
A GRAPHICAL TOOL FOR VISUALIZING BERNOULLI STOCHASTICS

A Graphical Tool for
Visualizing Bernoulli Stochastics

doi:10.3991/ijet.v4i3.900

Xiaomin Zhai, Elart von Collani
Faculty of Mathematics and Computer Science, Würzburg, Germany

Abstract—This paper is the continuation of the work of the
article “Strategies for Teaching a Novel Approach to Han-
dling Uncertainty Scientifically via Internet”. The described
novel approach is named Bernoulli Stochastics and one big
barrier for introducing it is the prevailing way of determi-
nistic thinking in conjunction with the mathematical lan-
guage used by Bernoulli Stochastics. To overcome this bar-
rier, an illustrative graphical representation of stochastic
concepts and procedures is of crucial importance. In this
paper, a flexible and extensible graphical system is de-
scribed, which was developed to support the understanding
of Bernoulli Stochastics by the visualization of uncertainty.

Index Terms—Flexible Extensible Graphical System,
Mathematical Language, Uncertainty

I. INTRODUCTION
Uncertainty about the future development represents

the main source of the problems of mankind. In order to
solve a problem, reliable and accurate predictions are
therefore needed. This was identified by Jakob Bernoulli
more than 300 years ago and he proposed to develop a
science of prediction, which he named Stochastics. This
proposal was resumed by Elart von Collani [1, 2, 3, 4],
who further developed it to a unified theory of uncer-
tainty about future developments. The aim of this theory
is to make reliable and accurate predictions. For dissemi-
nating the ideas and results via Internet, the project Sto-
chastikon1 was founded to develop and make available
stochastic concepts and procedures for handling the in-
herent uncertainty about the future development appro-
priately.

In [5], the main differences between Bernoulli Stochas-
tics and other exact sciences, the origin of the Stochas-
tikon framework and the tasks of its subsystems, and es-
pecially the specific difficulties in teaching and learning
Bernoulli Stochastics are briefly introduced. One of the
Stochastikon components is a graphical system called Sto-
chastikon Graphics, which supports the other components
with visualizations of stochastic concepts and procedures.

Being a new branch of science, Bernoulli Stochastics is
so far not a part of the traditional education system, thus,
there is no classroom teaching and there is no textbook for
the dissemination of it. Besides, Bernoulli Stochastics is
essentially based on sets, system of sets and relationships
between sets. In contrast, traditional science and, hence,
traditional education is based on real-valued functions that
lead to thinking in points, which is incompatible with
Bernoulli Stochastics. In order to overcome these barriers,

1 http://www.stochastikon.com/

visualization appears to be the most promising measure, as
has been shown in many scholarly papers from the theo-
retical [6, 7, 8, 9, 10] as well as practical [11, 12, 13] point
of view in the case of other mathematical based branches
of science. As a matter of fact, visualization of abstract
mathematical objects by ‘living images’ instead of ‘frozen
images’ is looked upon as a milestone in the evolution of
mathematical education. Therefore, a proper way for visu-
alizing sets and set functions for the Bernoulli Stochastics
teaching is necessary. Stochastikon Graphics is not only
capable of generating and displaying graphics of sets and
set functions easily, but also flexible to be extended to
construct different kinds of representing styles demanded
by the different Stochastikon subsystems.

In the following sections, the strategies and technolo-
gies in
• constructing a flexible graphical core, which is inde-

pendent of data source and extensible for different
display forms, and

• accomplishing a multi-purpose graphical system for
visualizing a sophisticated mathematics (-involved)
discipline, for instance Bernoulli Stochastics,

are briefly discussed and the implementations of these
ideas are demonstrated in Java programming language.

II. CONSTRUCTING A GRAPHICAL SYSTEM

A. Plotting Objects
Points, lines, curves, shapes, polygons, labels and axes

are the basic plotting objects for either two- or three-
dimensional graphs produced by Stochastikon Graphics.
These plotting objects are briefly described as follows:
• ‘Point’: a point is determined by a set of coordinates

(x, y) or (x, y, z). ‘Point’ is the most basic plotting ob-
ject and a function is a description of points with
special functional relations.

• ‘LineStyle’ determines the color, line width, point
shape (star, round, cross...), point size of a plotting
object.

• ‘FillStyle’ determines the filling direction (to X-, Y-
or Z-axis), filling or outlining style (with points, lines,
dots, a combination of lines and points, etc) of a plot-
ting object.

• ‘StyledPoint’ is a ‘Point’ with an assigned plotting
style.

• ‘MarkedPoint’ is a ‘Point’, from which a vertical line
to each axis is drawn with a specific plotting style.
‘MarkedPoint’ marks out a given position.

44 http://www.i-jet.org

http://dx.doi.org/10.3991/ijet.v4i3.900�

A GRAPHICAL TOOL FOR VISUALIZING BERNOULLI STOCHASTICS

Figure 1. The basic plotting objects

• ‘Label’ writes characters or numbers in a specified
position.

• ‘Line’ draws a line between two points with an as-
signed line style.

• ‘Curve’, ‘Shape’ and ‘Polygon’ are graphed accord-
ing to one or two given functions. ‘Polygon’ can also
be drawn according to a series of given points.

• ‘Axes’ fix the dimension character of a graph. Each
axis has a name, a type (continuous or discrete) and
bounds.

A three-dimensional plotting object is constructed by
adding one dimension (by a value or a series of values) to
an existing two-dimensional plotting object.

Fig. 1 illustrates the plotting objects. On the right part
of Fig. 1, different FillStyles are displayed. They are, from
left to right: full fill blue, no fill red point-outline, line fill
black, no fill green line-outline. The polygons are graphed
based on the function x = f(z) plotted on x-z plane, while
different polygons are differentiated by their y values.

 Basic methods of each plotting object are listed in Ta-
ble I.

There are corresponding methods for the Z-axis in the
case of a three-dimensional plotting object. With the
methods listed in Table I, plotting objects can be incorpo-
rated and plotted.

‘PlotObjectSet’ is a special kind of plotting object. It
has an additional method ‘add(IPlotObject Object)’ to
combine several plotting objects to a bigger one, i.e. a
plotting object set. In the left part of Fig. 2, there is a fish.
The fish is a PlotObjectSet, which contains Curves, Style-
Points, Polygons and Lines.

A PlotObjectSet can be treated as an element-plotting-

Figure 2. Examples of PlotObjectSet: a fish and several fishes

object within a larger plotting object set. The right part of
Fig. 2 gives an example. The PlotObjectSet ‘fish’ together
with some other plotting objects compose a new PlotOb-
jectSet, which contains four different kinds of fishes.

B. Plotting Data
The plotting data (‘PlotData’) stores, transfers and of-

fers plotting objects for drawing figures. The most impor-
tant methods for plotting data are listed in Table II.

There are two ways to ‘add’ the plotting objects to a
three-dimensional plotting data:
• If the plotting object is three-dimensional, then the

method is analogous to ‘addMarked-
Point(StyledPoint3d point)’.

• If the plotting object is two-dimensional, then an-
other dimension must be added and the method is
analogous to ‘addMarkedPointXY(StyledPoint2d
point, double z)’.

By means of special algorithms, the plotting objects are
drawn especially for the ‘Shape’ and the ‘Polygon’. For
example, when ‘filling’ a polygon, it is necessary to de-
termine every pair of symmetrical points in the deter-
mined plotting direction. To this end, counting algorithms
under side conditions, for instance with regard to concav-
ity or convexity, are required.

C. Generating Graphs
Each PlotData contains concrete plotting objects and/or

PlotObjectSets for composing a complete picture. There
are various ways to generate graphs from PlotData, by
programming or by means of a graphical toolkit. Below
two examples are given that are implemented in Stochas-
tikon Graphics:
• Graphs may be generated with a graphical software

package, such as Gnuplot [14].

