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Abstract— In spite of an increasing development of 
virtual and distant applications which use the 
advantages of multimedia and the Internet for distance 
education, learning by means of such tutorial tools 
would be more effective if they were specifically adapted 
to each user needs. This paper proposes a knowledge 
representation model which judiciously serves the 
remediation process of an intelligent learning 
environment in interaction with students during virtual 
learning activities. By means of experimental results 
obtained thanks to practical tests, we show that our 
knowledge representation model facilitates the planning 
of a tailored sequence of feedbacks that significantly 
help the learner. 
Index Terms—Technology in education, Intelligent learning 
environments, Knowledge representation models, Cognitive 
approaches of knowledge acquisition, Student tutoring, 
Tailored feedbacks. 

INTRODUCTION 

 
Nowadays, having recourse to intelligent learning 
environments (ILE) in teaching is being more and more 
considered by an increasing number of universities and 
colleges [9,10,12,16]. However, if one has the ambition to 
build ILE which are able to (i) interact with learners that 
have various levels of intelligence and different capacities 
of knowledge acquisition and to (ii) provide tailored aid to 
students according to their cognitive states, then 
understanding the human learning processes and the 
manners of structuring and handling knowledge during 
those processes is a fundamental task [7]. Especially, if 
one wishes to exploit the information collected during the 
learning activities (and which translate the student 
behaviour) in order to conceive personalised suggestions, 
tailored examples and helpful exercises which are well 
adapted to the learner and are built from specific and quite 
detailed cognitive elements discovered from its behaviour.    
   In this paper, we propose a knowledge representation 
model which judiciously serves the remediation process of 
an ILE’s tutoring system in interaction with students 
during virtual learning activities. The reminder of the 
article is organised as follows. First, we describe the 
knowledge representation theory. Our approach is inspired 
by the artificial intelligence research on the computational 
modelling of the knowledge and by cognitive theories 

which offer a fine modelling of the human learning 
processes. Second, we describe our principle of errors’ 
personalised remediation and we present its experimental 
validation. Finally, by way of conclusion, we mention our 
current work. 
 

THE KNOWLEDGE REPRESENTATION MODEL 

 
Different approaches in cognitive psychology propose 
various sets of knowledge representation structures which 
are inspired from the human memory. Basically, it has 
been argued that knowledge is encoded in various 
memory subsystems not according to their contents but 
according to the way in which these contents are handled 
and used [5]. These subsystems are mainly divided in 
three main sections presenting – each one – a particular 
type of knowledge: (i) semantic knowledge [11], (ii) 
procedural knowledge [3] and (iii) episodic knowledge 
[15]. Although there is neither consensus on the number 
of the subsystems nor on their organisation, the majority 
of the authors in psychology mentions – in some form or 
in another – these three types of knowledge. 
 

A   The Semantic Knowledge Representation 
Semantic knowledge is located in a particular memory 
subsystem. This latter is the memory of facts and symbols, 
of their relations, their functions and their genesis [8]. Our 
knowledge representation approach regards semantic 
knowledge as concepts taken in a broad sense. Thus, they 
can be any category of objects. Moreover, we subdivide 
concepts in two categories:  primitive concepts and 
described concepts.  The first is defined as a syntactically 
non-split representation; i.e., primitive concept 
representation can not be divided into parts. On the other 
hand, we define described concept as a syntactically 
decomposable representation. Thus, the semantic of a 
described concept is given by the semantics of its 
components and their relations (which take those 
components as arguments to create the described concept). 
In this way, it would be possible to combine primitive or 
described concepts to represent any other described 
concept. 
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B    The Procedural Knowledge Representation 
In opposition to semantic knowledge, which can be 
expressed explicitly, procedural knowledge becomes 
apparent by a succession of actions achieved 
automatically – following internal and/or external stimuli 
perception – to reach desirable states [3]. In other words, 
a procedure is a mean of satisfying needs without using 
the attention resources. For example, procedural 
knowledge enables us to recognise automatically words 
in a text, to write by means of the keyboard or to drive a 
car. This automation – via the use of procedures – 
reduces the cognitive complexity of problems solving 
[13]. In our model, we subdivide procedures in two main 
categories: primitive procedures and complex procedures. 
Executions of the first are seen as atomic actions. Those 
of the last can be done by sequences of actions, which 
satisfy scripts of goals. Each one of those actions results 
from a primitive or complex procedure execution; and 
each one of those goals is perceived as an intention of the 
student cognitive system. 
C   The Representation of Goals 
Much, if not most, of our responses to the environment in 
the form of judgements, decisions and behaviour are 
determined not solely by the information available in that 
environment, but rather how it relates to whatever goal – 
corresponding to a need – we are currently pursuing [2]. 
In our approach, a goal can be described using a relation 
as follows: (R X, A1, A2, .. An). This relation (R) allows 
to specify a goal "X" according to the primitive or 
described concepts "A1, A2, .. An" which characterise an 
initial state.  Nevertheless, in practice, the stress is often 
laid on methods to achieve the goal rather than the goal 
itself; since these methods are, in general, the object of 
practising. Consequently, the term "goal" is used to refer 
to an intention to achieve the goal rather than meaning the 
goal itself. Thus, procedural knowledge becomes the way 
carrying out this intention and a goal can be seen – 
computationally – as a generic function where procedures 
play the role of methods. To underline the intention idea, 
the expression representing "R" is an action verb. For 
example, in Boolean algebra, the goal "reduce (F & T)" 
means the intention to simplify the conjunction of the 
truth constant "False" with the truth constant "True". 
Although they are treated by means of procedures, our 
model considers goals as a special case of semantic 
knowledge which describes a state to be reached [14] and 
that represents the intentions behind actions of the 
cognitive system. 
 

D   The Episodic Knowledge Representation 
The episodic memory retains details about our experiences 
and preserves temporal relations allowing reconstruction 
of previously experienced events as well as the time and 
context in which they took place [15]. In our approach, the 
episode representation is based on instantiation of goals. 
Each episode specifies a goal that translates an intention 
giving a sense to the underlying events and actions. If the 
goal realisation requires the execution of a complex 
procedure, formed by a set of "n" actions, then the goal 

will be composed of "n" subgoals whose realisation will 
be stored in "n" sub-episodes. Thus, executions of 
procedures are encoded in a simulated episodic memory 
of the learner and each goal realisation is encoded in an 
episode.  In this way – and for each student – all facts 
during a learning activity are stored in her/his episodic 
memory. 
 

THE ERRORS REMEDIATION PRINCIPLE   

 
When interacting with an ILE during the problem solving 
activities, and when a learner makes an error, satisfying 
the goal that s/he wished to accomplish was realised by 
means of an erroneous procedure. This error results from 
bad interpretation of the situation, causing a choice of 
procedure which (i) can be correct but whose application 
cannot be done in the current context or (ii) is invented 
and completely false. The procedure is regarded as 
erroneous if the final result obtained by the learner is 
different from that of the tutor. In this case, the procedure 
will be labelled (within an episode in which the erroneous 
result is stored) as a "procedure-error" which has a unique 
identifier and which will lead to formulate a set of valid 
procedures that the learner should have used to achieve 
the goal. At this stage, learning and mastering these 
correct procedures will be one of the immediate objectives 
of the tutorial strategy. More precisely, as the episode 
containing the "procedure-error" comprises an instance of 
the goal, a set of valid procedures which satisfy it will be 
deduced starting from the goal prototype. The valid 
procedures contain the didactic resources necessary to 
teach their usage. In the case that those procedures are 
complex, each procedure specifies a set of subgoals whose 
each one contains its own set of valid procedures. In this 
recursive way, the tutor easily conceives an ordered 
sequence of valid procedures allowing the correct 
accomplishment of any goal. Particularly, those for which 
the learner has failed. 
 

THE EXPERIMENTAL VALIDATION 

 
"Red-Bool" is an ILE which presents a problem solving 
milieu related to the simplification of Boolean expressions 
by using algebraic reduction rules. These are generally 
taught to undergraduate students. The goal of the ILE is to 
help students to learn Boolean reduction techniques. 
Preliminary notions, definitions and explanations (in the 
"Theory" section) constitute a necessary knowledge 
background to approach the Boolean reduction problem. 
This knowledge is organised into sub-sections and is 
available through exploration via clicking buttons. In the 
examples section, examples are given. Those are 
generated randomly with variable degree of difficulty 
chosen by the learner. Students can also enter, by means 
of a visual keyboard, any Boolean expression they want 
and ask the system to solve it. The problem solving steps 
and the applied rules are shown on a blackboard. 
Examples show optimal solutions to simplify expressions 
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and are provided to guide learner during the problem 
solving, which begins by clicking on the exercise button, 
allowing to access to the corresponding section. In this 
latter – and via the visual keyboard – students reduce a 
randomly generated or a specifically shaped (by the tutor) 
Boolean expression by choosing suitable simplification 
rules to apply in the order they want. Figure 1 shows the 
resolution steps made by a student (Marie) to reduce an 
expression. Although various tutorial strategies are to be 
considered, we use actually the "Cognitive Tutor" strategy 
[4], implemented within several intelligent tutoring 
systems  and   which  its  effectiveness  has  been  
largely proven [1,6]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consequently, in the case of erroneous rule choice (or 
application) on any of the sub-expressions forming the 
initial given expression, the system notifies the learner and 
shows her/him – in the "advices" window – (i) the selected 
sub-expression, (ii) the applied rule to reduce it, (iii) the 
resulted simplified sub-expression and (iv) the current 
state of the global expression. If there were mistakes, then 
at the end of each exercise, the tutor proposes to the 
student a related example or suggests to her/him to solve 
another exercise. In this last case, the Boolean expression 
suggested to reduce is considered as a personalised 
feedback with regards to the made errors.  
 

TABLE 1.  – MAIN PARAMETERS OF THE EXPERIMENT 
Complexity 1 2 3 4 5 
Number of exercises 4 4 5 6 6 
Number of students 10 10 10 10 10 

 
    We asked students in mathematics who attend the 
courses "MAT-113" or "MAT-114" dedicated to logic 
calculus and discrete math, to practice the reduction of 
Boolean expressions using "Red-Bool". By this 
experiment, our interest was to record the resolution’s 
traces of each learner during problems solving tasks (in 
the "exercises" section)  in  order  to  evaluate  the  
aptitude of the  
feedbacks’ model to enlighten the tutor when making 
tutorial decisions. Data and parameters of this experiment 
are reported in Table 1. 

    According to the proposed theoretical approach 
described above, each step in a learner’s resolution 
process (during a solving task) corresponds to a transition 
realisable by means of primitive or complex procedure 
which was applied to satisfy a goal or a subgoal. This 
procedure handles primitive and/or described concepts 
such as rules, proposals, logical operators and truth 
constants. For each student and each exercise made, the 
system deduces (starting from the low-level observations 
sent by the graphical interface of the ILE) the procedures 
used as well as the instances of knowledge created and 
handled. Since a procedure is generally called to achieve a 
goal, the collected data allows deduction of goals (and 
their subgoals) formulated during the Boolean reduction 
process. At the end of the exercise, the system saves the 
trace of the resolution in an "episodic" XML file which 
serves for the errors’ analysis. For example, let’s consider 
the case of John who tried to reduce the expression "(a & 
~T)" by (1) applying the simplification rule of the "True" 
truth constant negation which substitutes "(~T)" by "(F)" 
transforming  "(a & ~T)"  into  "(a & F)"  and  (2)  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – The problem solving steps made by Marie to simplify the 
given expression. 

 
 
 
 
 

Figure 2 – A part of the John’s episodic history related to the reduction 
of the expression "(a & ~T)". 

 

changing the resulted expression into "(a)". Here, John 
makes a mistake. Theoretically, the reduction of "(a & F)" 
is correctly made by applying the conjunction rule of a 
proposal with the "False" truth constant (p & F → F, 
where p is a proposal) which results in transforming "(a & 
F)" into "(F)". In this case, the main goal "reduce (a & 
~T)" was achieved by a complex procedure giving rise to 
two subgoals : (1) "substitute (~T ; F)", which was 
achieved by the primitive procedure "P_SubNegTrue" 
calling the substitution rule of the "True" truth constant 
negation; and (2) "reduce (a & F)" which was achieved by 
a procedure calling an unknown erroneous rule (noted in 
figure 2 and figure 3 by Dx#4) unseated of the primitive 
procedure "P_ReduceConjunctionFalse" which call the 
conjunction rule of a proposal with the "F" truth constant. 
Figure 2 illustrates the episodic history related to this 
exercise. "Episode1" reflects the main goal realisation 
which was split into two sub-events: "Episode2" and 
"Episode3". The former represents the substitution of the 
"True" truth constant negation and the latter corresponds 
to the "(a & F)" erroneous simplification.  
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 Figure 3 shows  the slots’  content of the goal 
“P_ReduceExpressionConjunctionFalse" that John 
attempts erroneously to achieve. 
    The analysis of errors consists in (1) scanning the 
content of the XML file to research the errors occurred 
during the reduction of the expression and, for each 
detected error, (2) identifying a valid procedure (which 
we note "P_valid") allowing to achieve the student goal 
and which could have been used instead of the erroneous 
procedure (which we note "P_error"). The identification 
of a correct procedure – which makes use of Boolean 
reduction rules – is made thanks to a second XML file 
that contains the domain knowledge. In that case, the 
tutor proposes to the learner a new Boolean expression 
(which we note "Expr_FBack") that the simplification 
will (in theory) make use of "P_valid". In this sense, 
"Expr_FBack" can be seen as a personalised remediation 
following the occurrence of "P_error". 

 
The individualised feedback generation process 
The slot "exercises" defined in the structure of   the valid  
procedure  includes  a  script  containing  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dynamic (not predefined) didactic resources. i.e., a 
generic model of exercises. In order to propose an 
exercise to resolve, the generic model specifies a 
sequence of goals which are of the type "G_build". The 
type "G_build" enables to create (1) a primitive object 
(concept) starting from its class or (2) a complex object 
starting from the classes of its components. Arguments of 
each goal of the type "G_build" are formulated starting 
from clues discovered in the episodic XML file. In other 
words, the structure of the episodic memory permits to 
the tutor to find, thanks to the erroneous procedures, the 
episodes in which errors have occurred. These episodes 
contain indices which are taken as parameters by the goal 
of the type "G_build"; and thus, which are useful to 
scaffold an exercise with regards to the generic model. 
For example, and as shown in Figure 1 which illustrates 
the steps made by Marie to reduce the expression "((F & 

c) & (e | ~T)), the student deals firstly with the sub-
expression "(F & c)" and applies the conjunction rule of a 
proposal with the "False" truth constant to obtain "(F)". 
At step 2, she simplifies the sub-expression "(~T)" to 
"(T)". Here, Marie makes a mistake. Theoretically, the 
reduction of "(~T)"  is correctly  made by applying  the 
negation rule of the "True" truth constant. At step 3, 
another error was made when Marie simplifies the sub-
expression "(e | F)" to "(F)". The reduction of "(e | F)" is 
correctly made by applying the disjunction rule of a 
proposal with the "F" truth constant (p | F → p, where p is 
a proposal), which results in transforming the sub-
expression into "(e)", not into "(F)". At the last step, 
Marie applies the conjunction rule of a proposal with the 
"False" truth constant to reduce "(F & e)" into "(F)". 
    At the end of the exercise, and in consequence with the 
two made errors, the objective of the tutorial strategy is to 
teach Marie (1) the use of the simplification rules of the 
negation of a truth constant and (2) the application of the 
reduction rule of the disjunction of a proposal with the 
"False" truth constant. To this end, the generic model of 
the didactic resources of each valid procedure which 
allows achieving a failed goal (i.e., the intention to 
simplify the negation of the "True" truth constant or that 
to reduce the disjunction of a proposal with the  

Figure 3 – Some slots of the goal 
"G_ReduceExpressionCunjonctionFalse".  

 
 

Figure 4 – Some slots of the procedure 
"P_ReduceExpressionDisjonction". 

 
"False" truth constant) is requested to scaffold an exercise 
that will be proposed – to the learner – as a tailored 
feedback.    To  remedy  her  two  gaps,  the tutor 
proposes to Marie to practice the simplification of the 
expression "((b | F) & ~T)". This one is formulated 
starting from the scripts of the slots "exercises" of the 
procedures "P_Apply_ReductionNegation_True" and 
"P_ReduceExpressionDisjonction". Figure 4 shows some 
slots of the latter which simplifies the disjunction of a 
proposal with the "False" truth constant. For example, 
Table 2 comprises feedbacks generated following the 
resolution of the expression "(((F | c) & (E & ~V)) & (~a | 
~F))" which was given as exercise to six (6) students. 
Because of the difference of the made errors, feedbacks 
(provided in terms of suggested exercises) are dissimilar. 
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TABLE 2.  GENERATED FEEDBACKS FOLLOWING THE 
RESOLUTION OF THE SAME EXPRESSION 

Student Feedback 
1 ((T & d) & (~T & (T | a))) 
2 (~F & (c & F)) 
3 (~F & ((T | e) | (F & F))) 
4 ((c | T) & ~T) 
5 ((~F) & (~T)) 
6 ((F & ~a) & (~T & (b | F))) 

 

V.  CONCLUSION 

 
We have presented a knowledge representation model 
which is inspired by the artificial intelligence research on 
the computational modelling of the knowledge and by 
cognitive theories that offers a fine modelling of the 
human learning processes. We have introduced an 
original principle of personalised remediation to students’ 
errors. By means of experimental results obtained thanks 
to practical tests, we have show that our knowledge 
representation model facilitates the planning of a tailored 
sequence of feedbacks that significantly help the learner. 
We are actually refining the knowledge representation 
structures – by taking into account pedagogical and 
didactic knowledge – and setting about new experiments 
with others teaching domains; such as, teaching heuristic 
techniques in operational research and teaching the 
resolution by refutation in the predicate calculus. 
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