
EVALUATING THE EFFECTS OF VIRTUAL PAIR PROGRAMMING ON STUDENTS’ ACHIEVEMENT AND SATISFACTION

Evaluating the Effects of Virtual Pair
Programming on Students’ Achievement and

Satisfaction
doi:10.3991/ijet.v4i3.772

Nick Z. Zacharis
Technological Education Institute of Piraeus, Athens, Greece

Abstract—Pair programming is a lightweight software de-
velopment technique in which two programmers work to-
gether at one computer. In literature, many benefits of pair
programming have been proposed, such as increased pro-
ductivity, improved code quality, enhanced job satisfaction
and confidence. Although pair programming provides clear
pedagogical benefits, its collocation requirement and the
limited time during a lab session are serious barriers in the
full deployment and evaluation of this programming tech-
nique.

This paper reports on a study that investigated the effec-
tiveness of Virtual Pair Programming (VPP) on student
performance and satisfaction in an introductory Java course
where students worked collaboratively in pairs on home-
work programming assignments, using online tools that
integrated desktop sharing and real time communication.
The results of this study support previous research findings
and suggest that VPP is an effective pedagogical tool for
flexible collaboration and an acceptable alternative to indi-
vidual/solo programming experience, regarding productiv-
ity, code quality, academic performance and student satis-
faction.

Index Terms—Virtual Pair Programming.

I. INTRODUCTION
Originating from industrial settings where collaborative

software development is the norm, pair programming has
come recently in the centre of interest of computer science
educators, in an effort to transform the solitary activity of
learning to program into a collaborative problem solving
process. The principal idea behind problem-based learning
is that students are presented with a problem and they be-
gin working in small groups and negotiate in defining the
problem precisely, assess what they know, identify what
they need to know, plan how to proceed, gather informa-
tion, collaborate on the evaluation of hypotheses, brain-
storm possible solutions, choose one solution, look back
and reflect and arrive at clearly stated solutions.

Collaborative exchanges in problem solving tasks ex-
tend cognitive activity and team members are able to
monitor individual thinking, cope with different opinions,
give and take feedback that results in clarification and
change, and provide social support and encouragement to
each other [1]. Pair programming, as well as test-driven
development and refactoring, lies at the core of extreme
programming, a discipline of software development based
on values of courage, communication, feedback, and sim-

plicity. Extreme programmer teams initially build code
according to a simple design and through testing, continu-
ous feedback and design improvement, they keep it that
way.

Pair programming especially is a practice in which two
programmers work at one computer, collaborating on the
same design, algorithm, code or test. Sitting side-by-side
and assuming the roles of “driver” and “navigator” or “ob-
server” the two programmers discuss about the current
implementation, possible alternatives and errors, searching
for a better algorithm to use, optimising parts of the code,
creating functional tests for every piece of code and find-
ing better functions or libraries to call. The driver has the
control of the keyboard and actively implements the code
while the navigator looks at the driver’s work and identi-
fies tactical and strategic defects and issues [2]. From time
to time, the developers switch their roles, so that both
equally develop code.

II. WHY TO USE PAIR PROGRAMMING?
Williams at NCSU, examining the effectiveness of stu-

dent pair programmers, references many studies that have
shown that pair programming creates an environment
conducive to more advanced, active learning and collabo-
ration, leading to students being less frustrated, more con-
fident, and more interested in information technology
[3][4]. Although computer programming is known to be a
complex skill that is difficult to master, pair programming
has been shown to produce improved outcomes: better
quality software, faster code production, fewer defects,
increased programmer confidence in solutions and greater
enjoyment [4][5][6].

Williams and Kessler observing effective pairs con-
cluded on several behaviors that tend to happen naturally
and contribute to the achievement of the benefits of pair
programming: pair pressure, negotiation, courage, re-
views, debugging, learning and pair trust [6]. The collec-
tive ownership of all that is produced, the need not to let
down their partner, the encouragement when the other is
stuck and the collaborating review and testing keep part-
ners much more focused on the task at hand and help them
improve their programming skills.

III. VIRTUAL PAIR PROGRAMMING
Communication is the core function of negotiation and

cooperation that allows information and expertise to be
exchanged between team members. The close physical
proximity, considered a basic element in the delivery of

34 http://www.i-jet.org

http://dx.doi.org/10.3991/ijet.v4i3.772�

EVALUATING THE EFFECTS OF VIRTUAL PAIR PROGRAMMING ON STUDENTS’ ACHIEVEMENT AND SATISFACTION

prompt responses during pair programming, is frequently
a serious limitation e.g. when teams have geographical
barriers or scheduling conflicts that prevent them from
being collocated. The inevitability of distributed work in
industry and education forces software developers to
adopt online technologies and implement VPP in order to
have the benefits of pair programming in the online envi-
ronment.

A. Issues and solutions for VPP support
Rapid advances in computer networks and internet

technologies have made it possible for developers from
different geographical locations to form virtual teams in a
distributed setting and jointly develop the same artefact of
software in a collaborative way [7]. To allow effective
implementation of VPP it is necessary to introduce team
awareness support that is closely comparable to collocated
pair programming practices, where physical proximity
facilitates easy and quick communication, collaboration
and coordination.

Dourish and Bellotti define team awareness as “an un-
derstanding of the activities of others, which provides a
context for your own activity” [8]. Team awareness allows
each user to be informed about others users’ activities and
track the changes that other collaborators have made to a
group project. Maintaining awareness in virtual settings
requires additional effort and the extensive use of various
communication tools such as newsgroups, MUDs, email,
text chat, and instant messaging [9].

Effective real time communication is necessary for the
virtual pair members to obtain information on how each
other react on something the other says or does. To have a
physical sense of a reaction, information on body gestures,
the faces or even the tone of the voice of the other person
is required.

Collaboration is a term that can be used to indicate any
form of interaction between software developers, in co-
located or distributed settings, working on the same set of
artefacts. In the context of VPP, collaboration involves
regular synchronous meetings, planning and negotiation,
design decisions that are translated into code, regular code
integration, and ongoing communication between pair
members during the development lifecycle. A crucial
point for successful collaboration in general, is the manner
in which individual work is related to the team as a whole.

The collaboration among people who are engaged in a
common task requires the coordination of the activities
related with the task and of the resources used during its
execution. Concerning coordination, being in two differ-
ent locations, the challenge for virtual pairs consists on
how to synchronize their availability, adjust the time dif-
ferences, and integrate their activities [10].

Successful implementation of VPP assumes the exis-
tence of a collaborative environment designed to support
communication and awareness with a collection of tools
that allow pair members to access, manage, and share in-
formation through an integrated information infrastruc-
ture. In the domain of computer-supported cooperative
work (CSCW), virtual collaboration is supported mostly
by groupware applications that provide the tools for syn-
chronous/real-time team activities such as pair program-
ming.

There are two basic approaches for VPP via the Inter-
net. The first one is to send screen-buffer information

through the network, broadcasting the display of any ap-
plication from a member to all the others. Using screen
sharing applications such as Microsoft NetMeeting, Sy-
mantec PCAnywhere, VNC (or one of its derivatives
RealVNC, TightVNC, etc) or the built in tool "Remote
Assistance" of Windows XP, virtual pairs can view a
common desktop and control remotely an IDE (Integrated
Development Environment) compiler, writing code in
turns. Free and reliable instant messaging/ video confer-
encing applications like Paltalk, Skype and ooVoo, inte-
grating video, audio and text chatting, accompany screen
sharing applications and connect pair members providing
presence awareness and immediate interaction. Free web
conferencing applications such as Microsoft NetMeeting
(installed in both members’ boxes) and Dimdim or vRoom
from Elluminate, combining audio/ video conference with
desktop shearing and interactive whiteboard, provide an
integrated information facility for effective collaboration.

The second approach toward VPP is the design of col-
laborative environments that are domain-specific and in-
tegrate collaborative editors with versioning and configu-
ration control tools (such as CVS), databases, videocon-
ference facilities and email systems [10]. Stand alone pro-
grams like SubEthaEdit, UNA or NetEdit, and any IDE
that support collaboration, such as Eclipse with various
plug-ins such as Sangam, QuickShare or Eclipse Wiki
Editor, can be used to facilitate the collaborative aspects
of VPP. In contrast to desktop sharing systems, these col-
laborative editors are event driven programs, transmitting
only messages that are important for pair programming,
and thus they don’t need high bandwidth connections.
Using a stand alone collaborative editor like UNA, all
users who have opened a particular project space see the
same set of opened files, the same chat history, the same
notes, the same whiteboard, and can freely move in and
edit all parts of a document, without locking. Workspace
awareness, i.e. the knowledge of the state or actions of
other participant, is evenly high in collaborative editors
using plug-ins like Sangam, DocShare or Jazz for Ecliplse
IDE. These plug-ins benefit from all platforms features
such as syntax highlighting and auto-indentation, adding
their own capabilities for version control, tracking of local
changes and defects, simultaneous editing even in the
same line, easy floor handling and role switching.

B. Previous experiments on VPP
Baheti et al studied the effectiveness of VPP measuring

the quality and productivity of distributed pairs. They used
tools like VNC, Microsoft NetMeeting and instant mes-
sengers and found that VPP was a feasible way of devel-
oping object-oriented software and as effective as collo-
cated pair programming. The virtual pairs produced com-
parable code to that of collocated teams with respect to the
productivity (lines of code per hour) and quality (test sub-
jects’ grades) and showed a higher level of communica-
tion and collaboration [11].

Hanks conducted an experiment on VPP using VNC
with a modification, to allow for a second cursor that can
be controlled by the navigator to point at areas of the
screen without affecting the driver’s state. Two groups of
students, one remote and one collocated, were compared
on performance on assignments and final exam. No statis-
tical significant differences were found on students’
achievement between collocated and virtual pairs [12].

iJET – Volume 4, Issue 3, September 2009 35

EVALUATING THE EFFECTS OF VIRTUAL PAIR PROGRAMMING ON STUDENTS’ ACHIEVEMENT AND SATISFACTION

Stotts et al experimented for 5 weeks with 4 distributed
pairs of graduate students, having two of them work as
virtual synchronous pairs (utilizing VPP) and the remain-
ing two work as more traditional virtual teams (no pair
programming). All pairs used Microsoft NetMeeting for
code development and Yahoo Messenger for voice com-
munication. The number of test cases passed was the met-
ric used for program quality while productivity was calcu-
lated as the mean total time for development, without any
concern for lines of code measures. The researchers found
that VPP teams wrote 70% more unit test cases than the
non-pair programming virtual teams, satisfied all the test
cases and competed their projects in about 60% less time
[13].

Natsu et al conducted an experiment with 9 pairs (5 dis-
tributed and 4 collocated in the laboratory) using their
COPPER system, a synchronous source code editor that
allows two distributed software engineers to write a pro-
gram using pair programming. After a 90 minutes session
students evaluated the usability of the tools provided by
the editor, the usefulness of the floor control and the
awareness mechanisms and the adequacy of the commu-
nication. All pairs had near equal perception about the
usefulness of the system, indicating the feasibility of VPP
with tools that provide the means for simultaneous code
editing and presence and workspace awareness [14].

The experiments described above indicate that effective
collaborative software development is possible with a few
simple, widely-available tools (screen sharing, Internet-
based audio communications) [13]. The aim of the present
study was to evaluate the implementation of VPP in an
introductory programming course and the impact that
would have on students’ achievement and satisfaction. In
the following sections we describe the course organiza-
tion, the experimental design, the research questions, the
metrics that were used, and the results that were obtained.

IV. COURSE ORGANIZATION
Introduction to Computer Programming COMP 120 is a

beginning level programming course. The primary goal is
to teach students basic elements of programming, object-
oriented programming and problem-solving skills. This
course is taught in the second semester of the first year
and is appropriate for students with no prior programming
experience. There are no strict prerequisites, but a basic
background in math and computer skills is required. Stu-
dents are supposed to feel comfortable using a computer
as an everyday tool (e.g., using a web browser, writing
email, using word processing applications, downloading
and installing software).

The Java language is used to introduce foundations of
structured, procedural, and object-oriented programming.
Topics include I/O, data types, operators, operands, ex-
pressions, conditional statements, iteration, recursion, ar-
rays, functions, parameter passing, and returning values.
Students are also introduced to classes, objects, object
references, inheritance, sorting, polymorphism, exception
handling, searching, Java Collections, and Applets.
COMP 120 is required for computer science majors, elec-
trical engineering majors, and also for the Computer Pro-
gramming Certificate, a program designed to enable stu-
dents with undergraduate degrees or working profession-
als to upgrade their programming skills or make a career
change.

V. THE EXPERIMENT
An experiment was conducted in the COMP 120

course, among the 129 students enrolled in 2007 fall se-
mester, aiming to assess the effectiveness of VPP in an
effort to move the course to a more learner centred and
collaborative direction. Traditionally, the course is taught
during 12 weeks, with two hour lectures and one two-hour
lab each week, and student grades are based on one mid-
term exam, one final exam and 8 homework programming
assignments completed by students working on their own.
In each lab room there are about 20 students working in-
dependently to modify the code and extent the functional-
ities of a sample program, after the explanations and goals
given by the instructor. Usually, the lab time is never
enough for the majority of students to finish the tasks as-
signed them, such as compiling the code, testing it, de-
bugging it and refining it, and much work remains to be
done at home, augmented by additional tasks defined in
every homework programming assignment after the end
of the lab period.

This semester, half of the students (65) completed all
their assignments individually as usual (solo section),
while the others (64) used pair programming and collabo-
rated upon the last 4 assignments (VPP section). During
the first 4 weeks all students completed homework as-
signments individually and they had strictly one week to
submit their solutions. Since the course uses an objects
first approach and concepts such as classes, objects and
methods are introduced as early as the first week, provid-
ing weekly feedback and appropriate scaffolding at the
beginning is crucial to ensure that individual students un-
derstand object oriented programming as it applies to
Java.

After the midterm exam at the end of the 5th week, stu-
dents in VPP section were randomly assigned a partner
according to their grades in the 4 first assignments to en-
sure that each team included members with approximately
equal previous knowledge and abilities. In general the
literature indicates that small differences in cognitive level
are more conductive to effective collaboration and cogni-
tive growth than larger differences [15]. Although other
studies support precisely the opposite and suggest the nov-
ice expert pairing, we chose the first approach as more
suitable in a freshman class.

All VPP students were given a brief introduction to pair
programming technique and instructed to switch regularly
roles between driver and navigator and respond construc-
tively to feedback, in order to keep an objective view
about the direction in which the program is going and look
for the strategic implications of the developing code. They
were cautioned to avoid the temptation to break projects
into smaller parts to be completed independently and tol-
erate partner’s questions or comments as a necessary part
of the process, without becoming annoyed or upset. As
pair programming requires real time collaborative effort,
they had to spend over 70% of the total time on an as-
signment interacting synchronously with their partner. All
VPP students attended an orientation lesson in the labora-
tory rooms and collaborated in pairs on short projects us-
ing NetMeeting in order to become familiarized with its
desktop sharing (running NetBeans IDE), chat and video
conference features.

Students in both sections, VPP and solo, had to record
the time needed to complete each programming assign-

36 http://www.i-jet.org

EVALUATING THE EFFECTS OF VIRTUAL PAIR PROGRAMMING ON STUDENTS’ ACHIEVEMENT AND SATISFACTION

ment (running successfully all the accompanied test
cases), the lines of code per hour (only executable lines
and data declarations) and the number of defects/bugs.
Instructor made clear to students that all the data that
would be gathered was to be used only for evaluating the
programming technique of pair programming and the only
thing that they had to worry about was as always the qual-
ity and functionality of their programs. Although all stu-
dents in pairing section were assigned partners from their
class in order to avoid schedule conflicts, they were al-
lowed to re-pair if scheduling difficulties arose in meet-
ings or even to work alone if insurmountable problems
occurred.

VI. RESEARCH HYPOTHESES AND METRICS
This experiment was aimed at examining the effects of

pair programming in introductory programming courses.
The hypotheses that were tested are listed in Table I.

To decide on H1 we examined two factors: code pro-
ductivity and software quality. Generating more code
faster and of high reliability is a real challenge especially
for novice programmers and pair programming according
to previous research motivates students to succeed in this
difficult effort. Data from midterm and final examination
were used to compare the performance of VPP and solo
students and conclude on H2. A survey about students’
perceptions of pair programming administered in class
before the final test and gave VPP students the opportu-
nity to evaluate the new technique. Statistical analysis of
the survey responses gave us data to test H3.

VII. RESULTS

A. Code productivity
Over time, there have been many attempts to define

metrics that effectively measure software development
productivity. Most of them are amazingly complicated and
very difficult to apply. In this experiment project produc-
tivity was calculated as the amount of work, i.e., lines of
code, divided by the effort used, i.e., the development time
for each assignment. Measuring project development time
means just summing up all hours spent on design, pro-
gramming, testing and bug fixing. In Table II are pre-
sented the numbers of lines of code (loc) and the time
elapsed for the development of each programming as-
signment.

The number of loc written by pairs was approximately
7% less than the number of loc produced by solo students
but the difference was not significant at 0,05 level. On the
contrary, significant difference was found between the
completion times of each assignment. Although VPP
teams had in all cases better development times, compar-
ing pair effort (doubling the time of the team) with that of
individuals, an average of 57% more effort was needed
from pairs for writing the same amount of loc. This in-
crement in pairs’ effort lies near the findings of Nosek,
who reported that the pairs spent on the average 42%
more effort than individuals (the difference was not statis-
tically significant) [16]. This result implies that VPP is
rather a time consuming technique at least as implemented
by novice programmers.

TABLE I.
THE RESEARCH HYPOTHESES

H1
Students who use VPP on programming assignments will
produce better programs faster than solo programming
students.

H2 Students who work virtually in pairs will earn exam scores
equal to or higher than solo programming students.

H3
Students in pairs enjoy pair programming and will have a
positive attitude towards collaborative programming set-
tings.

TABLE II.
LINES OF CODE AND DEVELOPMENT TIME

 LOC Development time

H
W VPP Solo Δ Loc % VPP Solo Δ time %

5 134,30 139,20 3,65 5,97 6,86 74,09

6 144,60 152,80 5,67 5,28 6,70 57,49

7 162,80 175,90 8,05 4,98 6,84 45,48

8 169,40 184,50 8,91 5,20 6,96 49,27

TABLE III.
PRODUCTIVITY MEASUREMENT (LOC PER HOUR)

LOC/h
r VPP Solo T-test

HW mean sd mean sd t-value p-value

5 22,5 2,70 20,3 3,60 3,37 0,001

6 27,4 3,90 22,8 3,80 5,50 0

7 32,7 4,54 25,7 4,78 7,01 0

8 32,6 4,04 26,5 5,45 6,20 0

In Table III, results of a t-test analysis for productivity
measured in loc/hr, show significant differences (p <
0,05) between VPP and solo sections, with pair students
to be more productive than solo programmers. This result
is in agreement with the findings of the experiments made
by Baheti et al, who found that collocated pair teams per-
formed better than solo programmers but did not
achieved statistically significantly better results than VPP
teams, and Lui and Chan, who concluded that pair pro-
gramming achieves higher productivity when a pair
writes a more challenging program that demands more
time spent on design [11][17]. Although a single dimen-
sional measure of productivity, such as loc/hr, gives a
good picture of individual or pair productivity, it is evi-
dence that productivity is a poor measure if desired level
of quality is not taken into account.

B. Code quality
Software quality measurements are related to the ab-

sence of defects that would cause a program to behave
unpredictably or stop successful execution. As each line of
code is a potential point of failure and takes time to plan,
type, review, and debug, fewer lines of code reduce fail-
ures and increase coding speed. On the other hand, clever
code takes longer to plan, review, and debug and can also
have more points of failure per line of code. During the
course, students instructed that variables, operators and

iJET – Volume 4, Issue 3, September 2009 37

EVALUATING THE EFFECTS OF VIRTUAL PAIR PROGRAMMING ON STUDENTS’ ACHIEVEMENT AND SATISFACTION

statements are the real points of failure and reducing those
is what truly reduces defects.

From Table IV is apparent that pairs produced code of
higher quality with about half fewer defects (p < 0,05).
Although students were instructed to count only logi-
cal/design-type defects or syntax-like defects that were not
flagged by the compiler, it was difficult to conclude the
seriousness of those defects or if they were discovered
before or after testing. In any case, given that all students
had the same previous programming background, it seems
that VPP members through collaboration and continuous
code reviewing improved code quality. This result agrees
with the findings of many previous studies which have
reported smaller defect counts for pair programming
[3][4][5][6].

TABLE IV.
DEFECTS PER KLOC

Dfs/Kloc VPP Solo Difference T-test

HW mean sd mean sd Δ mean % t-
value

5 53,61 15,47 96,98 27,6
5 80,90 9,87

6 67,43 18,32 115,3 32,7
3 71,02 9,22

7 49,75 13,71 80,73 26,2
1 62,25 7,64

8 71,13 21,62 115,7 35,2
2 62,68 7,68

C. Students’ performance
Students’ grades on their programming assignments

were used as a direct measure of their ability to program.
In Table V, mean scores and standard deviations in each
of the four assignments are given for VPP and solo stu-
dents, while a t-test analysis indicates the differences be-
tween them.

Although VPP students achieved better scores, there
were no statistically significant differences in any of these
assignments between them and solo students at 0,05 level.
The better degrees that achieved on average the students
that worked in pairs reflect the higher code quality (more
compact code for the same functionality and fewer post-
delivery defects), maintainability (program’s ability to
stay the same or to adapt to change), performance, and
documentation quality. Both sections showed a progres-
sive improvement in their scores partly due to the nature
of the assignments that integrated classes used in previous
ones and had been corrected and partly due to continuous
code exchanging and discussion through the class forum.

TABLE V.
STUDENTS’ SCORES IN EACH PROGRAMMING ASSIGNMENT

Scores VPP Solo T-test

HW mean sd mean sd t-value p-value

5 74,3 13,3 68,8 14,5 1,86 0,067

6 76,5 26,2 72,9 24,4 0,65 0,517

7 79,6 28,3 75,8 27,2 0,73 0,467

8 81,3 27,2 78,4 27,1 0,45 0,621

TABLE VI.
STUDENTS’ SCORES ON EXAMINATIONS

Scores VPP Solo T-test

Exam mean sd mean sd t-value p-value

Midterm 65,4 12,3 66,2 13,5 0,29 0,77

Final 78,7 16,7 75.9 14,6 0,81 0,422

A comparison of midterm and final examination scores

for both sections, using t-test analysis, revealed no signifi-
cant differences between pairs and solo students (see Ta-
ble VI). Both midterm and final examinations were writ-
ten individually in-class tests designed to assess students’
comprehension and problem solving ability on short pro-
grams, methods, or classes. It is surprising that although
both sections had almost identical performance in midterm
examination, VPP students performed better in final ex-
amination. This is a strong indication that on average pair
members benefited from collaboration in gaining better
understanding of fundamental programming concepts and
object oriented techniques.

D. Students’ attitude and perceptions
As a whole, the 64 students in VPP section had a highly

positive attitude toward pair programming. Students
ranked the following statements with strongly disagree =
1, disagree = 2, neutral = 3, agree = 4, strongly agree = 5:

Q1: I enjoyed programming with a partner more than
programming alone.

Q2: Pair programming motivated me to stay on task.
Q3: Interacting with my partner in real time helped

me think at a higher level and understand diffi-
cult concepts.

Q4: I was more efficient in debugging my code while
working under continuous communication with
my partner.

Q5: Pair programming increased my confidence in
my solutions to programming assignments.

TABLE VII.
STUDENTS’ SCORES ON EXAMINATIONS

 SA A N D SD mean sd Positive
%

Q1 28 31 5 0 0 4,36 0,62 92,19

Q2 32 29 2 1 0 4,44 0,63 95,31

Q3 37 23 2 2 0 4,48 0,71 93,75

Q4 21 33 4 4 2 4,05 0,96 84,38

Q5 27 25 5 6 1 4,11 1,00 81,25

In Table VII, students’ rankings in the survey questions

are shown in detail. Mean values ranged from 4,05 to 4,48
(all in the area of agree and strongly agree) and positive
attitude (summing answers of strongly agree SA and agree
A) was over 80% in every question. Students enjoyed pair
programming (92%) instead of programming alone and
they felt (95%) that their partners’ pressure had significant
impact on motivating them stay on task. These two find-
ings are very encouraging taking into consideration the
unavoidable differences in time schedules or in personali-

38 http://www.i-jet.org

EVALUATING THE EFFECTS OF VIRTUAL PAIR PROGRAMMING ON STUDENTS’ ACHIEVEMENT AND SATISFACTION

ties or even in skill levels. One reason that justifies this
result is that students in pairs had similar abilities. Re-
search has shown that pairing students of similar abilities
motivates them work most effectively and compatibly
with their partners [18]. Another reason may be the flexi-
bility of the distributed programming they experienced
using tools that permitted them to work anytime any-
where.

Students agree (93%) that real time interaction helped
them to look deeper in programming concepts and gain
knowledge from the continuous reviewing process. Defect
removal was also much more efficient (84%) resulting in
higher confidence in the produced code (81%). Students’
perceptions are in accordance with previous studies re-
ported that students like pair programming, believe that
this programming style improves software quality and feel
more confidence in their solutions [4][5][6][11].

VIII. CONCLUSIONS
The findings of this study confirm the three hypotheses

we set up at the beginning. Testing hypothesis H1 we con-
clude that students who used VPP on their assignments
produced code of better quality, with about half fewer
defects and were more productive in Loc/hr. Comparing
students’ performance based on the grades they achieved
in each programming assignment and on midterm and
final test, we found no difference between VPP and solo
programming students. This result confirms the H2 hy-
pothesis that VPP students would have at least equal
scores on programming projects and exams as their solo
counterparts. Examining students’ satisfaction towards
pair programming through their responses in the survey
questionnaire, we confirm hypothesis H3 that students in
pairs perceive pair programming as a positive learning
experience.

Students in pairs used on line technologies that provide
desktop sharing and real time communication (at least
audio and chat) and collaborated when it was convenient
for both partners. In conversations with VPP students, the
instructor was being informed frequently about the tools
they were using and the difficulties they were experienc-
ing. In most cases simple solutions like NetMeeting and
the Remote Desktop Sharing feature of Windows accom-
panied with free VoIP applications like Skype, worked
perfectly.

The results of this study suggest that VPP was an effec-
tive pedagogical tool for flexible collaboration and an
acceptable alternative to individual programming experi-
ence. Our intention is to conduct more experiments like
this so that we can draw conclusions about pair program-
ming technique in general and its virtual/ distributed form
particularly.

REFERENCES
[1] M. Alavi, “Computer-mediated collaborative learning: An empiri-

cal evaluation, ” MIS Quarterly, vol 18, pp. 159-174, 1994.
(doi:10.2307/249763)

[2] G. Canfora, A. Cimitile, G, Di Lucca, C.Visaggio, “How distribu-
tion affects the success of pair programming”, International Jour-
nal of Software Engineering and Knowledge Engineering, vol 16,
pp. 293-313, 2006. (doi:10.1142/S0218194006002756)

[3] L. Williams, C. McDowell, N. Nagappan, J. Fernald, L. Werner,
"Building Pair Programming Knowledge through a Family of Ex-
periments," ISESE, pp.143-152, International Symposium on Em-
pirical Software Engineering (ISESE'03), 2003.

[4] L. Williams, “Lessons Learned from Seven Years of Pair Pro-
gramming at North Carolina State University”, ACM SIGCSE
Bulletin, vol 39, pp. 79-83, 2007. (doi:10.1145/1345375.1345420)

[5] K. Beck, Extreme Programming Explained: Embrace Change,
Reading, MA, Addison-Wesley Professional, 1999.

[6] L. Williams & R. Kessler, Pair Programming Illuminated, Read-
ing, MA, Addison-Wesley Professional, 2002.

[7] M. Reeves, J. Zhu, “Moomba - A collaborative environment for
supporting distributed extreme programming in global software
development”, In Proceedings of XP 2004, Lecture Notes in Com-
puter Science, vol. 3092, Springer, Berlin, pp. 38–50, 2004.

[8] P. Dourish & V. Bellotti, "Awareness and Coordination in Shared
Workspaces", In Proceedings of CSCW'92, Toronto, pp. 107-114,
1992.

[9] C. Gutwin, R. Penner and K. Schneider, “Group awareness in
distributed software development”. In Proceedings of the 2004
ACM Conference on Computer Supported Cooperative Work.
Chicago, Illinois, November 2004.

[10] A. Morán, J. Favela, R. Romero, H. Natsu, C. Pérez, O. Robles
and A.Enríquez, “Potential and Actual Collaboration Support for
Distributed Pair Programming”, Computación y Sistemas, vol 11,
pp. 211-229, 2008.

[11] P. Baheti, E. Gehringer, D. Stotts, “Exploring the efficacy of dis-
tributed pair programming”, In Extreme Programming and Agile
Methods—XP/Agile Universe 2002, Lecture Notes in Computer
Science, vol. 2418, Springer, Berlin, pp. 208-220, 2002.
(doi:10.1007/3-540-45672-4_20)

[12] B. Hanks, “Empirical evaluation of distributed pair program-
ming”, International Journal of Human-Computer Studies, vol
66, pp. 530-544, 2008. (doi:10.1016/j.ijhcs.2007.10.003)

[13] D. Stotts, L. Williams, N. Nagappan, P. Baheti, D. Jen, and A.
Jackson, “Virtual teaming: Experiments and experiences with dis-
tributed pair programming”, In Extreme Programming and Agile
Methods - XP/Agile Universe 2003, Lecture Notes in Computer
Science, vol 2753, Springer, pp. 129-141, 2003.

[14] H. Natsu, J. Favela, A. Moran, D. Decouchant, A. Enriquez, “Dis-
tributed pair programming on the web”, In Proceedings of the
Fourth Mexican International Conference on Computer Science,
pp. 81-88, 2003.

[15] R. Slavin , Cooperative Learning: Theory, Research and Practice,
Prentice Hall, 1990.

[16] J. Nosek, “The Case for Collaborative Programming”, Communi-
cations of the ACM, vol 41, pp. 105-108, 1998.
(doi:10.1145/272287.272333)

[17] K. Lui and K. Chan, “When Does a Pair Outperform Two Indi-
viduals?”, In M. Marchesi and G. Succi (Eds) Extreme Program-
ming and Aile Processes in Software Engineering - 4th Interna-
tional Conference, XP 2003 Lecture Notes in Computer Science
vol 2675, pp. 225-233, 2003.

[18] L. Williams, L. Layman, J. Osborne, N. Katira, “Examining the
Compatibility of Student Pair Programmers”, In Proceedings of
the conference on AGILE 2006, pp. 411-420, 2006.

[19] G. Melnik and F. Maurer, “Perceptions of agile practices: A stu-
dent survey”, In Proceedings of Extreme Programming and Agile
Methods 2002, pp. 241–250, 2002.

AUTHOR
Nick. Z. Zacharis is with the Technological Education

Institute of Piraeus, Athens, Greece (e-mail: nzach@
teipi.gr).

Submitted 15 December 2008. Published as resubmitted by the author on
9 August 2009.

iJET – Volume 4, Issue 3, September 2009 39

http://dx.doi.org/10.2307/249763�
http://dx.doi.org/10.1142/S0218194006002756�
http://dx.doi.org/10.1145/1345375.1345420�
http://dx.doi.org/10.1007/3-540-45672-4_20�
http://dx.doi.org/10.1016/j.ijhcs.2007.10.003�
http://dx.doi.org/10.1145/272287.272333�

