
RECOMMENDATION AND STUDENTS’ AUTHORING IN REPOSITORIES OF LEARNING OBJECTS:
A CASE-BASED REASONING APPROACH

Recommendation and Students’ Authoring in
Repositories of Learning Objects:

A Case-Based Reasoning Approach
doi:10.3991/ijet.v4s1.797

M. Gómez-Albarrán and G. Jiménez-Díaz
Universidad Complutense de Madrid, Madrid, Spain

Abstract—This paper presents a Case-Based Reasoning
approach for the personalized recommendation and the
students’ authoring tasks in on-line repositories of Learning
Objects (LOs). The recommender combines content-based
filtering techniques together with collaborative filtering
mechanisms. Students’ authoring tasks include the
incorporation of ratings of the existing LOs and new LOs,
which are peer reviewed. This approach is going to be
applied to a repository with more than 200 programming
examples written in different programming languages.

Index Terms—Case-based recommenders, Social filtering,
Learning objects, Programming learning.

I. INTRODUCTION
Skills in many different disciplines can only be

developed by extensive practice. Instructors are conscious
of that and they usually include many case studies and
examples in their lectures. In the last years, this tendency
has extended to the development of on-line repositories of
Learning Objects (LOs), which represent these case
studies and examples. The abundance of LOs inevitably
poses a new challenge: providing support for locating
those LOs adapted to the individual knowledge, goals
and/or preferences of the students.

In this paper, we describe a Case-Based Reasoning
(CBR) approach for recommending LOs that exist in
educational repositories. This approach combines content-
based filtering mechanisms and collaborative (or social)
filtering processes [1]. The content-based filtering
mechanisms take into account the student current
knowledge and her concrete learning goals. The
collaborative filtering mechanisms help to predict the
utility that a concrete LO has for a student, based on the
ratings (i.e., relevance, preferences, and opinions) that
similar students (students with similar goals and
knowledge level) have made about this LO.

Incorporating collaborative recommendation
capabilities in an educational repository requires storing
the rating score that a student makes about a LO together
with her profile and learning goals. The student profile
and goals are not static but evolve in time, so a
collaborative filtering approach that considers the ratings
made by similar students should store the profile and the
goal the student had when she scored the LO. From a
CBR point of view, the incorporation of this information
represents a kind of learning in the approach. This new
information will be used to refine the recommendation
process. From the authoring point of view, the

incorporation of this information represents the
collaboration of a new agent: the student.

In our approach, students’ authoring is not limited to
the inclusion of rating scores about the existing LOs.
Students can also suggest the incorporation of new LOs.
So, the repository dynamically grows and improves with
the student collaboration. Including all this information
has three direct advantages. First, the content and
organization of the repository is not limited to the
instructor perspective but is complemented with the point
of view of the students. Second, the development and
updating of the repository puts a heavy load on the
instructor, which can be reduced with the participation of
the students. Finally, student motivation could increase
because they collaborate in the learning process of their
colleagues.

The general approach presented here will have a direct
application in our daily teaching tasks at the Computer
Science School in the Complutense University of Madrid
(Spain). Programming skills greatly benefit from
extensive practice and, as a consequence, many
environments that support example-based programming
teaching, as well as on-line repositories of programming
examples, have been developed [2]. We have developed
one of such repositories with more than 200 programming
examples written in different programming languages. At
present, this repository lacks of facilities to make
personalized recommendations. Including these facilities
could increase the current high use of the repository.
Besides, we have suggested that the students are included
in the authoring process. The suggestion has been well
received by the students.

Section II provides a high-level description of the
approach independently of the educational domain.
Sections III and IV complements previous one by
describing the recommendation and the authoring aspects.
Section V briefly describes the particularization of the
approach to an educational repository of programming
examples. Section VI discusses our approach and relates it
with previous works. Last section concludes the paper and
presents some future directions for our research.

II. AN OUTLINE OF THE APPROACH
In this paper we propose a novel approach for

managing LO repositories. This approach is characterized
by the inclusion of two different interfaces:
• A reactive, single-shot recommender interface,

which the students use to retrieve a set of relevant
LOs after posing a query. The result is an ordered

iJET – Volume 4, Special Issue 1: "SIIE'2008", March 2009 35

http://dx.doi.org/doi:10.3991/ijet.v4s1.797�

RECOMMENDATION AND STUDENTS’ AUTHORING IN REPOSITORIES OF LEARNING OBJECTS:
A CASE-BASED REASONING APPROACH

list of LOs. Priority is given to LOs that: are similar
to the target query, adapt to the student knowledge
level (student’s profile), and were relevant to other
students with a similar knowledge level.

• An authoring interface to create, review and rate
new LOs. Students can add and catalogue a new LO
according to the concepts that it covers. Moreover,
they can also provide rating scores and comments
for the new LOs created by their classmates.

The approach has been conceived as a CBR one [3].
CBR is a problem-solving paradigm that faces a new
problem by retrieving past cases (experiences) that solve
similar problems and reusing them in the new problem
situation. CBR also is an approach to incremental learning
that should include some maintenance policies [4].
Incorporating new cases to the case base is the essential
way of learning in CBR. Learning retrieval knowledge is
also a common way to improve the system performance.

CBR has been applied to diverse domains, from e-
commerce applications to planning systems. In particular,
CBR techniques have been successfully used for
developing educational approaches and computer-based
teaching systems [5, 6, 7] and case-based recommender
systems [8].

From a CBR point of view the fundamental elements
(the cases) of the knowledge base are the LOs contained
in the repository. The cases should also enclose a set of
associated rating scores and the student profile when the
LO was scored. On the other hand, the recommendation
task concerns to the approximate retrieval phase of the
CBR, and the students’ authoring interface relates to the
CBR learning phase. We suggest the use of an ontology to
index LOs within the repository. Ontologies provide a
general indexing scheme that lets include similarity
knowledge between concepts, which is a crucial
knowledge in the similarity-based search and ranking
contexts employed by the recommender. Besides, an
ontology gathers a common parlance that can be used by
the various knowledge sources (instructors, students)
when including new LOs, and by the students when
querying the tool. Other authors interested in collaborative
authoring also make a successful use of ontologies [9].

Fig. 1 sketches our approach. Sections III and IV
describe the components associated with the recommender
and the authoring interfaces, respectively.

III. THE RECOMMENDER INTERFACE
The recommender interface provides access to the most

relevant LOs for a student by posing explicit queries.
Then, the recommendation runs in two stages: retrieval
and ranking.

The retrieval stage follows knowledge-intensive CBR
guidelines and looks for the LOs that satisfy, in an
approximate way, the student learning goals. The student
poses a query using the concepts existing in the domain
ontology. This query represents her learning goals: the
concepts she wants to learn. The ‘retrieval component’
tries first an exact match and finds the LOs indexed by the
query concepts. If there are no LOs that satisfy this
condition, LOs indexed by a subset of the (same or
similar) concepts specified by the student are retrieved.

Once LOs are retrieved, the ‘ranking component’ sorts
them according to the relevance assigned to each LO. The

ranking stage mixes a compromise-driven selection
strategy with user-based collaborative filtering to generate
a relevance score for each LO [10]. Relevance score
computes the relevance of the LO L for a student S as the
sum up of two elements:
• An element that represents the compromise and

combines:
o The relevance due to the goals satisfied by L. The

higher the number of query concepts that L lets
learn is, the higher the relevance value is. The
more similar L concepts and query concepts are,
the higher the relevance value is.

o The relevance due to the adaptation degree of L
to the current knowledge of S. The student’s
current knowledge is represented by her profile in
the ‘student profile repository’. The goal is to
penalize L if it includes concepts (different from
those that let satisfy the query) that profile S
lacks.

• An element that represents the relevance due to the
utility assigned to L by other students with goals and
profiles similar to S. The ‘student preference
repository’ stores the rating scores from the students
about the LOs they have used, together with their
goals and profiles when they used them. We weight
the rating scores from the other students according
to the similarity between the profile when they
ranked the LO and the current S profile. The more
similar the profiles are, the higher the relevance for
the rating score is.

In order to compute any of the partial relevancies,
different local similarity metrics can be tried. In order to
compute the global relevance we can choose among some
of the widely accepted similarity metrics: (weighted)
block-city, (weighted) Minkowsky, Euclidean, etc.

This case-based recommender alleviates most of the
classic bottlenecks related to collaborative filtering
recommender systems [11, 12, 13]. As we can see, the
ontology-based indexing scheme is crucial for both the
retrieval and ranking stages, and it reduces the cold
starting and first-rater problems: even if a LO has only a
few ratings or a student is new at the repository, the
recommender provides a set of relevant LO according to
the student query. Moreover, the user-based collaborative
filtering strategy does not need to explore the complete
student preference repository in order to look for similar
students. Instead, the profiles are extracted from the ones
that have already rated a candidate LO. This reduces the
scalability problem that concerns to user-based
collaborative filtering.

IV. STUDENTS’ AUTHORING INTERFACE
The students’ authoring interface lets learn two classical

types of knowledge in CBR: cases and retrieval
knowledge.

As stated before, the ‘student preference repository’
stores the rating scores explicitly assigned by the students
to the LOs they have used, together with their goals and
profile when they used them. According to Brusilovsky,
Farzan and Ahn [14], we defend an explicit collection of
student feedback because the information obtained is more
accurate than the one obtained by implicit approaches

36 http://www.i-jet.org

RECOMMENDATION AND STUDENTS’ AUTHORING IN REPOSITORIES OF LEARNING OBJECTS:
A CASE-BASED REASONING APPROACH

which extract feedback from user actions. This way, the
collected information is used by the recommender
interface and provides a reliable form of collaboratively
refining the relevance computed for each LO stored in the
repository. So, the repository learns knowledge for the
CBR retrieval phase as an indirect learning of index
weights [15].

The ‘LO acquisition component’ and the ‘peer review
component’ participate in the learning of new LOs.
Students provide new LOs and a tentative set of the
ontology concepts to index them. The ‘LO acquisition
component’ stores them in a temporary LO repository
until the instructor permanently moves them to the ‘LO
repository’ using the ‘maintenance component’. Once they
are in the ‘LO repository’ they can be accessed.

The approach includes a manual CBR maintenance
policy where instructors decide off-line which LOs they
definitely incorporate into the ‘LO repository’. A peer
review technique allows students to examine and to judge
the quality of the LOs provided by their colleagues. We
propose that the ‘peer review component’ lets students
browse the contents of the ‘temporary LO repository’ or
pose a query to look for new LOs that relate to concepts
they are interested in. The students give ratings, and
optionally comments, about the new LOs, alleviating the
classical first-rater problem in collaborative recommender
systems. The information provided by the students will be
taken into account by the instructor in the maintenance
process.

Although we have suggested the use of a periodic, off-
line and reactive maintenance policy aimed basically at
LO retention, the approach also supports competence-
preserving approaches to LO deletion that can profit from
the rating scores assigned by the students. Low rating
scores let identify redundant or uninteresting LOs, which
the instructor could freely delete.

V. THE CASE OF A REPOSITORY OF PROGRAMMING
EXAMPLES

In the last two years, a web repository of programming
examples for CS1 and Physics students has been available
through the Complutense University of Madrid Virtual
Campus. The repository contains more than 200
programming examples developed using different
programming languages. The examples are nowadays
organized according to thematic packages and difficulty
levels.

Although most of the students really appreciate the
support provided by the repository, there is a 70% student
that misses the facility to find the examples they are
interested in. Certainly, this facility can not be provided
by a course management tool like WebCT, which is used
in our Virtual Campus. Our students are also very
interested in participating in the authoring tasks: there is a
60% student that would like to participate by including
their own examples and/or assessing existing examples.

In order to provide personalized recommendation and
students’ authoring facilities in this repository we are
going to apply the approach described here. Examples will
be indexed through an ontology of programming concepts
that we have developed based on existing educational
ontologies for procedural and object-oriented
programming [16, 17]. The ontology has been designed
using the ontology editor Protégé and formalized in OWL-
DL [18]. Fig. 2 shows a partial view of our ontology.

The use of an indexing scheme based on programming
concepts that exists in an ontology, instead of concrete
programming instructions extracted from the
programming code of the example solution, helps to
separate the example representation from the
programming style of the example author. On the other
hand, our ontology is quite independent of the
programming language. So it is possible to use it for
indexing examples solved using different programming
languages. This could be of great help when the student is

Figure 1. Sketching the approach.

iJET – Volume 4, Special Issue 1: "SIIE'2008", March 2009 37

RECOMMENDATION AND STUDENTS’ AUTHORING IN REPOSITORIES OF LEARNING OBJECTS:
A CASE-BASED REASONING APPROACH

interested in retrieving examples developed with different
programming languages after posing a query.

In order to develop the prototype tool we will use
jCOLIBRI-2 [19], an open source framework in Java that
provides the main infrastructure to manage ontologies and
implements the most common methods and comparison
algorithms employed in case-based retrieval. Moreover,
latest version of jCOLIBRI-2 includes templates to
prototype case-based recommender systems.

The prototype tool will incorporate facilities for the
automatic updating of the student model by using tests
that exists for every aspect of the course. It will also
distinguish among examples that are new to the student
from those that she has previously accessed, as NavEx
does [20]. This could help students to explore the
examples retrieved.

We plan to include unsolved exercises into the LO
repository. So, the student could retrieve completely
solved examples and exercises to solve. When retrieving
an exercise to solve the environment could make a
personalized recovery of examples in the context of the
exercise: examples would be requested by the student on
demand or the environment could proactively suggest
examples (i.e., if the solution of the exercise should
include loop sentences and the student model shows a low
knowledge of loops, the environment could suggest
examples that include loops in their solution).

VI. RELATED WORK
Educational digital libraries rely mainly on content-

based retrieval [14, 21]. LOs are considered as documents
and search engines apply information retrieval methods,
such as vector model space, to retrieve the LOs that satisfy
the student query. Hybrid filtering approaches that
combine content and collaborative aspects have been
extensively used in e-commerce recommender systems
[13]. However, they constitute a quite innovative approach
in accessing educational repositories.

The approach described in the paper is inspired in
several works that employ case-based retrieval methods to
address classical problems from collaborative filtering.
CASPER [22] is an online recruitment search engine that
combines similarity-based reasoning and user profiling to
provide personalized information retrieval. CASPER
works also in two stages but it differs from our approach
in the methods employed. On the one hand, retrieval stage
employs feature-based similarity metrics. On the other
hand, ranking stage employs only the rating profile from
the user that made the query in order to rank the retrieved
jobs.

PTVPlus [12] is a recommender for the Digital TV
domain. In this case, it employs an item-based approach to
suggest users’ relevant TV programs. Although our
approach promotes user-based collaborative filtering,
PTVPlus has suggested us the use of CBR-like similarity
metrics to compare user profiles and the relevance
computing to rank the retrieved LOs.

Earlier example-based educational environments in the
programming teaching domain had a very simple interface
to select relevant examples and supported searching by
using keywords that appear in the problem statement or in
the code itself [23, 24]. These tools did not take the
current student knowledge into account, so they could
retrieve resources including concepts that the student does
not know (or even that she is not ready to learn yet).
Besides, it should be noticed that the problem statement
could describe the example goal from very different points
of view: it could include references to specific
programming concepts −i.e., adding an element to a sorted
linked-list− but it could describe an equivalent “real-
world” problem −i.e., adding a new contact to an address
book. Clearly, retrieval based on keywords when using
this second (and common) type of example goal
description is far from being appropriate, what clearly
limits the use of the approach.

More recently, NavEx [20], an evolution of the web-
based tool WebEx [25] for exploring annotated program
examples developed using the C programming language,

Figure 2. A partial view of the programming ontology.

38 http://www.i-jet.org

RECOMMENDATION AND STUDENTS’ AUTHORING IN REPOSITORIES OF LEARNING OBJECTS:
A CASE-BASED REASONING APPROACH

classifies examples according to the current state of the
student knowledge and her history of past interactions. It
applies adaptive navigation to: (a) distinguish new
examples from examples that have already been partially
or fully explored, and (b) categorize examples as being
either “ready to” or “not yet ready to” explore according
to the current knowledge of the student. Finally, NavEx
ADVISE [26] extends the previous work on NavEx by
combining adaptive annotation with spatial 2D similarity-
based visualization. The whole repository of examples is
displayed on a 2D example map where similar examples
are placed closer to each other and dissimilar examples are
placed farther from each other. Each example is
represented by a vector of concepts from the C-
programming domain. The concepts are automatically
extracted from the code itself using a domain-specific
parser and traditional information retrieval techniques.
The concept vectors are used to calculate the similarities
between the examples they represent. The use of
automated textual indexing and retrieval methods can
reduce the resource cataloging effort. However, our
ontology-based approach let us include similarity metrics
between concepts. This metrics are crucial for the retrieval
stage and the compromise component in the rating stage.

NavEx ADVISE provides a limited support for locating
resources adapted to the student current learning goal.
Given an example currently explored by the student, she
only receives visual cues about similar and dissimilar
examples. However, the tool does not provide information
about neither the concepts shared by two examples nor the
concepts on which two examples differ. So, the student
can not easily locate examples appropriate for a concrete
learning goal.

Educational repositories that incorporate collaborative
filtering employ approaches less accurate than the one
proposed in our work. They take into account the LO
ratings made by the students independently of their
profile. This is the case of Knowledge Sea [14], a platform
to access electronic documents about the C programming
language that incorporates social navigation support.
Knowledge Sea search engine uses a vector model rating
to order the retrieved LOs according to their relevance but
student ratings are not used to calculate the relevance.
Instead, social relevance is expressed with visual cues.

VII. CONCLUSIONS AND FUTURE WORK
This paper presents a CBR approach for the

personalized access and the students’ authoring tasks in
on-line repositories of LOs. The personalized access
combines content-based filtering and collaborative user-
based filtering mechanisms. Students could extend the
repository with two different kinds of information: new
LOs and their preferences about the existing LOs. So, the
environment contents and behavior improve with the
student collaboration. The use of an ontology-based
indexing scheme is a crucial element in the approach. It
provides a unique vocabulary for query retrieval and it
eases the relevance metric computing according to the
student’s knowledge level.

In order to prove the feasibility of the approach
described in this paper, we will apply it to an on-line
repository with more than 200 programming examples
appropriate for Computer Science and Physics non-major
students. As we have shown, the use of techniques

employed in case-based recommender systems in this
domain introduces improvements with respect to related
works. We plan to make a comprehensive evaluation of
the resulting tool at the end of the next academic year.

Our immediate future work considers the evaluation
and comparison of different similarity measures in order
to compute the LO relevance and compromise according
to the student’s profile. Moreover, we should consider
how to integrate other features included in the LO
specification – for instance, difficulty level or
programming language – in the similarity methods.

Finally, we also plan to integrate a proactive version of
the recommender with learning management systems to
generate personalized sets of LOs according to student
assessments. In order to access to the following lecture,
the student should pass a test. The student’s grades in this
assessment will be used to select the LOs that the
environment provides to the student in the next lecture.

REFERENCES
[1] U. Shardanand and P. Maes, “Social information filtering:

algorithms for automating "word of mouth"”, in Proceedings of
the SIGCHI conference on Human factors in computing systems.
ACM Press, 1995, pp. 210-217.

[2] M. Gómez-Albarrán, “The teaching and learning of programming:
A survey of supporting software tools”, Computer Journal, vol.
48, n. 2, pp. 130-144, 2005. (doi:10.1093/comjnl/bxh080)

[3] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational
issues, methodological variations, and system approaches”, AI
Communications, vol. 7, n. 1, pp. 39-59, March 1994.

[4] D.C. Wilson and D.B. Leake, “Maintaining case-based reasoners:
dimensions and directions”, Computational Intelligence, vol. 17,
n. 2, pp. 196-213, May 2001. (doi:10.1111/0824-7935.00140)

[5] D.C. Edelson, “Learning from questions and cases: The Socratic
case-based teaching architecture”, The Journal of the Learning
Sciences, vol. 5, n. 4, pp. 357-410, 1996. (doi:10.1207/s15327
809jls0504_3)

[6] G. Jiménez-Díaz, M. Gómez-Albarrán, and P.A. González-Calero,
“UnderFrame: Understanding Object-Oriented Frameworks Using
a Case-Based Teaching Approach”, in Poster session at 18th
European Conference on Object-Oriented Programming, 2004.

[7] J. Kolodner, M.T. Cox, and P.A. González-Calero, “Case-based
reasoning-inspired approaches to education”, Knowledge
Engineering Review, vol. 20, n. 3, pp. 299-303, September 2005.
(doi:10.1017/S0269888906000634)

[8] D. Bridge, M.H. Göker, L. McGinty, and B. Smyth, “Case-based
recommender systems”, Knowledge Engineering Review, vol. 20,
n. 3, pp. 315-320, September 2005. (doi:10.1017/S026988
8906000567)

[9] J.M. Dodero, P. Díaz, I. Dodero, and A Sarasa, “Integrating
ontologies into the collaborative authoring of learning objects”,
Journal of Universal Computer Science, vol. 11, n. 9, pp. 1568-
1575, September 2005.

[10] R. Burke, “Hybrid web recommender systems”, in The Adaptive
web, Springer, 2007, pp. 377-408. (doi:10.1007/978-3-540-72079-
9_12)

[11] A. Hinze, and S. Junmanee, “Advanced recommendation models
for mobile tourist information”, in Proceedings of the OTM
Confederated International Conferences, CoopIS, DOA, GADA,
and ODBASE 2006, Springer, 2006, pp. 643-660.

[12] D. O'Sullivan, B. Smith, D.C. Wilson, K. McDonald, and A.
Smeaton, “Improving the quality of the personalized electronic
program guide”, User Modeling and User-Adapted Interaction,
vol. 14, n. 1, pp. 5-36, February 2004.
(doi:10.1023/B:USER.0000010131.72217.12)

[13] K. Wei, J. Huang, and S. Fu, “A survey of e-commerce
recommender systems”, in Proceedings of the International
Conference on Service Systems and Service Management 2007,
IEEE Computer Society, 2007, pp. 1-5.

iJET – Volume 4, Special Issue 1: "SIIE'2008", March 2009 39

http://dx.doi.org/10.1093/comjnl/bxh080�
http://dx.doi.org/10.1111/0824-7935.00140�
http://dx.doi.org/10.1207/s15327809jls0504_3�
http://dx.doi.org/10.1207/s15327809jls0504_3�
http://dx.doi.org/10.1017/S0269888906000634�
http://dx.doi.org/10.1017/S0269888906000567�
http://dx.doi.org/10.1017/S0269888906000567�
http://dx.doi.org/10.1007/978-3-540-72079-9_12�
http://dx.doi.org/10.1007/978-3-540-72079-9_12�
http://dx.doi.org/10.1023/B:USER.0000010131.72217.12�

RECOMMENDATION AND STUDENTS’ AUTHORING IN REPOSITORIES OF LEARNING OBJECTS:
A CASE-BASED REASONING APPROACH

[14] P. Brusilovsky, R. Farzan, and J.W. Ahn, “Comprehensive
personalized information access in an educational digital library”,
in Proceedings of the 5th ACM/IEEE-CS joint conference on
Digital libraries, ACM, 2005, pp. 9-18.

[15] P. Gomes and C. Bento, “Learning user preferences in case-based
software reuse”, in Proceedings of the 5th European Workshop on
Advances in Case-Based Reasoning, Springer-Verlag, 2000, pp.
112-123.

[16] N. Henze, N., P.Dolog, W. Nejdl, “Reasoning and ontologies for
personalized e-learning in the semantic web”, Journal of
Educational Technology & Society, vol. 7, n. 4, pp. 82-97,
October 2004.

[17] S. Sosnovsky and T. Gavrilova, “Development of educational
ontology for C-programming”, International Journal Information,
Theories & Applications, vol. 13, n. 4, 2006, pp. 303-307.

[18] OWL Website: http://www.w3.org/TR/owl-features (last access:
January 6th, 2009).

[19] JColibri-2 Website: http://gaia.fdi.ucm.es/grupo/projects/jcolibri/
(last access: January 6th, 2009).

[20] M. Yudelson and P. Brusilovsky, “NavEx: Providing navigation
support for adaptive browsing of annotated code examples”, in
Proceedings of the 12th International Conference on Artificial
Intelligence in Education, IOS Press, 2005, pp. 710-717.

[21] C. Lagoze, W. Arms, S. Gan, D. Hillmann, C. Ingram, D. Krafft,
R. Marisa, J. Phipps, J. Saylor, C. Terrizzi, W. Hoehn, D.
Millman, J. Allan, S. Guzman-Lara, T. Kalt, “Core services in the
architecture of the national science digital library (NSDL)”, in
Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital
libraries, ACM, 2002, pp. 201-209.

[22] K. Bradley and B. Smith, “Personalized information ordering: a
case study in online recruitment”, Knowledge-Based Systems, vol.
16, n. 5, pp. 269-275, July 2003. (doi:10.1016/S0950-
7051(03)00028-5)

[23] J.M. Faries and B.J. Reiser, “Access and use of previous solutions
in a problem solving situation”, in Proceedings of the Annual
Conf. of the Cognitive Science Society, Laurence Erlbaum
Associates, 1988, pp. 433-439.

[24] L.R. Neal, “A system for example-based programming”, SIGCHI
Bulletin, vol. 20, n. SI, pp. 63-68, 1989.

[25] P. Brusilovsky, “WebEx: Learning from examples in a
programming course”, in Proceedings of the WebNet'2001, World
Conference of the WWW and Internet, AACE, 2001, pp. 124-129.

[26] P. Brusilovsky, J.W. Ahn, T. Dimitriu, and M. Yudelson,
“Adaptive knowledge-based visualization for accessing
educational examples”, in Proceedings of the 10th International
Conference on Information Visualization, IEEE Computer
Society, 2006, pp. 142-150.

AUTHORS
M. Gómez-Albarrán is with the Department of

Ingeniería del Software e Inteligencia Artificial,
Complutense University of Madrid, Madrid, 28040, Spain
(e-mail: albarran@ sip.ucm.es).

G. Jiménez-Díaz is with the Department of Ingeniería
del Software e Inteligencia Artificial, Complutense
University of Madrid, Madrid, 28040, Spain (e-mail:
gjimenez@fdi.ucm.es).

This work has been supported by the Spanish Committee of Education
and Science project TIN2006-15202-C03-03, and also by the UCM
project PIMCD2008-136.
This article was modified from a presentation at X International
Symposium on Computers in Education (SIIE2008) 1st-3rd October
2008, Salamanca, Spain. Manuscript received 12 January 2009.
Published as submitted by the authors.

40 http://www.i-jet.org

http://www.w3.org/TR/owl-features�
http://gaia.fdi.ucm.es/grupo/projects/jcolibri/�
http://dx.doi.org/10.1016/S0950-7051(03)00028-5�
http://dx.doi.org/10.1016/S0950-7051(03)00028-5�

