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Abstract—This paper presents a Case-Based Reasoning 
approach for the personalized recommendation and the 
students’ authoring tasks in on-line repositories of Learning 
Objects (LOs). The recommender combines content-based 
filtering techniques together with collaborative filtering 
mechanisms. Students’ authoring tasks include the 
incorporation of ratings of the existing LOs and new LOs, 
which are peer reviewed. This approach is going to be 
applied to a repository with more than 200 programming 
examples written in different programming languages. 

Index Terms—Case-based recommenders, Social filtering, 
Learning objects, Programming learning. 

I. INTRODUCTION 
Skills in many different disciplines can only be 

developed by extensive practice. Instructors are conscious 
of that and they usually include many case studies and 
examples in their lectures. In the last years, this tendency 
has extended to the development of on-line repositories of 
Learning Objects (LOs), which represent these case 
studies and examples. The abundance of LOs inevitably 
poses a new challenge: providing support for locating 
those LOs adapted to the individual knowledge, goals 
and/or preferences of the students. 

In this paper, we describe a Case-Based Reasoning 
(CBR) approach for recommending LOs that exist in 
educational repositories. This approach combines content-
based filtering mechanisms and collaborative (or social) 
filtering processes [1]. The content-based filtering 
mechanisms take into account the student current 
knowledge and her concrete learning goals. The 
collaborative filtering mechanisms help to predict the 
utility that a concrete LO has for a student, based on the 
ratings (i.e., relevance, preferences, and opinions) that 
similar students (students with similar goals and 
knowledge level) have made about this LO.  

Incorporating collaborative recommendation 
capabilities in an educational repository requires storing 
the rating score that a student makes about a LO together 
with her profile and learning goals. The student profile 
and goals are not static but evolve in time, so a 
collaborative filtering approach that considers the ratings 
made by similar students should store the profile and the 
goal the student had when she scored the LO. From a 
CBR point of view, the incorporation of this information 
represents a kind of learning in the approach. This new 
information will be used to refine the recommendation 
process. From the authoring point of view, the 

incorporation of this information represents the 
collaboration of a new agent: the student. 

In our approach, students’ authoring is not limited to 
the inclusion of rating scores about the existing LOs. 
Students can also suggest the incorporation of new LOs. 
So, the repository dynamically grows and improves with 
the student collaboration. Including all this information 
has three direct advantages. First, the content and 
organization of the repository is not limited to the 
instructor perspective but is complemented with the point 
of view of the students. Second, the development and 
updating of the repository puts a heavy load on the 
instructor, which can be reduced with the participation of 
the students. Finally, student motivation could increase 
because they collaborate in the learning process of their 
colleagues. 

The general approach presented here will have a direct 
application in our daily teaching tasks at the Computer 
Science School in the Complutense University of Madrid 
(Spain). Programming skills greatly benefit from 
extensive practice and, as a consequence, many 
environments that support example-based programming 
teaching, as well as on-line repositories of programming 
examples, have been developed [2]. We have developed 
one of such repositories with more than 200 programming 
examples written in different programming languages. At 
present, this repository lacks of facilities to make 
personalized recommendations. Including these facilities 
could increase the current high use of the repository. 
Besides, we have suggested that the students are included 
in the authoring process. The suggestion has been well 
received by the students. 

Section II provides a high-level description of the 
approach independently of the educational domain. 
Sections III and IV complements previous one by 
describing the recommendation and the authoring aspects. 
Section V briefly describes the particularization of the 
approach to an educational repository of programming 
examples. Section VI discusses our approach and relates it 
with previous works. Last section concludes the paper and 
presents some future directions for our research. 

II. AN OUTLINE OF THE APPROACH 
In this paper we propose a novel approach for 

managing LO repositories. This approach is characterized 
by the inclusion of two different interfaces: 
• A reactive, single-shot recommender interface, 

which the students use to retrieve a set of relevant 
LOs after posing a query. The result is an ordered 
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list of LOs. Priority is given to LOs that: are similar 
to the target query, adapt to the student knowledge 
level (student’s profile), and were relevant to other 
students with a similar knowledge level. 

• An authoring interface to create, review and rate 
new LOs. Students can add and catalogue a new LO 
according to the concepts that it covers. Moreover, 
they can also provide rating scores and comments 
for the new LOs created by their classmates. 
 

The approach has been conceived as a CBR one [3]. 
CBR is a problem-solving paradigm that faces a new 
problem by retrieving past cases (experiences) that solve 
similar problems and reusing them in the new problem 
situation. CBR also is an approach to incremental learning 
that should include some maintenance policies [4]. 
Incorporating new cases to the case base is the essential 
way of learning in CBR. Learning retrieval knowledge is 
also a common way to improve the system performance.  

CBR has been applied to diverse domains, from e-
commerce applications to planning systems. In particular, 
CBR techniques have been successfully used for 
developing educational approaches and computer-based 
teaching systems [5, 6, 7] and case-based recommender 
systems [8].  

From a CBR point of view the fundamental elements 
(the cases) of the knowledge base are the LOs contained 
in the repository. The cases should also enclose a set of 
associated rating scores and the student profile when the 
LO was scored. On the other hand, the recommendation 
task concerns to the approximate retrieval phase of the 
CBR, and the students’ authoring interface relates to the 
CBR learning phase. We suggest the use of an ontology to 
index LOs within the repository. Ontologies provide a 
general indexing scheme that lets include similarity 
knowledge between concepts, which is a crucial 
knowledge in the similarity-based search and ranking 
contexts employed by the recommender. Besides, an 
ontology gathers a common parlance that can be used by 
the various knowledge sources (instructors, students) 
when including new LOs, and by the students when 
querying the tool. Other authors interested in collaborative 
authoring also make a successful use of ontologies [9]. 

Fig. 1 sketches our approach. Sections III and IV 
describe the components associated with the recommender 
and the authoring interfaces, respectively. 

III. THE RECOMMENDER INTERFACE 
The recommender interface provides access to the most 

relevant LOs for a student by posing explicit queries. 
Then, the recommendation runs in two stages: retrieval 
and ranking. 

The retrieval stage follows knowledge-intensive CBR 
guidelines and looks for the LOs that satisfy, in an 
approximate way, the student learning goals. The student 
poses a query using the concepts existing in the domain 
ontology. This query represents her learning goals: the 
concepts she wants to learn. The ‘retrieval component’ 
tries first an exact match and finds the LOs indexed by the 
query concepts. If there are no LOs that satisfy this 
condition, LOs indexed by a subset of the (same or 
similar) concepts specified by the student are retrieved. 

Once LOs are retrieved, the ‘ranking component’ sorts 
them according to the relevance assigned to each LO. The 

ranking stage mixes a compromise-driven selection  
strategy with user-based collaborative filtering to generate 
a relevance score for each LO [10]. Relevance score 
computes the relevance of the LO L for a student S as the 
sum up of two elements:  
• An element that represents the compromise and 

combines: 
o The relevance due to the goals satisfied by L. The 

higher the number of query concepts that L lets 
learn is, the higher the relevance value is. The 
more similar L concepts and query concepts are, 
the higher the relevance value is.  

o The relevance due to the adaptation degree of L 
to the current knowledge of S. The student’s 
current knowledge is represented by her profile in 
the ‘student profile repository’. The goal is to 
penalize L if it includes concepts (different from 
those that let satisfy the query) that profile S 
lacks. 

• An element that represents the relevance due to the 
utility assigned to L by other students with goals and 
profiles similar to S. The ‘student preference 
repository’ stores the rating scores from the students 
about the LOs they have used, together with their 
goals and profiles when they used them. We weight 
the rating scores from the other students according 
to the similarity between the profile when they 
ranked the LO and the current S profile. The more 
similar the profiles are, the higher the relevance for 
the rating score is. 
 

In order to compute any of the partial relevancies, 
different local similarity metrics can be tried. In order to 
compute the global relevance we can choose among some 
of the widely accepted similarity metrics: (weighted) 
block-city, (weighted) Minkowsky, Euclidean, etc. 

This case-based recommender alleviates most of the 
classic bottlenecks related to collaborative filtering 
recommender systems [11, 12, 13]. As we can see, the 
ontology-based indexing scheme is crucial for both the 
retrieval and ranking stages, and it reduces the cold 
starting and first-rater problems: even if a LO has only a 
few ratings or a student is new at the repository, the 
recommender provides a set of relevant LO according to 
the student query. Moreover, the user-based collaborative 
filtering strategy does not need to explore the complete 
student preference repository in order to look for similar 
students. Instead, the profiles are extracted from the ones 
that have already rated a candidate LO. This reduces the 
scalability problem that concerns to user-based 
collaborative filtering. 

IV. STUDENTS’ AUTHORING INTERFACE 
The students’ authoring interface lets learn two classical 

types of knowledge in CBR: cases and retrieval 
knowledge. 

As stated before, the ‘student preference repository’ 
stores the rating scores explicitly assigned by the students 
to the LOs they have used, together with their goals and 
profile when they used them. According to Brusilovsky, 
Farzan and Ahn [14], we defend an explicit collection of 
student feedback because the information obtained is more 
accurate than the one obtained by implicit approaches 
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which extract feedback from user actions. This way, the 
collected information is used by the recommender 
interface and provides a reliable form of collaboratively 
refining the relevance computed for each LO stored in the 
repository. So, the repository learns knowledge for the 
CBR retrieval phase as an indirect learning of index 
weights [15].  

The ‘LO acquisition component’ and the ‘peer review 
component’ participate in the learning of new LOs. 
Students provide new LOs and a tentative set of the 
ontology concepts to index them. The ‘LO acquisition 
component’ stores them in a temporary LO repository 
until the instructor permanently moves them to the ‘LO 
repository’ using the ‘maintenance component’. Once they 
are in the ‘LO repository’ they can be accessed. 

The approach includes a manual CBR maintenance 
policy where instructors decide off-line which LOs they 
definitely incorporate into the ‘LO repository’. A peer 
review technique allows students to examine and to judge 
the quality of the LOs provided by their colleagues. We 
propose that the ‘peer review component’ lets students 
browse the contents of the ‘temporary LO repository’ or 
pose a query to look for new LOs that relate to concepts 
they are interested in. The students give ratings, and 
optionally comments, about the new LOs, alleviating the 
classical first-rater problem in collaborative recommender 
systems. The information provided by the students will be 
taken into account by the instructor in the maintenance 
process. 

Although we have suggested the use of a periodic, off-
line and reactive maintenance policy aimed basically at 
LO retention, the approach also supports competence-
preserving approaches to LO deletion that can profit from 
the rating scores assigned by the students. Low rating 
scores let identify redundant or uninteresting LOs, which 
the instructor could freely delete. 

V. THE CASE OF A REPOSITORY OF PROGRAMMING 
EXAMPLES 

In the last two years, a web repository of programming 
examples for CS1 and Physics students has been available 
through the Complutense University of Madrid Virtual 
Campus. The repository contains more than 200 
programming examples developed using different 
programming languages. The examples are nowadays 
organized according to thematic packages and difficulty 
levels.  

Although most of the students really appreciate the 
support provided by the repository, there is a 70% student 
that misses the facility to find the examples they are 
interested in. Certainly, this facility can not be provided 
by a course management tool like WebCT, which is used 
in our Virtual Campus. Our students are also very 
interested in participating in the authoring tasks: there is a 
60% student that would like to participate by including 
their own examples and/or assessing existing examples. 

In order to provide personalized recommendation and 
students’ authoring facilities in this repository we are 
going to apply the approach described here. Examples will 
be indexed through an ontology of programming concepts 
that we have developed based on existing educational 
ontologies for procedural and object-oriented 
programming [16, 17]. The ontology has been designed 
using the ontology editor Protégé and formalized in OWL-
DL [18]. Fig. 2 shows a partial view of our ontology. 

The use of an indexing scheme based on programming 
concepts that exists in an ontology, instead of concrete 
programming instructions extracted from the 
programming code of the example solution, helps to 
separate the example representation from the 
programming style of the example author. On the other 
hand, our ontology is quite independent of the 
programming language. So it is possible to use it for 
indexing examples solved using different programming 
languages. This could be of great help when the student is 

 
Figure 1.  Sketching the approach. 
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interested in retrieving examples developed with different 
programming languages after posing a query.  

In order to develop the prototype tool we will use 
jCOLIBRI-2 [19], an open source framework in Java that 
provides the main infrastructure to manage ontologies and 
implements the most common methods and comparison 
algorithms employed in case-based retrieval. Moreover, 
latest version of jCOLIBRI-2 includes templates to 
prototype case-based recommender systems. 

The prototype tool will incorporate facilities for the 
automatic updating of the student model by using tests 
that exists for every aspect of the course. It will also 
distinguish among examples that are new to the student 
from those that she has previously accessed, as NavEx 
does [20]. This could help students to explore the 
examples retrieved. 

We plan to include unsolved exercises into the LO 
repository. So, the student could retrieve completely 
solved examples and exercises to solve. When retrieving 
an exercise to solve the environment could make a 
personalized recovery of examples in the context of the 
exercise: examples would be requested by the student on 
demand or the environment could proactively suggest 
examples (i.e., if the solution of the exercise should 
include loop sentences and the student model shows a low 
knowledge of loops, the environment could suggest 
examples that include loops in their solution). 

VI. RELATED WORK 
Educational digital libraries rely mainly on content-

based retrieval [14, 21]. LOs are considered as documents 
and search engines apply information retrieval methods, 
such as vector model space, to retrieve the LOs that satisfy 
the student query. Hybrid filtering approaches that 
combine content and collaborative aspects have been 
extensively used in e-commerce recommender systems 
[13]. However, they constitute a quite innovative approach 
in accessing educational repositories. 

The approach described in the paper is inspired in 
several works that employ case-based retrieval methods to 
address classical problems from collaborative filtering. 
CASPER [22] is an online recruitment search engine that 
combines similarity-based reasoning and user profiling to 
provide personalized information retrieval. CASPER 
works also in two stages but it differs from our approach 
in the methods employed. On the one hand, retrieval stage 
employs feature-based similarity metrics. On the other 
hand, ranking stage employs only the rating profile from 
the user that made the query in order to rank the retrieved 
jobs. 

PTVPlus [12] is a recommender for the Digital TV 
domain. In this case, it employs an item-based approach to 
suggest users’ relevant TV programs. Although our 
approach promotes user-based collaborative filtering, 
PTVPlus has suggested us the use of CBR-like similarity 
metrics to compare user profiles and the relevance 
computing to rank the retrieved LOs. 

Earlier example-based educational environments in the 
programming teaching domain had a very simple interface 
to select relevant examples and supported searching by 
using keywords that appear in the problem statement or in 
the code itself [23, 24]. These tools did not take the 
current student knowledge into account, so they could 
retrieve resources including concepts that the student does 
not know (or even that she is not ready to learn yet). 
Besides, it should be noticed that the problem statement 
could describe the example goal from very different points 
of view: it could include references to specific 
programming concepts −i.e., adding an element to a sorted 
linked-list− but it could describe an equivalent “real-
world” problem −i.e., adding a new contact to an address 
book. Clearly, retrieval based on keywords when using 
this second (and common) type of example goal 
description is far from being appropriate, what clearly 
limits the use of the approach. 

More recently, NavEx [20], an evolution of the web-
based tool WebEx [25] for exploring annotated program 
examples developed using the C programming language, 

 

 
Figure 2.  A partial view of the programming ontology. 
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classifies examples according to the current state of the 
student knowledge and her history of past interactions. It 
applies adaptive navigation to: (a) distinguish new 
examples from examples that have already been partially 
or fully explored, and (b) categorize examples as being 
either “ready to” or “not yet ready to” explore according 
to the current knowledge of the student. Finally, NavEx 
ADVISE [26] extends the previous work on NavEx by 
combining adaptive annotation with spatial 2D similarity-
based visualization. The whole repository of examples is 
displayed on a 2D example map where similar examples 
are placed closer to each other and dissimilar examples are 
placed farther from each other. Each example is 
represented by a vector of concepts from the C-
programming domain. The concepts are automatically 
extracted from the code itself using a domain-specific 
parser and traditional information retrieval techniques. 
The concept vectors are used to calculate the similarities 
between the examples they represent. The use of 
automated textual indexing and retrieval methods can 
reduce the resource cataloging effort. However, our 
ontology-based approach let us include similarity metrics 
between concepts. This metrics are crucial for the retrieval 
stage and the compromise component in the rating stage. 

NavEx ADVISE provides a limited support for locating 
resources adapted to the student current learning goal. 
Given an example currently explored by the student, she 
only receives visual cues about similar and dissimilar 
examples. However, the tool does not provide information 
about neither the concepts shared by two examples nor the 
concepts on which two examples differ. So, the student 
can not easily locate examples appropriate for a concrete 
learning goal. 

Educational repositories that incorporate collaborative 
filtering employ approaches less accurate than the one 
proposed in our work. They take into account the LO 
ratings made by the students independently of their 
profile. This is the case of Knowledge Sea [14], a platform 
to access electronic documents about the C programming 
language that incorporates social navigation support. 
Knowledge Sea search engine uses a vector model rating 
to order the retrieved LOs according to their relevance but 
student ratings are not used to calculate the relevance. 
Instead, social relevance is expressed with visual cues. 

VII. CONCLUSIONS AND FUTURE WORK 
This paper presents a CBR approach for the 

personalized access and the students’ authoring tasks in 
on-line repositories of LOs. The personalized access 
combines content-based filtering and collaborative user-
based filtering mechanisms. Students could extend the 
repository with two different kinds of information: new 
LOs and their preferences about the existing LOs. So, the 
environment contents and behavior improve with the 
student collaboration. The use of an ontology-based 
indexing scheme is a crucial element in the approach. It 
provides a unique vocabulary for query retrieval and it 
eases the relevance metric computing according to the 
student’s knowledge level. 

In order to prove the feasibility of the approach 
described in this paper, we will apply it to an on-line 
repository with more than 200 programming examples 
appropriate for Computer Science and Physics non-major 
students. As we have shown, the use of techniques 

employed in case-based recommender systems in this 
domain introduces improvements with respect to related 
works. We plan to make a comprehensive evaluation of 
the resulting tool at the end of the next academic year. 

Our immediate future work considers the evaluation 
and comparison of different similarity measures in order 
to compute the LO relevance and compromise according 
to the student’s profile. Moreover, we should consider 
how to integrate other features included in the LO 
specification – for instance, difficulty level or 
programming language – in the similarity methods.  

Finally, we also plan to integrate a proactive version of 
the recommender with learning management systems to 
generate personalized sets of LOs according to student 
assessments. In order to access to the following lecture, 
the student should pass a test. The student’s grades in this 
assessment will be used to select the LOs that the 
environment provides to the student in the next lecture. 
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