The PlotData are transformed by a class named
‘GnuplotFile(IplotData plotData, int outputFiletype,
String path, String size, int tics)’ into a *.gnu file. The
main function of this class is to change the plotting objects
contained in the PlotData into the corresponding Gnuplot
drawing commands and then store these commands in a
drawable *.gnu file. The Gnuplot software creates a graph
based on the *.gnu file and saves the graph as *.eps, or
*.gif or *.tex file. Fig. 3 depicts the working flow.
• Graphs may be generated by programming, such as

Java programs [15].

By means of several classes, the plotting objects stored
in the PlotData are transformed into standard
‘Java.awt.Graphics2D’ objects. With these classes, plot-
ting objects are converted into a Java image, which can be

TABLE I.
BASIC METHODS OF THE PLOTTING OBJECTS

void addToPlotData(PlotData
data)

Add the plotting object
into a PlotData.

IInterval getPreferredXRange()
getPreferredYRange()

Return an interval, which
indicates the preferred plot-
ting range of the plotting
object on the X- or Y-axis.

IInterval getMaximumXRange()
getMaximumYRange()

Return an interval, which
indicates the maximum plot-
ting range of the plotting
object on the X- or Y-axis.

int getPreferredXType()
getPreferredYType()

Return an integer, which
indicates the type of X- or Y-
axis of the plotting object.

iJET – Volume 4, Issue 3, September 2009 45

A GRAPHICAL TOOL FOR VISUALIZING BERNOULLI STOCHASTICS

TABLE I.
BASIC METHODS OF THE PLOTDATA

int getCurveLineStyle(int index)

int getCurvePlotStyle(int index)

LineStyle[] getLineStyles()

int getPolygonFillStyle(int index)

int getPolygonLineStyle(int index)

int getShapeFillStyle(int index)

int getShapeLineStyle(int index)

Axe getXAxe()

Axe getYAxe()

Axe getZAxe() <for three-dimensional Plotting Objects>

int numberOfCurves()

int numberOfPolygons()

int numberOfShapes()

Point getCurvePoints(int index)

Label getLabels()

Line getLines()

StyledPoint getMarkedPoints()

StyledPoint getPoints()

Point getPolygonPoints(int index)

Point getShapePoints(int index)

void addLabel(Label label)

void addLine(Line arrow)

void addLineStyle(LineStyle style)

void addMarkedPoint(StyledPoint point)

void addPoint(StyledPoint point)

void addCurve(Point [] points, int lineStyle, int plotStyle)

void addShape(Point [] points, int lineStyle, int fillStyle)

void addPolygon(Point [] points, int lineStyle, int fillStyle)

displayed on the screen, saved as *.jpeg or *.png file or
stored in form of a Java image stream.

A graphical toolkit like Gnuplot has certain functions,
which support the plotting of graphs directly. Therefore, to
generate images and graphical files from the PlotData by
Java programs is comparably more difficult since classes
must be provided, for example, for plotting tics and tic
labels of axes, plotting three-dimensional figures, etc.
However, the result formats are more flexible and have
broader applicability.

D. Presenting Graphs
The generated images and graphical files can be dis-

played in different styles for different purposes: they can
be presented alone or inserted into other documents, dem-
onstrated in an interactive dynamic way or just as a static
graph, dynamically displayed in a stand-alone computer or
via Internet, etc. The different layout forms can also be
realized in different ways. In the following section, three
graphical systems accomplished by Stochastikon Graphics
are introduced in detail as examples.

Figure 3. Generating a graphical file with Gnuplot

III. STOCHASTIKON GRAPHICS
As introduced in [5], Stochastikon is a comprehensive

information system on Bernoulli Stochastics that consists
of several subsystems. Each subsystem takes a clear and
definite task within the whole framework. There is the
subsystem Magister for E-Learning, the subsystem Calcu-
lator for computing, the subsystem Graphics for plotting,
etc. The subsystem Calculator is the calculating engine
for Graphics and Graphics has to satisfy all kinds of
graphical requests from the other subsystems. The con-
struction design of the above mentioned graphical system
provides the possibility for unrestricted types of data
sources and various kinds of approaches to implement and
extend it as a multifunctional graph provider for a mathe-
matics (-involved) discipline. Stochastikon Graphics is a
good example to demonstrate these features.

A. Stochastic Objects
Stochastic objects are PlotObjectSets composed for

visualizing the concepts and procedures of Bernoulli Sto-
chastics. Table III lists the stochastic objects (for details
see [1, 2, 3, 4]) and the corresponding plotting objects
used to compose them.

In Stochastikon Graphics, a realized stochastic object is
based on the numerical results obtained by the Stochas-
tikon Calculator. The following two classes are of particu-
lar importance for this process:
• FunctionParameter1(IFunction f) that handles the

cases, when the result of the parameter function f is a
single value.

• FunctionParameter2(IFunction f) that handles the
cases, when the output of the parameter function f is
a set of values given by an interval.

The parameter function f is the result of Calculator.
Based on the properties of the parameter (continuous or
discrete, monotonic, uni-modal, probability density func-
tion, etc), these two classes calculate and decide the plot-
ting bounds and the plotting types for representing the
stochastic objects.

The procedures of Bernoulli Stochastics have an ex-
tremely high mathematical and numerical complexity and
represent problems of new and so far unsolved nature.
Therefore, unlike general graphical systems that have
been implemented in the well-established mathematical
teaching areas such as algebra, geometry, statistics and
probability theory, Graphics has to consider new aspects
in order to compose and display the stochastic objects
appropriately. For instances,
• the default setting should display the most meaning-

ful part of the stochastic object and, at the same time,
the user should be able to select the desired part
manually ;

• the tic length and the displayed tic labels for different
scales of magnitude within the two- and three-

46 http://www.i-jet.org

A GRAPHICAL TOOL FOR VISUALIZING BERNOULLI STOCHASTICS

dimensional graphs must be balanced. For example,
the tic length must ensure that there is no overlap in
case of long tic labels and the last digit of a tic label
must be 2, 5 or 0 (0 is selected as the last digit only in
case the scale of the magnitude is larger than 1).

Fig. 4 displays the stochastic object ‘Property Function’
of the binomial distribution. On the left hand side, there
are graphs of several two-dimensional probability func-
tions for the specified parametric values. In the three-
dimensional picture on the right-hand side, the blue curve
shows a probability mass function of the binomial distri-
bution. The three-dimensional background (the shadow) is
made up of probability mass functions of the binomial
distribution, which have the same success probability p as
the blue curve but have different sample size n.

B. Stochastic Graph Systems
Stochastic objects are stored and transferred by Plot-

Data to implement different kinds of graph systems for
visualizing Bernoulli Stochastics in different Stochastikon
subsystems.

1) Report System
On request, the Stochastikon subsystem Calculator is-

sues a complete scientific report containing the proposed
problem with the given parameter values and the calcu-
lated numerical results. In both of these parts of the report,

Figure 4. The stochastic object ‘Property Function’ of the binomial

distribution

graphical representations show the corresponding stochas-
tic concepts, procedures and results.

The Calculator sends both the user requirements and
the calculated results to the Graphics and asks for some
specified illustrations. Graphics takes the results and gen-
erates the graphs with the help of the Gnuplot software.
These graphs are given back to the Calculator and in-
serted into the proper places for completing the final re-
port. The Stochastic Graph System, which supports the
creation of the illustrations for the stochastic reports, is
called the ‘Report System’.

TABLE II.
STOCHASTIC OBJECTS AND THE CORRESPONDING PLOTTING OBJECTS

IV. STOCHASTIC
OBJECT

V. PLOTTING OBJECT

Lower Bound

Upper Bound

Shape2d12(IFunction2dParameter param, LineStyle lineStyle, int fillStyle)
MarkedPoint2d2(Point2d p, LineStyle style)

Line2d2(double x1, double y1, double x2, double y2, LineStyle style)
StyledPoint2d2(Point2d p, LineStyle style)

Shape2d22(IShape2dParameter param, LineStyle lineStyle, int fillStyle)
MarkedPoint2d2(Point2d p, LineStyle style)

Line2d2(double x1, double y1, double x2, double y2, LineStyle style)
StyledPoint2d2(Point2d p, LineStyle style)

B
et

a
M

ea
su

re
m

en
t S

pa
ce

Minimum
Shape2d12(IFunction2dParameter param, LineStyle lineStyle, int fillStyle)

MarkedPoint2d2(Point2d p, LineStyle style)
Line2d2(double x1, double y1, double x2, double y2, LineStyle style)

StyledPoint2d2(Point2d p, LineStyle style)

Lower Bound

Upper Bound

B
et

a
U

nc
er

ta
in

ty
 &

Pr

ed
ic

tio
n

Sp
ac

e

Minimum

Shape2d1(IFunction2dParameter param, int lineStyleIndex, int fillStyle)
StyledPoint2d(Point2d p, int style)

2 Alternatives

B
et

a
C

la
ss

ifi
-

ca
tio

n

3 Alternatives

Shape2d1(IFunction2dParameter param, int lineStyleIndex, int fillStyle)
Line2d2(double x1, double y1, double x2, double y2, LineStyle style)

StyledPoint2d(Point2d p, int style)

Beta Exclusion
Shape2d1(IFunction2dParameter param, int lineStyleIndex, int fillStyle)

Line2d2(double x1, double y1, double x2, double y2, LineStyle style)
StyledPoint2d(Point2d p, int style)

Ignorance Space Polygon2d1(IFunction2dParameter param, LineStyle lineStyle, int fillStyle)
Uncertainty Space Polygon2d1(IFunction2dParameter param, LineStyle lineStyle, int fillStyle)

Property Function Curve2d(IFunction2dParameter param, LineStyle lineStyle)
Curve2d(IFunction2dParameter param, int lineStyleIndex)

Probability of an Event Curve2d(IFunction2dParameter param, LineStyle lineStyle)
Shape2d12(IFunction2dParameter param, LineStyle lineStyle, int fillStyle)

iJET – Volume 4, Issue 3, September 2009 47

A GRAPHICAL TOOL FOR VISUALIZING BERNOULLI STOCHASTICS

The Report System can be used in a stand-alone com-
puter or via Internet. Users can download or print the final
PDF reports generated automatically by the Stochastikon
Calculator.

1) Stand-Alone-Computer Graph System
When installing the Stochastikon system in a local

computer, users can use the ‘Stand-Alone-Computer
Graph System’. It is an interactive dynamic graphical sys-
tem that supports the understanding and application of
mathematics (-involved) knowledge.

The Stand-Alone-Computer Graph System is a multi-
lever system. In Fig. 5, the structure of the Stand-Alone-
Computer Graph System is depicted.

The most important classes of the Stand-Alone-
Computer Graph System are called ‘JavaP’ and
‘P_Component’.
• JavaP is an abstract class used for generating a graph

image in a printable container according to different
parameter values. It is one of the basic classes of the
Stand-Alone-Computer Graph System. All classes,
which are extended from this class, are used to settle
java swing objects for users in order to input the pa-
rameter values.

• P_Component is another basic abstract class of the
Stand-Alone-Computer Graph System. All classes
extended from this class are used to create graphs ac-
cording to the parameter values transferred from the
corresponding subclass of JavaP.

In the Stand-Alone-Computer Graph System, a user
specifies the ‘Distribution’ and the ‘Stochastic Object’ at
first, and then sets the necessary parameter values and
some other choices concerning the stochastic object by
slide bars or multiple choices. Along with the change of
the parameter values by the user, the graph system plots
simultaneously the corresponding figures on the graph
panel based on the numerical results from the Calculator.
Users can detect the graphical change-track following the
change of parameter values, and they can also print the
graphs whenever they want.

2) Web Graph System
The web application of the stochastic graph system is

called ‘Web Graph System’, which does not need the in-
stallation of any specific software in the local computer. It
is also an interactive dynamic graphical system. One ap-
plication of the Web Graph System is the Graphical Labo-
ratory within the E-Learning System Stochastikon Magis-
ter for practicing stochastic concepts and procedures [5].

After selecting links for the ‘Distribution’ and the ‘Sto-
chastic Object’ on the web page, an applet will run and
wait for the input parameters and some other choices re-
garding the selected stochastic object. By clicking the
‘ShowGraph’ button, the user request is identified and
sent to the web server. The resulting graphs are displayed
on the applet panel. The operating process of the Web
Graph System is almost the same as the Stand-Alone-
Computer Graph System, except for the additional con-
firming button ‘ShowGraph’.

The Web Graph System is also a multi-lever system
like the Stand-Alone-Computer System. Each of the web
pages lists a series of links to *.html files for a specific
distribution. Each html file starts a graphical applet for
manipulating a stochastic object.

Figure 5. Structure of the Stand-Alone-Computer Graph System

Figure 6. Workflow of the Web Graph System

The workflow of the Web Graph System is illustrated
in Fig. 6.

For accomplishing its tasks, the Web Graph System
uses Sockets that appeared to be the only way to imple-
ment interactive dynamic graphs online for the Stochas-
tikon system. This solution is another feature, which dis-
tinguishes Graphics from general online interactive dy-
namic graphical systems as used, for example, in didactics
of mathematics. Usually the graphical applet running on
the web contains the complete calculating and plotting
part or stores all the related programs in a jar file. But as
for the Stochastikon system, the sizes of the Calculator
and the Graphics are too large and in future versions they
will be a multitude of the present size. Therefore, it is im-
possible to zip them into a jar file and run the whole pro-
gram by applets. The only way is to let some small applets
run on the web part, while the Calculator and the main
part of the Graphics run on the server. In fact, this operat-
ing mode is very efficient with a short download time on
the user side.

The most basic classes for the Web Graph System are
called ‘AI_Component’ and ‘GraphServer’.
• AI_Component is an abstract class containing the

common methods and variables for generating a
graph in a ‘BufferedImage’ in accordance with the
given parameter values. All classes extended from
this class are used for drawing graphs on the basis of
the parameter values transferred from the
corresponding parameter-acceptance Client Socket
applet. The result ‘BufferedImage’ can be saved as a
jpeg file or in form of an image stream.

• GraphServer is a Server Socket providing services
according to the requests from different “clients”.
When accepting a demand from a specific Client
Socket, it will start a corresponding service Socket
Thread. Each Client Socket is a Swing Applet that
accepts the user input and sends the parameter values
to the Socket Thread. The service Socket Thread then

48 http://www.i-jet.org

A GRAPHICAL TOOL FOR VISUALIZING BERNOULLI STOCHASTICS

calls a specific subclass of AI_Component to
generate a graph according to the parameter values
delivered from the Client Socket. While the graph is
accomplished and saved as a *.jpeg file, the Client
Socket is informed about the name of the graph. The
Client Socket applet will then take the graph from a
specific place according to the name and display the
graph on its web panel. This running mode enhances
the stability of the online graphical representing
system. The by-products are the *.jpeg files, which
can later be checked and saved.

The Web Graph System allows users to run several Cli-
ent Socket applets (the graph windows) simultaneously
and thus learn by comparison.

The Stand-Alone-Computer Graph System and Web
Graph System are both interactive dynamic graphical sys-
tems using Java images to store, convey and display
graphs. The differences between the web system and the
stand-alone-computer system are as follows:
• The Stand-Alone-Computer Graph System shows the

generated graph images directly. Therefore, any
change of the parameter values yields simultaneously
the changed graph. With this real time pattern, it is
easier to observe the changing effect of the parameter
values.

• The Web Graph System uses applets to show graphs
on the web. The created images are stored as *.jpeg
files. Although, the Web Graph System can be
implemented in the same changing mode as the
Stand-Alone-Computer Graph System, the process is
not that stable. As can be seen from the workflow of
the Web Graph System depicted in Fig. 6, the
necessity of using Sockets leads to extensive
communications between the Client Socket applet
and the service Socket Thread via Internet. Moreover,
creating and saving *.jpeg files is time-consuming.
Therefore, if the system has to generate a *.jpeg file
for every tiny change of the input values along with
the sliding of the slider bar, the server would not be
able to accomplish the huge workload. Thus, when
the Client Socket gets the name of the required graph
file, the server may still have not saved the file into
the assigned place. An acknowledgement by means
of the ‘ShowGraph’ button is asked for whenever the
user has set the values of the input parameters and
wants to see the resulting graph.

3) Illustrations of the Three Stochastic Graph
Systems

In this section, the characteristic layouts of the three
stochastic graph systems implemented by Stochastikon
Graphics are presented.

Fig. 7 shows the third page of a stochastic report cre-
ated by the Stochastikon Calculator. It contains two illus-
trations generated by the Report System. These two
graphs show the uncertainty space (light blue), the predic-
tion (blue), and the probability of the prediction (the blue
curve below) (for details see [1, 2, 3, 4]).

Fig. 8 is a typical layout of an implemented Stand-
Alone-Computer Graph System. Users can open more
than one inner window simultaneously for different distri-
butions and different stochastic objects.

Figure 7. The Report System provides illustrations for the final reports

of the Stochastikon Calculator

Fig. 9 shows the user interface of a stochastic object (an
exclusion procedure) within the Graphical Laboratory of
Stochastikon Magister. The Graphical Laboratory is an
application of the Web Graph System.

VI. CONCLUDING REMARKS
Bernoulli Stochastics and the Stochastikon project can

revolutionize the handling of uncertainty, which is crucial
for any decision making process. The currently described
Stochastikon Graphics shall contribute to the dissemina-
tion of Bernoulli Stochastics and, therefore, is a critical
part of the entire project. Feedbacks from users either of
Calculator or of Magister are fully positive towards the
visualization of Bernoulli Stochastics, which report a bet-
ter understanding, a quicker acceptance, a longer memory
and an easier operation to the new and sophisticated con-
cepts and procedures, the relationships between stochastic
objects and their properties. The user reactions, are no
surprise, in consistent with a lot of former conclusions in
this research area. Since the first version of Magister be-
came available on-line, it was used for the education and
training the candidates of the teaching profession majoring
in mathematics. Solely based on Magister E-Learning
system, they took part in an examination in Bernoulli Sto-
chastics instead of the otherwise required examination in
statistics. A preliminary comparison shows that the learn-
ing effects in Bernoulli Stochastics is significantly better
than those obtained in statistics, which is to a large extent
due to the graphical representation of models and meth-
ods. Currently, the results are analyzed and the details will
be published in a separate paper. Along with the future
advancements of the Stochastikon system, Stochastikon
Graphics will be further developed and will thus allow
more powerful applications.

The core of the graphical system is concise and data
source independent, therefore graphs can be based on as-
signed values (see Fig. 1), on simple functions (see Fig. 2)
or on a huge complicated calculating engine like Calcula-
tor (see Fig. 7, Fig. 8 and Fig. 9). The core is also open for
implementing approaches, with which graphs can be pro-

iJET – Volume 4, Issue 3, September 2009 49

A GRAPHICAL TOOL FOR VISUALIZING BERNOULLI STOCHASTICS

Figure 8. Layout of an implementation of the Stand-Alone-Computer

Graph System

Figure 9. An application of the Web Graph System, the Graphical

Laboratory, for Stochastikon Magister

duced in different way and can be demonstrated for differ-
ent purposes under different running environments. These
characteristics make the finalized system to be multi-
applicable and serve for both didactic and professional
graphical representations. Besides, the described tech-
nique over here for accomplishing the Web Graph System
solves the bottleneck of realizing an online interactive
dynamic visualization of procedures that can be calculated
only by extremely complicated mathematical engines.

Actually, visualization is a key for understanding
mathematical sciences. Although Graphics has been de-
veloped in the framework of the Stochastikon system, the
strategies and technologies applied for designing and im-
plementing it can be taken as a model for constructing a
flexible, extensible and reusable graphical system to visu-
alize any mathematics (-involved) discipline.

REFERENCES
[1] E. von Collani, “Theoretical Stochastics” in Defining the Science

of Stochastics, E. von Collani, Ed. Lemgo: Heldermann Verlag,
2004, pp. 147-174.

[2] E. von Collani, “Empirical Stochastics” in Defining the Science of
Stochastics, E. von Collani, Ed. Lemgo: Heldermann Verlag,
2004, pp. 175-213.

[3] E. von Collani and X. Zhai, Stochastics, Beijing: Beijing Publisher
Company Group, 2005.

[4] E. von Collani, “Defining and Modeling Uncertainty”, Journal of
Uncertain Systems, 2008, vol. 2, no. 3, pp. 202-211.

[5] X. Zhai and E. von Collani, “Strategies for Teaching a Novel
Approach to Handling Uncertainty Scientifically via Internet”, In-
ternational Journal of Emerging Learning, 2009, vol. 4, no. 2, pp.
52-57.

[6] J. Bradley, M. Kemp, “The “Plus” Provided by Graphics Calcula-
tors in Teaching Undergraduate Statistics”, 2nd International Con-
ference on the Teaching of Mathematics, 2002,
http://www.math.uoc.gr/ ictm2/

[7] M. Scaife, Y. Rogers, “External Cognition: How Do Graphical
Representations Work?”, International Journal of Human-
Computer Studies, 1996, vol. 45, pp. 185-213.
(doi:10.1006/ijhc.1996.0048)

[8] D. Tall, B. West, “Graphic Insight in Mathematics”, in The Influ-
ence of Computers and Informatics on Mathematics and its Teach-
ing, B. Cornu and A. Ralston, Eds. Paris, UNESCO, 1992, pp.
117-123.

[9] D. Tall, “Graphical Packages for Mathematics Teaching and
Learning”, in Informatics and the Teaching of Mathematics, D. C.
Johnson and F. Lovis, Eds. North Holland, 1987, pp. 39-47.

[10] D. Tall, G. Sheath, “Visualizing Higher Level Mathematical Con-
cepts Using Computer Graphics”, Proceedings of the Seventh In-
ternational Conference for the Psychology of Mathematics Educa-
tion, Israel, 1983, pp. 357-362.

[11] C. Laborde, “Visual phenomena in the teaching/learning of ge-
ometry in a computer-based environment”, Perspectives on the
Teaching of Geometry for the 21st Century – an ICMI Study, M.
Carmelo and V. Vinicio, Eds. 1998, pp. 113-121.

[12] K. Carolyn and M. Yerushalmy (Leaders), “The Working Group
on Technological Environment”, The Future of the Teaching and
Learning of Algebra The 12th ICMI Study, K. Stacey, H. Chick
and M. Kendal, Eds. 2004, pp. 97-152.

[13] K. Barry and T. Mike (Leaders), “The Working Group on CAS
and Algebra”, The Future of the Teaching and Learning of Alge-
bra The 12th ICMI Study, K. Stacey, H. Chick and M. Kendal, Eds.
2004, pp. 153-166.

[14] http://www.gnuplot.info/
[15] http://www.java.com/

AUTHORS
X. Zhai has a Ph.D. in System Engineering in China

and is presently a doctoral student of the Faculty of
Mathematics and Computer Science, Würzburg Univer-
sity, Sanderring 2, D-97070 Würzburg, Germany. (e-mail:
zhaixiaomin@ hotmail.com).

Dr. E. von Collani is a Professor at the Faculty of
Mathematics and Computer Science, Würzburg Univer-
sity, Sanderring 2, D-97070 Würzburg, Germany. (e-mail:
collani@mathematik.uni-wuerzburg.de).

Submitted 9 April 2009. Published as resubmitted by the authors on
9 August 2009.

50 http://www.i-jet.org

http://www.math.uoc.gr/ ictm2/�
http://dx.doi.org/10.1006/ijhc.1996.0048�
http://www.gnuplot.info/�
http://www.java.com/�

