
STUDTEST – A PLATFORM SUPPORTING COMPLEX AND INTERACTIVE KNOWLEDGE ASSESSMENT

StudTest – A Platform Supporting Complex and
Interactive Knowledge Assessment

doi:10.3991/ijet.v3i1.722

V. Glavinić, M. Čupić and S. Groš
University of Zagreb, Zagreb, Croatia

Abstract—This paper describes the model and prototype
implementation of a knowledge assessment framework
based on problem management components. In order to
support student testing with complex problem types and
enable usage of rich graphical user interfaces for solution
entry, we have developed an e-examination model in which
the core concept is a component that can generate complex
questions and evaluate students' solutions with additional
explanation generation, which we named prlet. The
respective system implementation is described, which can
operate under heavy loads.

Index Terms—authoring tool, e-learning, knowledge
assessment

I. INTRODUCTION
Computer based systems for supporting and enhancing

faculty courses are nowadays increasingly used, some of
the more significant examples being [1], [2], [3].
However, since the main goal of those systems is to be
comprehensive, in a way that offers capabilities for course
organization, course material repositories and student
management and knowledge assessment, some of those
capabilities are not worked out as they should be, which
introduces limiting factors for their usage. One notable
representative is the assessment of students' knowledge,
which is typically based on quizzes with limited
capabilities; in the university setting quizzes are often
implemented as multiple choice questions [15], [16], [17].
In this paper we describe an open framework based on
portable technologies and designed with extensibility in
mind, specialized for assessment of students' knowledge.
This framework heavily relays on the concept of prlets
(pronounced as "pearl-ets"), a concept introduced
following the one of servlets, today widely accepted and
used as a core Java based technology [4] for Web
applications, and standardized by Sun [5]. A similar
approach is under development at Ramapo College of
New Jersey, targeting the design of more-than-usually-
capable problems known as "problettes" [6], which can be
used in most Java enabled Web browsers in the form of
Java Applets.

This paper is organized as follows. In Section 2 we give
an overview of typical quizzing capabilities offered today.
Section 3 provides an overview of practical considerations
on quizzes and tests in general. In Section 4 we introduce
the model of StudTest, the system being built around the
prlet concept, and briefly describe its prominent
components. In Section 5 we present our prototype
implementation of StudTest framework and discuss it
briefly. Section 6 presents conclusion and future work
directions.

II. QUIZZES OVERVIEW
Since the problems of which quizzes are composed are

the core of knowledge assessment, in this section we
describe typical problem capabilities offered today
regarding this issue. We analyze four factors describing
each problem: auto evaluation capability, dynamics
capability, presentation randomization capability, and
multi-technology presentation capability.

Auto evaluation capability means that a problem can
automatically evaluate student answers and determine
their correctness. Representative of problems lacking this
capability is the "essay-like problem", where students
write natural language answers. Conversely, in "ABC-type
questions", possessing this capability, the correct answer
is known in advance by the system. Some problems where
students must enter textual answer can even have this
capability, although in a limited sense, if the answer is
constrained either to only a few predetermined words or
even to multiple words if students are required to select
the correct one. In the former case, the words can thus be
verified by means of regular expressions, albeit this
approach has its issues regarding synonyms, typos etc. In
the latter one, it should be noted that a student's recall
capabilities are however dominantly checked while her
knowledge only in a lesser extent.

Dynamics capability discriminates problems that can
utilize some form of template for question generation vs.
problems having statically preloaded question texts (and
depending on problem-type possible answers). For
example, typical ABC questions supported in many
popular e-learning systems do not possess this capability
as question texts and possible answers must be preloaded
by a human. On the other hand, they have presentation
randomization capability, meaning that the same question
will (usually) not be presented in the same way to two
different students, e.g. offered options will have a
randomized order of appearance. The simplest form of a
problem having dynamics capability is the one that can be
stated in a pseudo-language as "What is the result of
addition of {$a} and {$b}", with the correct solution
given as "{$a} + {$b}" and constraints like "a, b are
integer in [0, 50]". A more advanced dynamics capability
is associated with problems capable to dynamically
generate multimedia objects and incorporate them as part
of questions (e.g. per student images).

Multi-technology presentation capability means that a
problem can be presented to a user by a variety of
technologies, e.g. through some local windows based
application, through a Web browser, through a cell-phone,
etc. This factor is also important since it determines how
the user can answer a question (by clicking/selecting, by

iJET – Volume 3, Special Issue 3: "ICL2008", December 2008 33

http://dx.doi.org/10.3991/ijet.v3s3.722�

STUDTEST – A PLATFORM SUPPORTING COMPLEX AND INTERACTIVE KNOWLEDGE ASSESSMENT

entering some text/number or perhaps by drawing). It
should be noted that this capability is a widely lacking
one.

There are also some important factors concerning
quizzes themselves as the following list of desiderata
suggests. E.g. what problems will the quiz be composed
of, how many questions will be asked, will (in)correctness
in answering a previous question influence the selection of
the next one? All of these issues point to a common factor
– adaptability, itself opening the issue of its
implementation mechanism. Namely, adaptability can be
based on some simple algorithms or on more complex
ones relying on methods from the AI field.

Taking into consideration the range of the above issues,
we chose not to fix any of them, but to build a framework
that should be capable of supporting all of them. Since
quizzing represents only one form of testing students'
knowledge, in the remainder of the paper we will be using
the more general term of "tests".

III. PRACTICAL CONSIDERATIONS
In order to devise an effective and efficient assessment

system, besides the problems themselves, there is a
number of other considerations to be analyzed resulting
from real system usage (of which we have some
experience, working with simultaneous groups of over
120 students, and a total course population of over 1100
students).

First of all, security is an important issue. This tackles
the question of who will be able to access the tests and
when. If testing is used in a supervised way for the whole
student population enrolled in the course, which is
subdivided into smaller groups at a time, what is the most
likely situation (e.g. because of the limited number of
available computers), care must be taken to disallow
access to tests for students not under staff supervision.
Presently this is typically accomplished by password
protection (password being communicated to students
present in the examination room). To disable password
leakage to outdoor students (e.g. through cell-phones), IP
based control can also be utilized, and passwords can be
changed.

Course policy is another issue that should be taken into
account. A typical example is a policy stating that "A
student cannot get test X, if she has not passed test Y", or
"A student must pass test X, where the number of attempts
is unlimited." Also, some courses can have the following
policy: "A student can solve test X as many times as she
wants; we will grade her by her last attempt" (which is
commonly used when trying to ensure that the student
effectively learned the course material). Another example
of course policy is: "Test X can be taken for no longer
than 15 minutes."

The last issue to be mentioned is scalability and heavy
load handling. Here the system must be correctly
dimensioned, so that it can handle a large total number of
users (e.g. in the order of thousands). However, depending
on specific course organizations, situations can arise
where many of the students will use the system
simultaneously during time-constrained testing scheduled
at fixed times, resulting in heavy peak-loads. In such
conditions it is critical that the system insures small
response times. This can be achieved in two ways: either
by building a clustered system with load-balancing

support (this being more expensive), or by building a
system based on asynchronous operations that can
postpone less important operations during heavy load
periods (this being more acceptable in financial terms).

In order to offer both solutions, we have defined a
framework that can easily be clustered, and that is based
on asynchronous operations.

IV. FRAMEWORK MODEL
To facilitate the implementation of a variety of

possibilities and capabilities as listed in Section 2, we
have defined the concept of prlet, and constructed the rest
of the framework to be a prlet container – a component
based environment that executes prlets and supports
pluggable objects. Prlets are intended to represent
pluggable components, which have public names and can
be globally referenced thus making them easily sharable.
They also contain the complete logic needed for problem
editing, instantiation, and possibly evaluation. This
framework operates with several categories of objects, as
follows.

A. Framework Core Elements
The framework core elements provide the basic

functionality for test modeling and problem
representation. They include the following ones:
TestDescriptor, Test, TestInstance, ProblemType,
ProblemRenderer, ProblemGenerator, ProblemEditor,
ProblemInstantiator and ProblemEvaluator, see Figure 1.

TestDescriptor is the description of a test and enables
selection and inclusion of container supported
mechanisms, which are dynamically discovered by active
plug-in examination. It enables the inclusion and
configuration of available security constraints as well as
the TestController (determining e.g. whether the test is
adaptive and which problems are to be included) and
TestGrader (determining the score assignment policy)
components.

Test is a wrapper built for each single user. Test can be
visualized as a folder containing all user's attempts to
solve a specified TestDescriptor.

TestInstance is a concrete test presented to the user. For
each user and each TestDescriptor, TestInstances are
grouped into collections by means of Test.

ProblemType provides the user the mental model of a
problem. Typical problem types include the following
ones: single-correct-ABC-question, multiple-correct-
ABC-question, input-text/number-question, input-list-of-
text/number-question and CustomProblemPanel. The
latter problem type is defined in order to support problems
to be presented only in a graphical user interface, and
must offer rich tools for solution entry e.g. by drawing.
Within the StudTest framework we decided to separate
this information from the prlet itself, in order to detach
type presentation from problem logic issues, leaving only
the latter as part of a prlet. This separation also enables the
implementation of multi-platform presentation capability.
Namely, when the user client contacts StudTest, as a part
of the handshaking process it must send a Technology
identifier telling StudTest what technology for test
presentation the client supports. Basing on this parameter,
StudTest can then select the appropriate ProblemRenderer
component for each ProblemType. This component
possesses the information on how to present the user the

34 http://www.i-jet.org

STUDTEST – A PLATFORM SUPPORTING COMPLEX AND INTERACTIVE KNOWLEDGE ASSESSMENT

given problem type applying her technology, which is
notably most often HTML, where the
CustomProblemPanel type can easily be supported by
means of Java applets.

Hence, ProblemRenderer is a component used for the
presentation of a problem of a specified type using the
selected technology. Thanks to this separation, in order to
add support for new technologies, all that is required is to
implement an additional set of renderers, while prlets
won't be aware of the change.

Within this context the prlet is an aggregated
component composed of the following components: a
ProblemGenerator, one or more ProblemEditors, a
ProblemInstantiator and a ProblemEvaluator, see Figure 2.

ProblemGenerator stores the basic information on a
prlet i.e. its public name, its problem type and whether or
not it can automatically evaluate answers.

ProblemEditor is a component allowing customization
of a problem template upon which concrete questions
(later titled ProblemInstances) are subsequently created.
ProblemEditor includes a supported technology identifier.
Namely, as the main concern of knowledge assessment
systems should be a wide range of supported technologies
for problem presentation, editing of problem template
parameters can be supported in a smaller range of
technologies of which standard HTML should be
mandatory. Hence, for each technology a new editor must
be written.

ProblemInstantiator is a component in charge of
concrete problem generation, based on current parameters
of the problem template. Most of the power of the
described framework lies exactly here: for problem
instantiation we have separate components which can use
anything they need (e.g. communicate with other servers
on the Internet, use Web services for help, etc.) in order to
create new problem instances. Since ProblemInstantiator
knows the type of the problem it creates, all necessary
data imposed by that type contract will be stored in the
ProblemInstances repository.

ProblemEvaluator is a component that evaluates and
generates comments on a user solution, determines its
correctness using a predefined measure, and generates the
correct solution if this is computable/supported and the

user provided no correct answer. Due to this responsibility
division, evaluators are able not only to implement
complex algorithms themselves, but also to use other
resources for evaluation purposes, such as contacting
other servers, to use clusters prepared for the required
calculations, etc.

