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Abstract—This paper presents an application of developers' and users' de-
pendent factors in the app store optimization. The application is based on two
main fields: developers’ dependent factors and users’ dependent factors. Devel-
opers’ dependent factors are identified as: developer name, app name, subtitle,
genre, short description, long description, content rating, system requirements,
page url, last update, what’s new, and price. Users’ dependent factors are identi-
fied as: download volume, average rating, rating volume, and reviews. The pro-
posed application in its final form is modeled after mining sample data from two
leading app stores: Google Play and Apple App Store. Results from analyzing
collected data show that developer dependent elements can be better optimized.
Names and descriptions of mobile apps are not fully utilized. In Google Play there
is one significant correlation between download volume and number of reviews,
whereas in the App Store there is no significant correlation between factors.

Keywords—App store optimization, Google Play, Apple App Store, mobile
app store, ASO.

1 Introduction

Together with the increasing use of mobile devices there is an increased supply of
applications (apps) used on mobile devices. Software companies and developers create
apps that installed on a mobile device can be useful for mobile device owners. Now, in
the two most popular app stores (Apple App Store and Google Play) are available mil-
lions of apps. Apps are offered in these stores in different categories of software, how-
ever, still, competition is very high between apps in one category. Competition means
that many apps offer similar functions and users can browse and choose from a variety
of selections.

This creates a need to propose an application of developers’ and users’ dependent
factors in app store optimization. App store optimization also can be described as app
store marketing or mobile app search engine optimization. The focus is to improve the
ranking of mobile app directly within the app store. Recently [1] noticed that developers
make efforts to improve mobile app visibility in the app store, but some of such actions
can be treated as fraud. Especially when it comes to reviews and downloads, they can
be pumped by the developer.
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There is limited research on factors which are taken into account when apps ranking
is created. Apps are created by developers and used by users; thus ranking is influenced
by both of them. App store optimization has its roots in search engine optimization,
where different factors are taken into account, when it comes to create a ranking of
websites. Earning from achievements in the field of search engine optimization, the
author proposes an application for app store optimization. There are identified similar-
ities between these two areas.

The first attempt at the systematic literature review of app store optimization is done
recently [2]. Yet, its coverage is not sufficient, because it covers only 9 published
works. 6 papers are conference proceedings and 3 papers are published in journals but
only one is indexed in Web of Science. In referenced works, there are mentioned dif-
ferent factors, which are key elements for the proposition in this paper. Analyzing how
the app store is modeled and configured, some factors are considered as basic elements,
like the number of downloads, the name of the app, or the name of the developer. Others
were introduced later. Yet, not all visible elements are considered as elements of this
application, e.g., app icon, app screenshot, or videos are not considered as direct ele-
ments for app store optimization. However, in literature, the icon is treated as a central
design element of an app [3] and screenshots can be considered as a representation of
the aesthetic and user-friendliness of the mobile app [3].

The research question is which factors are used for creating a ranking of mobile apps
directly in the app store. In this paper, the author proposes an application of developers’
and users’ dependent factors in app store optimization. This paper is organized as fol-
lows. Section 2 contains a background for the study. In section 3 the author describes
the research method for choosing factors to propose framework. Section 4 contains
characteristics of the sample data which are collected from the Apple App Store and
Google Play. In section 5 author discuss the results, highlight the contribution of the
research and suggest possible implications of results, analyze current limitations of the
research, draw conclusions and present ideas for future research on app store optimiza-
tion.

2 Literature Review

In this section two fields are explored. First is about efforts made by app developers
to promote apps in the app store. The developer creates an app and delivers it to the app
store. After software is delivered, it can be offered with free app offers, continuous
quality updates, investment in less popular (less competitive) categories, and price
changes [4]. New releases are found to change user opinion on the app [5]. Number of
ratings, number of reviews, number of downloads are always positively changed, since
they usually are rising. Some developers update their apps very frequently, even once
a week or twice a month. They are not too concerned about detailing the content of new
updates and users are not too concerned about such information, whereas users highly
rank frequently updated apps instead of being annoyed about the high update frequency
[6]. App rating is assigned to an app over its entire lifetime. The app rating is aggregated
into one rating that is displayed in the app store. However, many apps do increase their
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version-to-version rating, while the store-rating of an app is resilient to fluctuations
once an app has gathered a substantial number of raters [7].

There were introduced simulation models of the mobile ecosystem. In the model
developed by [8], [9] developers build and upload apps to the app store and the users
browse the store. Ranking of apps is built on four algorithms based on the number of
downloads. In the model developed by [10], three more additional algorithms are taking
into account the number of downloads and time. According to [11] high-rated apps are
larger with more complex code, more preconditions, more marketing efforts, more de-
pendence on libraries, and they make use of higher-quality Android libraries. A high
review rating of the free version of a mobile app leads to higher sales of its paid version
[12]. The proposed approach is to assist developers to select the proper release oppor-
tunity based on the purpose of the update and current condition of the app [13]. In a
recent study, names, descriptions were analyzed in terms of influencing ranking posi-
tion in the store [14]. Developers also can do a shady move to fraud app ranking. An-
other proposition defined two methods of fraud: inflate the app number downloads and
ratings in a very short time [1]. Especially, when it comes to download fraud activities,
they can be divided into three types according to their intentions: boosting front end
downloads, optimizing app search ranking, and enhancing user acquisition and reten-
tion rate [15].

The second field is on users’ reviews. Users can publish a review about an app. Re-
views have a major influence on the user's purchase decision [3]. Average rating ac-
cording to the star principle as well as the number of reviews given, determine the buy-
ing decision of an app to a very large degree. Reviews area is explored when it comes
to see what the sentiment of the review is. Review can have positive or negative senti-
ment [16]. Reviews analysis is done by text mining [17]. For many apps, the amount of
reviews is too large to be processed manually and their quality varies largely. There are
proposed automated approach that helps developers filter, aggregate, and analyze user
reviews [18]. Most of the feedback is provided shortly after new releases, with a quickly
decreasing frequency over time. Reviews typically contain multiple topics, such as user
experience, bug reports, and feature requests [19]. Reviews are a source for users' feed-
back, requests for new features, or reporting bugs. Reviews represent feature requests,
i.e. comments through which users either suggest new features for an app or express
preferences for the re-design of already existing features of an app [20]. E.g. in the
Blackberry app store there is a strong correlation between customer rating and the rank
of app downloads yet, surprisingly, there is no correlation either between price and
downloads, or between price and rating [21].

Reviews can be specific, as specific is an app [22]. Analyzing feedbacks from a
health and fitness-tracking app shows that the users of health and fitness-related apps
are concerned about their physical activity records and physiological records. The rec-
ords include track, distance, time, and calories burned during jogging or walking. App
store reviews are used to analyze different aspects of app development and evolution
[23]. There are proposed frameworks to acquire reviews in large number, extract in-
formative user reviews by filtering noisy and irrelevant ones, then group the informative
reviews automatically using topic modeling [24], [25]. There are recommendation sys-
tems aimed at helping users to choose optimal sets of applications belonging to different
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categories while minimizing energy consumption, transmitted data, and maximizing
application rating [26] or optimize performance [27]. There are also systematic litera-
ture reviews of opinion mining studies from mobile app store user reviews, which de-
scribes and compares the areas of research that have been explored thus far, drawing
out common aspects in app store analysis [28], [29]. Some studies are on both fields,
without distinguishing them into developers and user areas [30].

eWOM (Electronic Word of Mouth) is a field that touches the area of the app store.
There are works done to measure the impact of eWOM attributes to the success of the
app. eWOM plays an important role in mobile application downloads [31]. In the app
store, eWOM can be considered as reviews posted by users [32]. Analyzing dimension
of the reviews, comments on product quality and service quality affects app downloads
in different levels. Users’ comments on product quality occupies a larger portion of
consumer reviews, but their comments on service quality have a stronger effect on sales
rankings [33].

3 Materials and Methods

App stores distribute apps through the app store and have additional information
about the app. A set of information is initially set by the developer. The app is delivered
by the app developer. The developer sets a name for the app and creates a description
of app features. The app is published with the new original url. The developer sets
genre, content rating, and define system requirements for an app. Apps can be distrib-
uted through the app store for free or user needs to pay for download. Free apps can
also offer in-app purchases for additional features. Another set of information is created
after the app is released. Users are downloading the app and make the number of down-
loads growing. Users can also write reviews and rate an app in a range of scale from 1
to 5.

Proposition on figure 1 is based on two areas. The first area depends on the devel-
oper. Its content and settings are provided when the app is initially released in the app
store. The second area depends on the users. If the app is being popular among users,
they are starting to download, rate, and create reviews of the app in the app store.

3.1  Factors dependent on developer

The developer decides on twelve factors that are proposed in figure 1. Clearly, it
shows that much of the app store optimization depends on the developer’s starting set
for an app. Following is a description of each element in the developer’s dependent
area.

Developer: The name of the developer is a ranking factor, affecting directly the po-
sition of the application itself. The positive history of the developer affects the better
evaluation of the application in the search ranking. Keywords in the developer's name
affects each of its applications.
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Fig. 1. Categorization of attributes in the app store. Developers’ area contains content and set-
tings provided when the app is initially released in the app store. Users’ area contains
elements revealing users’ engagement.

Name: The name of the application is important both for the app store optimization
and for the experience. Often observed solution made by developers is to create a name
by combining the brand name and the most important keywords for the app. Google
Play limits the name to 50 characters, whereas Apple App Store limits the name to 30
characters.

Subtitle: (Only in Apple App Store) Subtitle is placed right below the title and brings
additional information on the mobile app. It complements the app name by communi-
cating the purpose and value of the app in detail and is limited to 30 characters.

Genre: Genre is a category for software. Currently Google Play offers 31 categories
for mobile apps and Apple App Store offers 28 genres. In Apple App Store, apps some-
times are assigned to more than one genre. The app can have a primary genre and sec-
ondary genre. In Google Play app has a primary category and secondary family filter.

Short description: App stores allows to prepare two types of description, short and
long version. The short version is only visible in the mobile app store and its maximum
length is 80 characters for Google Play and 170 characters for Apple App Store.

Long description: The long version is also visible in a desktop version and the max-
imum size is 4000 characters. However, only around 250 characters are visible after the
description is displayed, the rest is hidden. It can be shown after clicking the button
“Read more”.

Content rating: Content rating rates the suitability of mobile applications for its
audience. It tells what age group is suitable to use a mobile app. Content rating differs
in different geographic.

System requirements: App store providers require that new apps target operating
system version. The system version is set in requirements. For new apps requirement
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in Google Play is at least Android 8.0 and in Apple App Store is at least iOS 12. Older
apps can have lower operating system requirements.

Page url: The url can only be defined when the application is published, hence it is
an element worth refining. Google Play url uses the following format:
https://play.google.com/store/apps/details?id=<package _name>, Apple App Store url
uses the following format:  http://itunes.apple.com/<country>/app/<app-
name>/id<app-1D>?mt=8.

Last update: (Only in Google Play) It is the date of the last update. For the applica-
tion store, security is important, therefore the factor that has a ranking importance, but
also affects the opinions about the application, is the frequency of its updating. It is
necessary to update the application not only at the time of major changes to the func-
tionality of the app, but also at every subsequent update of the operating system.

What’s new: This element is intended to describe the updates introduced into the
app. Developers can change the contents of the section only after the new app version
is submitted to the store. Since April 2019, in Apple App Store developers are only able
to edit the "What's new" text when submitting a new version of their app. Any changes
to the text are subject to the standard review process. It's possible that previously a few
developers were taking advantage of the flexibility for bad reasons, such as pointing
support or marketing URLSs to malicious websites.

Price: The developer sets a price tier, and then the app store automatically defines
the price in local currency. The developer has no control over the price in each country.
For Apple App Store there is a price matrix with 87 tiers. Tier 0 is priced equal to 0, so
it means the app is for free. Maximum tier 87 is the price set to 1199.99 USD. For
Google Play the maximum price for an app is 400 USD. Developers often use freemium
app strategy [12], where the app download is for free, but the app offers in-app pur-
chases.

3.2 Factors dependent on users

Users influence four factors in the figure 1. It is fewer elements than are depending
on the developer, however, high ratings and a high volume of downloads, together with
good reviews make the app popular in the app store. According to Google [34], apps in
Google Play are ranked based on a combination of ratings, reviews, downloads, and
other factors, however, details of these weights and values are a proprietary part of the
Google search algorithm. Below is a brief description of each element in the user’s
dependent area.

Downloads volume: (Only in Google Play) Downloads is the number of app instal-
lation on devices worldwide. Google Play publishes the only threshold number that has
been reached. Threshold always has 1 or 5 in the beginning and is rising by adding
zeros. Currently, the upper threshold of 5 billion downloads is reached by only one app:
YouTube.

Average rating: Average rating is a number with one decimal place in the scale
from 1 to 5 and it is an aggregated rating from all ratings given by users. Total rating is
only available for apps that have received five or more ratings. The way app's rating in
Google Play is calculated has been updated in May 2019 to place greater significance
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on the app's most recent ratings. In Google Play summary of app’s ratings is being
shown to users on starting in August 2019.

Ratings volume: Number of all ratings given by users. Individual ratings influence
the app’s summary rating, which is displayed on the product page and in search results.
This summary rating is specific to each territory on the Apple App Store and it can be
reset when the developer releases a new version of the app. Resetting the summary
rating can ensure that it reflects the most current version of the app, however, having
few ratings may discourage potential users from downloading the app. Resetting sum-
mary rating does not reset the app’s written reviews. Past reviews will continue to dis-
play on the product page.

Reviews: Apart from ratings users can write a review about an app. Reviews are a
source for users’ feedback, requests for new features, or reporting bugs [35]. Develop-
ers can ask users to rate and review the app at appropriate times throughout the user
experience. In Apple App Store developer can prompt for ratings up to three times in
365 days. Users will submit a rating through the standardized prompt, and can write
and submit a review without leaving the app.

Data for analysis and further usage in application for app store optimization were
collected from Google Play and Apple App Store. The author used two different tech-
niques for retrieving data. The first technique applied regular expressions to match el-
ements like the number of downloads, last date of update, content rating, range of pric-
ing, and software requirements. The second technique used CSSPath to match the next
elements like developer, number of reviews, category, name, average rating. The url
was also retrieved for each application during the crawling process.

These two different techniques were needed because some of the elements are writ-
ten down firmly into a website structure and are always placed in the same context.
These were retrieved by the CSSPath. The rest of the elements can change their position
in website structure, due to the incomplete data provided by the developer. Some of the
apps in Google Play and Apple App Store do not have all of the information usually
displayed on the app store. Regular expressions helped to collect the data in different
parts of websites.

4 Results

The mining of apps was done in May 2019. The samples contain 49,990 apps from
Google Play and 6,040 apps from Apple App Store. The method for collecting the data
was crawling web pages from the starting point. For Google Play, it was the start page
for the app store. The crawler was limited only to crawl web pages with a detailed app
description. The starting point for Google Play was https://play.google.com/store/apps
and detailed web pages for the app have common part https://play.google.com/store
[apps/details?id= where after = character is a unique part of url for each app. Web pages
with detailed app descriptions were discovered by crawling app urls from the start page
and then each detailed page url has a section with similar apps named Similar and sec-
tion More by developer name. After reaching 50,000 downloaded apps with this
method, the author decided that this sample is representative. Now, the dataset contains
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apps for every category in Google Play, most of the apps have ratings, all download
threshold, and all types of content ratings are in the dataset. In table 1 is a comparison

of both app stores.

Table 1. Comparison of Google Play and Apple App Store

App Store Google Play Apple App Store
Maximum length of name 50 30
Number of developers 724,000 494,000
Maximum length of subtitle none 30
Number of categories/genres 31 28
Maximum length of short description 80 170
Maximum length of long description 4000 4000

Content rating types

ESRB, PEGI, USK,
ACB, Brazil, GRAC

4+, 9+, 12+, 17+, GRAC

System requirements Android i0oS

Page url Structured Structured

Last update Date None

What’s new After new release After new release
Maximum price 1199.99USD 400USD
Downloads volume Thresholds none

Average rating 1to5 1to5

Ratings volume Yes Yes

Reviews Yes Yes

Source: App stores mining and [36]

Apple App Store does not list any link to detailed web pages for apps through the
web browser on the start page. However, previously mentioned structured, that detailed
web page for app contains sections with links to other apps, also appear in Apple App
Store as sections: More by this developer and second section You may also like. For
Apple App Store the starting page for crawler was https://apps.apple.com/pl/app/wik-
ipedia/id324715238. The crawler was only crawling web pages that matched this crite-
rion: https://itunes.apple.com/pl/app/.*mt=8. * refers to regular expression and allows
to be any string of any characters replacing “.*”. In Apple App Store, the number of
downloaded apps is significantly lower. Unfortunately, app store blocks connection af-
ter reaching around 200 downloaded apps and bans the IP address from which crawler
was connecting. After around 30 attempts of switching IP, the author was able to down-
load 6,040 apps, which were in the distance of 6 nodes (crawl depth) from the starting
point.

In the process of app store mining, the author has crawled from Google Play 50 K
apps, which belong to 31 different categories. Additionally, there is the main category
Games which includes 17 subcategories (action, adventure, arcade, board, card, casino,
casual, educational, music, puzzle, racing, role-playing, simulation, sports, strategy,
trivia, word). In the crawled sample games take 16,66% of the total number of applica-
tions, and other apps belong to 31 different categories. Figure 2 represents the ratio of
all categories in this sample.
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Fig. 2. App categories in the Google Play store. The sample shows 31 different categories and
merged 17 categories into the Games. The sample contains 49990 crawled apps.

Table 2 shows the descriptive statistics of 49 990 sample apps crawled from Google
Play and 6040 sample apps crawled from Apple App Store. Based on extracted data
Table 2 contains the main characteristics of factors dependent on developers based on
Google Play and Apple App Store.

Table 2. Descriptive statistics of samples from Google Play and Apple App Store

App Store Google Play Apple App Store

Number of downloaded apps 49990 6040
Number of developers 16912 2786
Number of genres 31 25

Avg length of name 23 23

Avg length of subtitle na 26

Avg length of description 1338 1694
Median length of description 1052 1489
Apps with reviews 97% 79%
Average number of avg rating 4,29 4,35

Autor crawled a smaller sample from Apple App Store because this app store pre-
vents against the massive extraction of data and after a few hundreds of crawled apps,
it turns on the HTTP response code 403 on every web page with an app. Table 3 con-
tains factors dependent on users based on Google Play like the number of downloads,
the average number of reviews in download threshold, and average from average rating
in download threshold.
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Table 3. Framework elements dependent on users based on Google Play

Download Number of apps Percentage of dataset Avg of reviews | Avg from

threshold avg rating
0 67 0,13% 21 4,35
1 217 0,43% 2 4,90
5 158 0,32% 61 4,76
10 767 1,53% 4 4,69
50 542 1,08% 4 4,57
100 2324 4,65% 8 4,43
500 1517 3,03% 15 4,36
1000 5025 10,05% 37 4,25
5000 2933 5,87% 86 4,22
10000 8502 17,01% 283 4,26
50000 4392 8,79% 785 4,27
100000 10016 20,04% 2757 4,27
500000 3753 7,51% 9020 4,29
1000000 5833 11,67% 31539 4,31
5000000 1520 3,04% 102576 4,32
10000000 1813 3,63% 343902 4,34
50000000 322 0,64% 1113916 4,37
100000000 244 0,49% 3541721 4,39
500000000 27 0,05% 9739412 4,41
1000000000 17 0,03% 26792154 4,27
5000000000 1 0,00% 39797335 4,40

5 Discussion

Data in the Google Play store adapts to language settings of the user’s browser and
operating system. During the initial screening, the author has seen different settings
coming from different languages. First, the price of the app itself or in-app purchases
were displayed in the currency related to the language set in the web browser. Second,
the types of content ratings were different for different localization settings. The author
checked three options of language & country setting: US, Poland, and Ukraine. For the
US the rating is displayed in the Entertainment Software Rating Board (ESRB) stand-
ard, whereas for Poland and Ukraine the rating format comes from Pan European Game
Information (PEGI) standard. [37]. These ratings were encountered during sample
crawling. Other countries have their ratings. Ratings in Germany are maintained by
Unterhaltungssoftware Selbstkontrolle (USK). Ratings in Australia are maintained by
the Australian Classification Board (ACB). Ratings in Brazil are maintained by Class-
Ind. The content rating system in South Korea is approved by GRAC (Game Rating
and Administration Committee). Third, except for recommending applications based
on language and country, Google Play provides different search results for logged-in
and anonymous users. If the user is not authorized into Google account, it is suggested
a set of applications that differs from the one an authorized user will get (yet, the query
in both situations could be the same).
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Crawled data on factors depending on developers reveal, that they do not use fully
all of the framework elements. The name of the app can be a maximum of 30 characters
long, however average name length is 23 characters. This suggests, that there is still
space that can be used by developers in the name element. Subtitle is an optional ele-
ment in Apple App Store. Not every app has set subtitle. In the collected sample, 41%
of apps did not have a subtitle. Subtitle can be a maximum of 30 characters long and
the average length is 26 characters. This suggests, that if the subtitle is used, developers
use it in its almost maximum capacity. Long description can be a maximum of 4000
characters long, however, the average length is 1338 characters and the median 1056
characters long for Google Play and the average length of 1755 characters and median
1534 characters for Apple App Store. This suggests, that there is still space that can be
used by developers in the description element.

Limits of name length have been changing in recent years. The previous limit in
Google Play was 30 characters. In 2017 app name length in Google Play increased to
50 characters. A different approach was in Apple App Store. Introducing the App Store,
the limit was 255 characters. In 2016 Apple introduced the limit of 50 characters and
one year later decreased it to 30 characters. It can be noticed that in the sample are apps
from Apple App Store with name lengths from previous limits.

Factors depending on users reveal that, if the larger download threshold is achieved,
the larger number of average reviews apps have. It is a linear relationship, which is
expected, since more downloads can result in more reviews. However, the average rat-
ing for apps with the lowest download threshold is the highest and then for the next
thresholds is decreasing. The average rating is decreasing to 4,22 with a threshold of
5000 downloads and then is increasing to a threshold of 500 million downloads. Users’
depending factors are built on data divided according to the download threshold. It
shows, that if the app is more and more downloaded, the overall rating from the user is
growing. Usually developers are taking into account requests made in reviews and up-
date apps with new and requested features. That is why the users are rating the app
higher.

Average ratings for apps differ between both app stores. The collected sample shows
that higher averages are in Apple App Store. In Apple App Store there is no significant
Spearman’s correlation coefficient between Length of name, Length of Description,
Number of Reviews, and Average Rating. Table 4 shows the Spearman’s correlation
coefficient matrix.

In Google Play there is only one significant Spearman’s correlation coefficient be-
tween Downloads volume and Number of reviews, p < 0,001. Other metrics are having
a weak correlation. Table 5 shows the correlation matrix.

Table 4. Spearman’s correlation coefficient values for Apple App Store elements

Name Description Reviews Average rating
Name
Description 0,056
Reviews 0,002 0,032
Average rating -0,039 0,095 0,029
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Table 5. Spearman’s correlation coefficient values for Google Play elements

Name Downloads Reviews Average rating
Name
Downloads -0,007
Reviews 0,001 0,600
Average rating 0,153 0,009 0,018

Using this study developers could encourage to use the possibility to ask the user for
the ratings and reviews. Both app stores limit this function to a few times a year, but
results show, that there is a coefficient of 0,600, p < 0,001 between the number of
reviews and downloads. On the other side, users using reviews can request new features
or do bug reports. This finding is confirmed along with other studies [19], [20].

In two downloaded samples, 400 apps are the same in both app stores. The metric
comparison of the same apps in both stores shows the correlation for average rating as
0,437 and description length correlation is 0,725. There is a moderate relationship be-
tween Average ratings in both app stores and a strong relationship of description
lengths. Google Play users tend to rate apps more than Apple App Store users which is
in line with [38] results.

In this paper an application of developers’ and users’ dependent factors in app store
optimization is proposed. The application is based on two main fields. The first field is
dependent on the developer. The developer sets the initial setting for each app, which
is distributed to the app store. After the app is being distributed, users’ engagement in
app distribution is the second field. Users cause number of downloads, write reviews
and give ratings. An application is proposed for both leading app stores: Google Play
and Apple App Store. Answering the research question stated in the paper, sixteen dif-
ferent factors were identified as these, which are influencing app store ranking and are
key elements in app store optimization.

Results show that developers are not fully using elements that are dependent on
them. The lowest use is with description, in Google Play, developers on average use
33% of its capacity, and in Apple App Store developers on average use 41% of its
capacity. The second element which still has some space to use is the name of an app.
In both app stores, on average, developers use 76% of its full capacity. The last observed
changes in adapting the length of name show that app stores would like to display only
the brand name or generic name and just one keyword. Even though, the limit in Apple
App Store is 30 characters, a guide for developers suggests using a maximum of 23
characters. Yet, some developers use all of the characters space to use more keywords,
which could be used to find the app in the app store. In terms of description, users
usually read few first lines, not paying attention to all the text, that’s why, developers
prepare just the length of text, that has a chance to be read.

Recent changes in Apple App Store are on extending control over apps description.
Developers are only able to edit the "What's New" text when submitting a new version
of their app. The app store is tightening the pricing policy, it means that the user has to
know if the app is offering in-app purchases to have a full working app. There are also
published constant updates to review guidelines. Recent changes in Google Play store
concern updating the app by users. Apps can have features installed in the background
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depending on if they are needed. This will decrease install time and also download size,
together with features that can be delivered conditionally to users depending on the
country, device features. Users are allowed to update an app without ever closing it.
This comes with two options, a mandatory app update, which locks the app until the
user updates it, and an optional app update, which allows the user to continue to use the
app while updating in the background. Google Play offers more customization options
to allow app owners to have more control over their app listings. App owners can cus-
tomize their app listing depending on if a user has not yet installed the app, if they have
the app installed, or if they have uninstalled the app. Personalized content helps with
the acquisition, retention, and re-engagement of users.

Mining the app stores with a crawling technique allowed us to check if the elements
in the application are consistent. It happens, that some elements that are depending on
the developer, are not set, thus not visible on the web page. App store mining also al-
lowed to compare if apps belonging to different categories, are having different require-
ments to be set for the launch. After crawling, all the apps fit the same set of factors.
This proved, that all apps, regardless of belonging to different categories, have the same
set of factors. The final concept of the application was formed after data mining was
done. Crawling also allowed to conclude some results, based on downloaded data.

6 Conclusion

This paper is one of the first attempts to create an application, which will explain,
what elements are taken into account, when the ranking is created in app stores. Frame-
work is created on data downloaded from two leading app stores: Google Play and Ap-
ple App Store. The framework assumes that this ranking is depending on sixteen ele-
ments factors. All of these factors are identified in this paper. The author divided them
into two groups, where one is depending on app developers and the second is depending
on the users’ engagement.

The practical implication of this paper is that there is a lack of broad knowledge for
developers on how to prepare marketing actions in the app store. Developers know how
to build an app, but the marketing strategy is not used sufficiently. Developers now can
pay attention to all elements, that influence ranking position in the app store.

The proposed application has some limitations. First is that the application is pro-
posed only on data that is publicly visible and accessible. Perhaps there are some other
elements, not visible for users. This could be the number of app uninstalls from the
device, the number of app removals from the app store. Second, it takes only data from
two app stores. There are other app stores like Windows Phone or BlackBerry World,
which were not taken into building this application. This could be the future direction
of research, to take also data from these stores and enhance the proposed framework.
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