRECONCEPTION 
MODEL  

Considered situation 
In this section, we expose how the limitable metamodel 

MMetaLim may help to explain preconceptions in learning. 
In that purpose, we'll consider a typical teaching 

situation with two individuals: a "teacher" and a "student" 
(these names are mostly given to facilitate the 
explanation). As stated in §II.C and §II.D, in the more 
general situation, each of them may have one or several 
models about a same reality R. For the sake of simplicity 
(situations with more models may be explored), we'll 
consider that the teacher owns (i.e. knows) two models 
noted M1 and M2 (M2 being more powerful than M1 to 
control reality). The student owns the same model M1 as 
the teacher, but doesn't know M2. 

 

R

M1 

M2 

M1 

student 
models 

teacher
models 

 
Figure 7.  

B. 

A typical teaching situation 

Binary metamodel vs limitable metamodel analysis 
Let us now discuss the validity of each of these models. 

As we'll see, the result of the analysis fully depends on the 
metamodel we choose to perform it. 

Following the binary metamodel, only one model 
(independently of the individuals) is "right": this is the 
case of M2 in our example, M1 being "wrong" (see Fig. 
8). If we suppose that the teacher acts according to the 
binary metamodel, he should then systematically reinforce 
M1 as wrong when used by the student. In consequence 
the student should be very rapidly discouraged of using 
M1 in response to answers about R from the teacher.  

This representation, in addition to the weaknesses 
already pointed out in §III.B, doesn't seem to be able to 
reproduce the various typical elements of preconceptions 
(cognitive conflict, epistemological rupture, etc).  

 

R

M1 

M2 

M1

student
models 

teacher
models 

invalid

valid

 
Figure 8.  The considered situation analyzed through the binary 

metamodel 

Following the limitable metamodel, the analysis 
significantly differs. In this case, the binary validity status 
disappears and is replaced by the notion of validity range. 
Hence we have to associate such a range to any of the 
above models. 

One more element must be introduced here: a 
distinction has to be made between the "real range" (the 
validity range as defined in §III.C, i.e. a set of behaviours 
that the model and the reality share in common, 
independently of human or artificial individuals owning 
these models) and the "supposed range", i.e. the validity 
range that an individual owning a model associates to this 
model. In the general case, the supposed range 
(individual's representation about the model validity 
range) may differ from the real range. Moreover, it can be 
partly of fully unconscious for his owner. 

In Fig. 9, the validity range associated by the student to 
M1 is noted S1 ("supposed range"). To explain 
preconceptions, we may take the validity ranges owned by 
the teacher as references ("real ranges"), hence we'll 
respectively note R1 and R2 the ranges associated by the 
teacher to M1 and M2 (R2 being wider than R1).   

(In a more general situation, we should also consider 
supposed ranges by the teachers, real ranges existing 
independently of both individuals. This should model, for 
example, that a teacher may be "wrong" –according to a 
binary metamodel–, a situation which does certainly exist 
in the real life. However this more general case is not 
mandatory to explain the principle of preconceptions by 
the student.) 
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R

M1

M2

teacher
models 

M1 

student  
models 

range R1 

range R2 
(>R1) 

range S1 
(>R1) 

 
Figure 9.  

C. 

D. 

E. 

The considered situation analyzed through the limitable 
metamodel 

Nature of preconceptions 
Here comes our main hypothesis about preconceptions: 

the nature of a preconception consists in the fact that, for a 
same model M (M1 here) referring to a same reality R, the 
student validity range ("supposed range") is wider, on 
some behavioural aspects, than the teacher validity range 
("real range"). In other words, a preconception simply 
consists in the fact that the student has a too wide idea of 
the applicability conditions of the model he already owns 
(compared to the teacher's vision taken as reference, see 
Fig. 9).  

We will now show that this hypothesis, although very 
simple, appears to be powerful to explain preconceptions 
associated to the process of learning models and theories.  

Cognitive conflict and epistemological obstacle 
Let us first explain how this hypothesis well reproduces 

the idea of cognitive conflict by the student. As we'll see, 
we must consider a teacher acting accordingly to a binary 
metamodel. 

Suppose the teacher questions the student about R. Two 
situations may be distinguished: 

- the question only concerns behavioural aspects of 
R that are inside the R1 range 

- the question concerns behavioural aspects of R that 
are outside R1 (but inside S1 and, for the sake of 
simplicity, inside R2) 

In the first case, the M1 model appears to be fully 
operational: by definition of the real validity range, M1  
correctly predicts the behaviour of R inside R1. Moreover, 
M1 and M2 may not be distinguished, as long as they are 
used inside the R1 range to predict the behaviour of R. 
Hence, although the teacher uses M2 (his "right" model 
about R) and the student uses M1, the answers given by 
the student according to M1 will meet the teacher's 
expectations.  

As a consequence, the teacher won't detect that the 
student uses M1, hence will (unwillingly) reinforce, by its 
positive evaluation, the student in his idea of using M1 in 
relation to R. 

Oppositely, suppose now the teacher questions the 
student concerning aspects of R that are outside R1: the 
student will continue to use M1 (since the aspects are 
inside S1) and the teacher will again use M2. This time, 

the answers of the student and of the teacher will differ, 
hence the student's answer will be evaluated as wrong by 
the teacher. 

In this situation, the student will see the validity of his 
unique model, previously "confirmed" by the teacher, 
suddenly turn to "right" from "wrong". This moment will 
certainly be very disturbing for the student because of the 
uncoherent message delivered by the teacher about M1. 
We interpret this moment as a cognitive conflict in 
student's mind, which gives to this concept a very 
formalized explanation. 

Moreover we interpret the fact that the M1 model 
always was previously evaluated as right, as an obstacle, 
for the student, to access another model about the same 
reality. This obstacle well matches, in our vision, the idea 
of epistemological obstacle often cited about 
preconceptions. However the valid status of M1 acts as an 
obstacle only in the binary metamodel. 

As a conclusion, we may note that the cognitive conflict 
and the epistemological obstacle only exist if the student 
and the teacher both think to model validity in terms of the 
binary metamodel. 

Origin of the preconception: implicit generalization 
process 

A complementary hypothesis about the origin of 
preconceptions well matches the previous ones: the 
supposed validity range is too wide because it is the result, 
by the student, of an "inappropriate implicit 
generalization".  

This hypothesis consists in saying that when a teacher 
presents or uses a model, he focuses in many cases on the 
model itself, without discussing clearly its validity range. 
(From our experience, the model and the reality are even 
often not distinguished at all, the model being presented as 
the reality itself). Since the limits of the validity range are 
defined by discrepancies which are not shown or 
discussed, it is logical to think that the student implicitly 
associates a too wide (supposed) validity range to the 
presented model. Since this range is inappropriate and its 
association implicit, we call this process "inappropriate 
implicit generalization". 

This process also corresponds to the situation where 
any individual, performing a set of practical experiments 
within an unconsciouly restricted range, always found a 
good agreement between the model and the represented 
reality. The experiments only showed that the model is 
efficient within the tested range but since all experiments 
were positive and the range was unconscious, the 
individual may think that the model is always valid. 
Hence he associates a too wide supposed validity range 
compared to the model's real range.  

As an example, we think that Einstein's relativity theory 
or quantum physics (M2) are difficult to access because 
classical physics (M1) is "valid" in all the daily life 
experiments we perform. Since discrepancies between 
classical physics and these theories concern domains far 
beyond our daily experience, we implicitly think (and this 
seems confirmed everyday by our interaction with our 
environment) that classical physics is "always" valid. This 
results in a cognitive conflict (see §IV.D) when Einstein's 
relativity or quantum physics are presented to us for the 
first time.  

iJET International Journal of Emerging Technologies in Learning -  www.i-jet.org 6



HOW DO WE LEARN MODELS? INTRODUCING THE SUPPOSED RANGE VS. REAL RANGE HYPOTHESIS 

The example of Newton's law unmatching our daily life 
experience (§II.E) may be explained on the same basis. 

F. 

G. 

V. 

A. 

B. 

Resolving the preconception: model range limitation 
Based on the previous elements, resolving the 

preconception in itself should simply consists, for the 
student, in rewriting (and more specifically limiting or 
reducing) its supposed range.  

When the discordance between the supposed range and 
the real range is discussed explicitly, there is in general no 
difficulty for the student to perform this step (as we have 
tested it). This in turns allows the student to access the 
higher level of knowledge of the teacher (M2), which 
often then simply appears as a superset of the previous 
knowledge (M1).  

The main difficulty related to preconceptions appears to 
be the fact that this discordance has firstly to be identified 
between the teacher and the student representations. This 
identification may be made difficult by the fact that the 
teacher representations (models, metamodels and ranges 
he owns) may be partly unconscious for the teacher itself. 

In case of a detected preconception, two levels of 
intervention may be considered for the teacher. A first, 
local level consists in making the student unconsciously 
limit his supposed range of a given model M1, for 
example by confronting him with a discrepancy of his 
model with the reality within his supposed range (but 
outside the real range of the concerned model). This 
should make the student access more easily to M2, 
without requesting that he integrates the limitable 
metamodel. 

A second, global level of intervention consists in giving 
him conscious access to the limitable metamodel in itself, 
in which cognitive conflicts do not exist anymore (since 
they are explained and can be explicitly solved by limiting 
the supposed range). This can be initiated, for example, by 
exposing the limits of the binary metamodel, as we did in 
§III.B. 

In any of these cases, the process to follow for the 
student is twofold: limiting the previous model (M1) 
supposed range and develop a new model (M2), with its 
own supposed range. The limitation operation, explicitly 
appearing in the MMetaLim metamodel, is precisely the way 
the student may integrate both levels of knowledge 
without contradiction: Earth may not be flat and spherical 
at the same time, up to the moment we realize that a very 
limited area of a sphere may be viewed as being flat. 

Note that by limiting the supposed range of his previous 
model, the student must "deconstruct" in part his previous 
knowledge (as identified previously about pre-
conceptions). It appears however that this part is the 
validity range of the model, not the model itself.  

A parallel with concept learning 
Besides models, other types of knowledge do exist, 

among which concepts [2][10]. It can be shown that 
concepts, to some extent, may be structured as an 
association between a label and a set of properties, exactly 
as a model is associated to a validity range [13].  

This formalization makes appear a very tight link 
between those two types of knowledge, by the fact that the 
high level subpart of our model (MPrecon) also applies to 
preconceptions associated to concepts. This introduces an 
original and fundamental relation between concepts and 

models (as knowledge and learning objects) that we think 
worth being mentioned and explored further.  

APPLICATION TO SCIENTIFIC INVENTION 
This section discusses consequences of the MMetaLim and 

MPrecon models when specifically applied to scientific 
theories.  

A parallel between learning and invention 
The previous sections detailed a two-level model that 

facilitates individual learning: knowing that a cognitive 
conflict may (sometimes) be solved by limiting the 
validity range of his own previous knowledge appears to 
us as a very explicit and powerful learning strategy (which 
can be classified in the domain of metacognitive 
knowledge [2]). 

Several authors consider that a parallel exists between 
individual learning and scientific invention. Among 
various examples, we already cited Espinoza [7], or the 
fact that "epistemological ruptures" may be identified in 
learning as well as in scientific research [1]. Clement 
explicitly cites: "if research can be viewed as creating 
public knowledge, learning can be viewed as creating 
private knowledge [4]. Moreover, these two processes 
may be very explicitly shown as being two variants of a 
unique "knowledge creation" process [14]. 

One question then arises: are our previous conclusions, 
developed in a context of learning or teaching, applicable 
in research? Would it be possible to consciously "limit" 
scientific theories (as we previously "limited" student 
models) to access higher level knowledge? 

Supposed range limitation as an explicit  research 
strategy 

We think that many scientists act according to a binary 
metamodel, or more often to an unformalized mix 
between the binary and the limitable metamodels. 

Very often indeed, science is presented as based on the 
fact that a model (or theory) is considered valid up to the 
moment an experimental discordance occurs with this 
model, which then has to be refuted. As already pointed 
out, the refutation operation is presented as a rejection of 
the model itself, which then appears to be "wrong". 
Examples of this vision may be found, at least in part, for 
example in [7][9][11][15][16].  

Rejecting the model itself in case of experimental 
discordance reveals an underlying binary metamodel and 
leads to the loss of this model efficiency (existing inside 
its real range). This often results to creating various 
"schools", presented as being not compatible, inside a 
discipline. The story of educational science, in which 
introspection, behaviourism, cognitivism, socio-
constuctivism have succeeded to each other (alternating 
from "inside" analysis to "outside" analysis) is a typical 
example of it [9][11]. 

Alternatively to rejecting a model or theory in case of 
discordance, we may instead consider, as in a teaching 
situation, that an experimental discordance should lead us: 

- to restrict the (supposed) validity range we 
associate to the concerned theory 

- to try to develop a new theory, with a wider 
validity range, in order to integrate (i.e. reproduce) 
the new experimental observation. 
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The main differences with the binary metamodel 
approach are that the previous model remains fully "valid" 
(but its applicability is now better known) and that it is not 
thought incompatible with the new model to develop.  

This vision of the scientific invention process is 
illustrated in Fig. 10, which is issued from Fig. 9 (learning 
and teaching) with only minor adaptations: 

- the "student" is replaced by the research 
community, owning models and theories that are 
the state-of-the art knowledge. This community 
interacts with the reality (R in the figure). 

- the "teacher" does not exist as a human but 
represents the future models and theories (with 
appropriate validity ranges) to be discovered. 

In Fig. 10, limitation of the supposed range S1 (relative 
to state-of-the-art knowledge M1) is seen as an enabling 
step to access future knowledge (R1, M2 and R2), which 
is not thought to be incompatible with state-of-the-art 
theories. 

 

R

M1

M2

future 
knowledge 

M1 

state-of-the-art 
knowledge 
(researcher 

models) 

range R1 

range R2 
(>R1) 

range S1 
(>R1) 

 
Figure 10.  Transposition of the learning/teaching process (according to 

the limitable metamodel) to research 

In some cases, we may even think that the new M2 
model could be found simply by combining appropriately 
limited "concurrent" models which previously existed in a 
discipline. This idea has been retrieved in Lerot [8] for  
the field of linguistics. This is also the way we followed to 
integrate the behaviourist and cognitivist approaches in a 
unique and powerful pedagogical model [14]. 

Reviewing past and present models of a discipline in 
order to explicit their validity ranges (and limit these 
ranges when requested) then appears to be a powerful way 
to overcome epistemological obstacles and create new 
knowledge. 

It can be thought as being exactly the same cognitive 
operation than the one performed by a student to solve a 
cognitive conflict. 

CONCLUSION 
We presented a general learning model explaining 

preconceptions (relative to models and theories) in many 
of their various aspects. This model relies on a discussion 
about model themselves that led us to distinguish between 

two visions about model validity: the binary metamodel 
and the limitable metamodel. 

The limitable metamodel appears to be more powerful 
to describe reality, and more specifically allows to derive 
an explicit strategy (i.e. supposed range limitation) to 
overcome epistemological obstacles, in individual 
learning as in scientific invention. 

We think that the elements we developed should help 
students, teachers and researchers: (1) to better understand 
the validity conditions of their models and theories, (2) to 
learn more efficiently by providing a clearer view about 
what preconceptions are, and (3) to better create new and 
more powerful models and theories by bringing explicit 
and conscious strategies to resolve preconceptions. 
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