For each problem type there is a mandatory interface
that must be supported by all ProblemType
implementations, consisting of methods for obtaining user
help, explanations generated during the evaluation process
and information on the correct solution. If it is available
(i.e. has an evaluator generated one), and unique (i.e. if
more correct solutions exist), we define mechanisms for
presenting only one, since there exist situations where the
number of correct solutions can be infinite.

Many of the above mentioned components use private
repositories for information storage. The StudTest model
defines Repositories as a name-distinguished collection of
Repository objects. Each Repository object contains two
separate containers: KeyRepository and
AttachmentRepository. KeyRepository is a collection of
key-value pairs, where keys are textual objects, while
values are arrays of bytes hence enabling storage of any
content type. AttachmentRepository is a collection of
name-distinguished attachments, each having a name,
mime-type and content in form of an associated byte
array.

B. Other Framework Elements
Beside the above core elements of the framework

directly associated either with tests or with problems,
components for enforcing test security constraints and
course policy, management of examination process and
test instance grading complement the whole picture.

TestStartCheckers are components for enforcing both
test security constraints and course policy. These
components can at TestDescriptor creation time be
associated with it by the person creating the test, and
configured accordingly. The most important method these
components provide is isStartAllowed, which checks
whether the user satisfies its constraints and subsequently
grants permission for test start. If working with more than
one TestStartChecker, all of them must be satisfied for a
successful start. Foreseeable applications for checkers are
starting: from an allowed IP address range, after a required
password is entered, at a specified time frame, during a
predefined interval after the supervisor explicitly enabled
start, only if other test prerequisites are fulfilled (e.g.
passed other tests), etc.

During the examination process, other components
titled TestSupervisors are used for examination process
supervision. They can be associated with TestDescriptor
by a person creating the test and configured accordingly.
These components have two tasks: to supervise the
process of test writing, and to generate status information

Figure 1. StudTest core objects.

Figure 2. Overview of prlet structure and other associated elements.

iJET – Volume 3, Special Issue 3: "ICL2008", December 2008 35

STUDTEST – A PLATFORM SUPPORTING COMPLEX AND INTERACTIVE KNOWLEDGE ASSESSMENT

for the user. Foreseeable applications for the supervisor is
the restriction of time within which the test must be
solved, informing the user of the time remaining, etc.

The component in charge for management of the
examination process, i.e. the examination workflow, is
TestController. There can be many TestControllers
plugged in a system, but during TestDescriptor creation,
the person defining it must select one of the available
components and configure it accordingly. TestController
determines what is to be presented to the user and when.
These decisions can be made dynamically. Namely, the
first time the user accesses her test, the selected
TestController is requested to determine what question(s)
are to be presented. When the user solves these questions,
TestController is again requested what to do next. Thus,
depending on the TestController implementation various
scenarios can be generated, ranging from simple quizzes
determining all of their questions on the first call and up to
adaptive intelligent tests asking only the first batch of
questions, analyzing the evaluation results, asking
additional questions taking into consideration these
results, etc.

When test writing is done, it remains to calculate the
total score. Recognizing the fact that this is a very
sensitive area, we decided to model this process with an
additional component named Grader. During the
evaluation of user solution correctness, ProblemEvaluator
assigns a correctnessMeasure parameter as a value in the
interval [0, 1], 0 being totally wrong and 1 being
absolutely correct. Also, during the process of test writing,
the user can be offered to either enter her
confidencyMeasure, a number in the interval [0, 1], or that
the default value of 1 is used (the former being preferred).
Based both on the parameters correctnessMeasure and
confidencyMeasure and the information whether the user
has solved the question or left it unsolved, various grading
strategies can be adopted e.g. positive/negative score,
scoring proportional to correctness and confidence, etc.

C. Framework Helper Elements
By analyzing many university courses and problems

suitable for student knowledge assessment, we discovered
the following fact: within a given course many questions
can be stated having in mind very few course-related
concepts whose representation is typically rather complex.
To illustrate this, let us imagine a Computer Networks
course. A number of questions can be stated beginning
with: "A computer network is shown on Figure 1. How to
...". However, generating an image which shows a
computer network, and includes symbols for routers, hubs,
switches, servers and (regular) computers, determining
where and how to place each component is not a trivial
task at all. This is the main obstacle in the creation of new
problems, especially dynamic ones, where each student
can be given her own network. In order to foster the usage
of computer generated problems we have provided a
component-based facility that can alleviate these
problems. The general idea is to introduce a set of
components called Helpers, which can produce the
required multimedia content (most often images), based
on given parameters. In the case of StudTest, these
components have direct access to the allowed
ProblemInstance repository content and can generate the
requested content based on the parameters found in the
repository. On the other hand, ProblemInstantiator knows

what helper it will use, and from the helper contract where
it must leave the necessary data. During the instantiation
process, ProblemInstantiator has the facility to include the
helper reference, which will than be executed during the
problem presentation phase. Within an HTML technology
context, this reference is rendered as an IMG tag, which
causes the browser to make an additional request to the
server, in turn starting the helper that generates the
requested content and eventually returns it to the client.

V. FRAMEWORK PROTOTYPE IMPLEMENTATION
We implemented the StudTest framework outlined in

Section 4 in the Java programming language. Java
technology was chosen for two reasons: first, thus far only
Java offers a stable and portable platform for application
development. Because of its broad acceptance and
existence of Virtual Machine implementations for almost
all widely used operating systems, Java is definitely the
only optimal choice. The second reason is the fact that we
wanted to support graphically rich problems with complex
user interfaces and complex solution entry methods.
Considering the trends to move assessment systems to the
Web and HTML, again the only portable platform is
offered by Java Applets [7]. An additional reason is the
fact that in order to support dynamic problems, some kind
of scripting language is needed. Although the language of
choice for such purposes is nowadays JavaScript, it is not
a full-fledged OO language as it has never been meant to
be such but only a scripting language for client side simple
evaluations and event handling. Thus we have based all of
our "scripting" needs on the regular and widely accepted
OO language with modern language constructs and built-
in support for concurrency [8].

Our implementation of the StudTest framework is
illustrated in Figure 3. As it can be seen, the
implementation is a standalone module relying on a
database for data persistence (although it does not have to
be a relational database, thanks to the persistence
virtualization layer, see Figure 4), and provides its
services to clients through developed connectors.
Currently only one connector is implemented – the
TCP/IP based binary connector with connection pooling.
This was done to improve performance. However, other
connectors are under development as well, one of which is
the Web Services connector to expose StudTest
functionality through Web Services over HTTP.

Since our default persistence storage is MySql [9],
which is a relational database management system, we
needed an appropriate object-relational mapper. Instead of
implementing this from scratch, we decided to use
Hibernate 2 [10], which is a wide accepted O/R mapper
for Java.

To allow an easier system distribution and to enable a

Figure 3. StudTest model implementation.

36 http://www.i-jet.org

STUDTEST – A PLATFORM SUPPORTING COMPLEX AND INTERACTIVE KNOWLEDGE ASSESSMENT

better peak-load handling, most of StudTest operations are
implemented as asynchronous ones, while the
communication with the components is hidden behind
suitable interfaces, which allows an easy component
replacement/reimplementation. Most notably, there are
two distinguished queues: the ProblemInstantiation queue
and the ProblemEvaluation queue, both being
implemented as priority queues. When there is a need to
instantiate problems, the process is not started
immediately; instead, the instantiation request is added to
the ProblemInstantiation queue. Similarly, when there is
need to evaluate a problem instance, the request is added
to the ProblemEvaluation queue. During system setup, the
configured number of InstantiatorWorkers and
EvaluatorWorkers is started. These workers continually
read requests from appropriate queues and execute them.
When a large number of requests is generated, they will be
processed gradually, and the system will continue to
function normally instead of collapsing.

This design can also support scenarios of primitive and
dedicated clustering configurations, where both queues
can be exposed over TCP/IP connectors, and in which
additional StudTest systems can be setup and dedicated to
execution of instantiation and evaluation requests, while
the main StudTest server could handle examination
workflow operations and the users answer storage. Even
more, since communication with Helpers also happens
through well-defined interfaces, it is possible to setup
additional systems for Helper execution. This is especially
important since Helpers can consume large amounts of
memory, e.g. during generation of multimedia contents.

A. Implemented Components
We have so far implemented a number of components

extending system capabilities, as circumstances required
to cover the needs of two large courses being taught at the
University of Zagreb, Faculty of Electrical Engineering
and Computing (viz. Digital Electronics [13] and Digital
Logic [14]); these include TestStartCheckers, a
TestSupervisor, a TestGrader and a TestController.

The TestStartCheckers we have implemented are the
following: QueueStartChecker (requires student to register
for test and provides simultaneous enabling of registered
test instances), TimeFrameStartChecker (allows the test to
start within the predefined time period),
TimeWindowStartChecker (works with
QueueStartChecker and disables the start of test writing
after a predetermined amount of time since granting it),
IPAddressStartChecker (allows the test to start only from
a selected IP address range),
PasswordProtectionStartChecker (enables start of tests
only if students enter the correct password) and
PassedTestPrerequisiteStartChecker (enables start of tests
only if prerequisite tests were solved and passed).

The only instance of TestSupervisors implemented so
far is TestDurationSupervisor. It is configurable to allow a
fixed time for solving, which starts with the student
beginning to solve the test. It can be also fixed to a
time/date deadline. In both cases it reports the information
on time remaining to the end of the test.

The implemented TestController provides the following
capabilities:

• static problem selection from a given problem group,
which in turn can contain subgroups, or even
exclusive subgroups,

• fixed number of presented questions,
• configuration for a number of questions to be

displayed at once,
• forward/backward navigation with the possibility to

turn off backward navigation,
• on/off switch for direct navigation to each question,
• maximum achievable score for test,
• threshold for test passing, and
• on/off switch for enabling of multiple solution

attempts.
The latter is the functionality we had not anticipated to

be necessary, but emerged when the Bologna process was
implemented at our Faculty, and brought forward to the
examination procedures the concept of homework.
Homeworks are a specific challenge, since they break
apart the conventional examination procedure where a
student opens her test, solves and submits it, all under
heavy supervision of all available and configured security
mechanisms. Namely, here students are able to access
their homework (which is, from the system standpoint,
only another test), solve some questions, suspend the
solving process, resume it the next day, etc., within a
predetermined period of time (e.g. during a week).
However, due to proper system modeling and design, this
functionality was easily added.

We have also completed one implementation of
Graders, offering rich configuration capabilities through
the use of a simple scripting language, exemplified in
Figure 5.

B. Integration with other systems
StudTest is a standalone module for user knowledge

assessment – and nothing more. StudTest neither defines
nor provides any technology or connector through which
users could directly work with it, e.g. from a Web
browser. Instead, in order to be used StudTest must be
included into some other system that provides the user

Figure 4. StudTest layered structure.

if $isSolved then
 if $isCorrect then
 return 10;
 else
 return -2;
 end if;
else
 return 0;
end if;

Figure 5. Simple grader configuration.

iJET – Volume 3, Special Issue 3: "ICL2008", December 2008 37

STUDTEST – A PLATFORM SUPPORTING COMPLEX AND INTERACTIVE KNOWLEDGE ASSESSMENT

interface and communicates with StudTest through its
respective connector. A typical system targeted for
StudTest inclusion is a Web based e-learning system or a
simpler Web based course management system, which
provide the suitable user interface. Namely, even when the
client accesses StudTest and claims to use HTML
technology, the respective TestRenderer (a component
that renders a whole test in a given technology) will not
create the whole Web page. It will instead deliver through
its connector two chunks of HTML pages: one to be
included in the HEAD part of the document, and the other
to be included in the BODY part, as shown in Figure 6.
The StudTest client is than free to add all surrounding data
or adjust the look&feel of the generated HTML document
before it sends it back to the user.

In order for clients to use and communicate with
StudTest, they must utilize the client side of the connector,

which is also written in Java. And to further simplify
StudTest utilization, we have prepared for inclusion a
simple ready-to-use Servlet.

We have quite extensively tested StudTest along with
its connectors within our course management system
Nescume [11] supporting two courses enrolling over 2200
students, without any serious objections or complaints.

C. Support for prlet development
Since the natural environment for prlets is the prlet

container, which is a large and complex environment,
prlet development typically poses some challenges.
Namely, before deploying a prlet into the prlet container,
it should be completed and tested. To support an easier
prlet development, we have also prepared a prlet
development framework helping the process by simulating
the prlet lifecycle. The prlet lifecycle encompasses
creation of a new problem template, editing of an existing
problem template, problem instantiation, presentation of a
problem to the user and problem solving by user (in this
case, the developer), and finally problem instance
evaluation and generation of comments and correct
solution (if available/supported by prlet).

D. Example of developed prlets
An example of developed prlets is shown on Figure 7.

A random Boolean function is generated (and displayed)
for each student, as is visible in the illustration. The
student must design a CMOS circuit which implements
the given function. For purposes of circuit design, the
problem is imaged using a Java Applet with a simple
program for schema drawing. The drawing components
(like MOSFETs, inputs, outputs etc.) are accessible from a
popup menu. In the evaluation phase, solution correctness
is checked using an appropriate CMOS simulator. In this
case the problem generating code, which permits the

student to solve the problem and subsequently evaluates
the solution correctness, consists of a single prlet.

Figure 8 shows another example illustrating a random
PLA based circuit, rendered by an appropriate Helper,
where the student is requested to determine the counting
sequence for the implemented sequential circuit. During
problem definition, prlet randomly creates one cycle for
each student, programs the PLA based circuit and prepares
the data required by the associated helper to draw its
schematics. Next, it randomly generates three cycle
instances and presents the whole to a student as a Single
Choice question itself.

VI. CONCLUSION AND FUTURE WORK
The StudTest framework was developed as an effort to

offer rich and complex examination capabilities for
generated problems and to form a specialized subsystem
for knowledge assessment, which should be independent
of user technology. This framework is therefore designed
with the following goals in mind: extensibility, good peak-
load handling and scalability. More important, it
represents a well-defined model, which supports the
prototype implementation. The system has been used on
several thousands students, within two courses (Digital
Electronics and Digital Logic) in eliminatory lab entry
tests and final scoring tests, as well as in student
homework management. Because of its advanced
graphical capabilities, we have been able to implement
prlets such as the one requiring students to draw a CMOS
schema of a circuit implementing a randomly generated
Boolean function, and automatically verify the correctness
of the respective design. Since students accessed tests
through Nescume, which is Web based, these complex
problems were presented to students by means of Java
Applets. In total, we have developed over 65 prlets used

<HTML>
 <HEAD>
 <!-- head part of document -->
 </HEAD>
 <BODY>
 <!-- body part of document -->
 </BODY>
</HTML>

Figure 6. HTML document structure.

Figure 7: Screenshot of test containing applet based problem

addressing CMOS circuit design

38 http://www.i-jet.org

STUDTEST – A PLATFORM SUPPORTING COMPLEX AND INTERACTIVE KNOWLEDGE ASSESSMENT

in homeworks, and about 300 static problems used in
laboratory exercises.

As a direction for future work, we plan to work out and
implement a better clustering support and implement an
adaptive TestController that would use an ontologically
described course structure and its relationships to the
existing problems (based on RDF and RDFS) for problem
selection. Support for reasoning about this knowledge will
probably be obtained through the Sesame system [12].

ACKNOWLEDGMENT
This paper describes the results of research being

carried out within the project 036-0361994-1995
Universal Middleware Platform for e-Learning Systems,
as well as within the program 036-1994 Intelligent
Support to Omnipresence of e-Learning Systems, both
funded by the Ministry of Science, Education and Sports
of the Republic of Croatia.

REFERENCES
[1] WebCT: http://www.webct.com/ (visited on 2007-10-15)
[2] BlackBoard: http://www.blackboard.com/ (visited on 2007-10-15)
[3] Moodle: http://www.moodle.org/ (visited on 2007-10-15)

[4] Java: http://java.sun.com/ (visited on 2007-10-15)
[5] JSR-000053 Java Servlet 2.3 Specification http://www.jcp.org/

aboutJava/communityprocess/final/jsr053/ (visited on 2007-10-15)
[6] Problettes – The Home Page http://phobos.ramapo.edu/~amruth/

grants/problettes/ (visited on 2007-10-15)
[7] Applets: http://java.sun.com/applets/ (visited on 2007-10-15)
[8] G. Booch, Object-oriented analysis and design with applications,

Second edition, Addison Wesley, 1994.
[9] MySql: http://dev.mysql.com/downloads/ (visited on 2007-10-15)
[10] Hibernate: http://www.hibernate.org/ (visited on 2007-10-15)
[11] V. Glavinić, M. Čupić, S. Groš, “Nescume - A System for

Managing Student Assignments”, Proceedings of the First
International Conference on Internet Technologies and
Applications (ITA 05), Wrexham, North Wales, UK, 2005. pp.
233-238.

[12] Sesame: http://www.openrdf.org/ (visited on 2007-10-15)
[13] Course Digital electronics, http://www.fer.hr/predmet/digel

(visited on 2007-05-03)
[14] Course Digital logic, http://www.fer.hr/predmet/diglog (visited on

2007-05-03)
[15] R. W. Brown, "Multiple-choice versus descriptive examinations".

31st ASEE/IEEE Frontiers in Education. IEEE, 2001.
[16] T. S. Roberts, "The use of multiple choice tests for formative and

summative assessment". ACE 2006. Australian Computer Society,
2006.

[17] K. Woodford, P. Bancroft, "Multiple choice questions not
considered harmful". ACE 2005. Australian Computer Society,
2005.

AUTHORS
V. Glavinić (e-mail: vlado.glavinic@fer.hr) is with the

Department of Electronics, Microelectronics, Computer
and Intelligent Systems, Faculty of Electrical Engineering
and Computing, University of Zagreb, Croatia.

M. Čupić (e-mail: marko.cupic@fer.hr) is with the
Department of Electronics, Microelectronics, Computer
and Intelligent Systems, Faculty of Electrical Engineering
and Computing, University of Zagreb, Croatia.

S. Groš (e-mail: stjepan.gros@fer.hr) is with the
Department of Electronics, Microelectronics, Computer
and Intelligent Systems, Faculty of Electrical Engineering
and Computing, University of Zagreb, Croatia.

This article was modified from a presentation at the International
Conference of Interactive Computer Aided Learning ICL2008,
September 24 - 26, 2008 in Villach, Austria. Manuscript received 5
November 2008. Published as submitted by the authors.

Figure 8: Screenshot of test addressing

PLA based circuit design

iJET – Volume 3, Special Issue 3: "ICL2008", December 2008 39

http://www.webct.com/�
http://www.blackboard.com/�
http://www.moodle.org/�
http://java.sun.com/�
http://www.jcp.org/�aboutJava/communityprocess/final/jsr053/�
http://www.jcp.org/�aboutJava/communityprocess/final/jsr053/�
http://phobos.ramapo.edu/~amruth/�grants/problettes/�
http://phobos.ramapo.edu/~amruth/�grants/problettes/�
http://java.sun.com/applets/�
http://dev.mysql.com/downloads/�
http://www.hibernate.org/�
http://www.openrdf.org/�
http://www.fer.hr/predmet/digel�
http://www.fer.hr/predmet/diglog�

