
Paper—A Software Security Optimization Architecture (SoSOA) and Its Adaptation for Mobile…

A Software Security Optimization Architecture (SoSOA)

and Its Adaptation for Mobile Applications

https://doi.org/10.3991/ijim.v15i11.20133

Amr Abozeid
Jouf University, Jouf, Saudi Arabia

Al-Azhar University, Cairo, Egypt

AbdAllah A. AlHabshy (), Kamal ElDahshan

Al-Azhar University, Cairo, Egypt
AbdAllah@Azhar.edu.eg

Abstract—Security attacks become daily news due to an exposure of a secu-

rity threat in a widely used software. Taking software security into consideration

during the analysis, design, and implementation phases is a must. A software ap-

plication should be protected against any security threat such as unauthorized

distribution or code retrieval. Due to the lack of applying a software security

standard architecture, developers may create software that may be vulnerable to

many types of security threats. This paper begins by reviewing different types of

known software security threats and their countermeasure mechanisms. Then, it

proposes a new security optimization architecture for software applications. This

architecture is a step towards establishing a standard to guarantee the software's

security. Furthermore, it proposes an adapted software security optimization ar-

chitecture for mobile applications. Besides, it presents an algorithmic implemen-

tation of the newly proposed architecture, then it proves its security. Moreover,

it builds a secure mobile application based on the newly proposed architecture.

Keywords—Reverse engineering, Security architecture, Security optimization,

Software protection, Source code protection

1 Introduction

Developers afford a great work in order to produce a single application. So, securing

this hard work is absolutely necessary; i.e. any software application should be protected.

Protecting any software application - includes but not limited to - the following:

1. Secure source code against source code hacking, and code reverse engineering.

2. Secure software applications against illegal download and illegal copy and/or distri-

bution.

3. Secure data against internal threats (data loss) and external threats (Information leak-

age).

148 http://www.i-jim.org

https://doi.org/10.3991/ijim.v15i11.20133

Paper—A Software Security Optimization Architecture (SoSOA) and Its Adaptation for Mobile…

To secure data against internal threats, then the countermeasures are including but

not limited to data protection (data loss prevention), utilize security frameworks and

libraries, and error monitoring and handling exception. To secure data against external

threats, then the countermeasures are including but not limited to security tests, data

validation, access control (authorization), authentication, logging and intrusion detec-

tion, and SQL injection prevention.

Developers should take software security into account during the analysis, design,

and implementation phases. To guarantee the software security, developers should fol-

low a software security standard architecture. Besides introducing new algorithms that

guarantee digital rights management (DRM), this paper integrates all security mecha-

nisms into a single robust software security architecture. This paper presents a secure

optimization architecture for software security. Then it presents an adapted architecture

for mobile applications. By using the proposed architecture, software developers can

integrate all security mechanisms in-house. Accordingly, they do not have to send the

source code to a respectable software security company to add the needed security

mechanisms.

The rest of this paper is organized as follows. Section 2 presents the mechanisms

that may be used to secure software applications. Section 3 proposes a new software

security optimization architecture (SoSOA). Section 4 adapts SoSOA to mobile appli-

cations. Finally, Section 5 presents the conclusion and further works.

2 Software Applications Security

This section reviews the mechanisms used to ensure the security of any software

application. These mechanisms could be used to secure source code, software applica-

tion and data.

2.1 Secure source code

A software package may have several alternatives. One of them implements an orig-

inal algorithm and the others just imitate it. If the programmers can imitate other pro-

grammers work, then the computer may imitate a given application. The program-

mer/computer captures the main features of the original software package and builds a

new one (using what is called reverse engineering) [1].

Source code hacking: To prevent an attacker form stealing the source code, devel-

opers should use at least one of the following methods:

1. Encrypt source code files [2, 3]

2. Add watermarks to source code via metadata [4-6]

3. Use a software package for code protection such as Arxan EnsureIT, StarForce C++

Obfuscator, etc [7].

Code reverse engineering: One of the most efficient countermeasures to reverse

engineering that the community seems to be agreed upon is code obfuscation[8-12].

iJIM ‒ Vol. 15, No. 11, 2021 149

Paper—A Software Security Optimization Architecture (SoSOA) and Its Adaptation for Mobile…

Some of the most popular obfuscation tools are ProGuard [13], DexProtector [14],

and DexGuard [15]. These tools use cryptographic algorithms besides security checks

in Android APK to prevent attacks such as intrusions. Once these tools detect that the

code is being hacked, the application will be blocked immediately.

2.2 Secure software application

This section presents DRM functionality; security mechanisms that could be used to

prevent illegal software application download and/or illegal copy and illegal distribu-

tion.

Secure software application: against illegal download. If the program is free, then

there is no illegal download. Otherwise, A digital distribution platform (Such as app

store, play store, galaxy apps, amazon app store, etc.) could be used to handle such a

problem [16]. The illegal copied-software application should not work.

Secure software application: against illegal copy and/or illegal distribution. This

can be done using a dongle [17] and/or code signing [18] with Android Application

Licensing [7].

2.3 Secure data

This section discusses the mechanisms used by developers to secure data against

both internal and external threats.

Internal threats (Data Loss). Data loss means losing sensitive information due to

human errors, computer viruses, adversaries’ attacks, computer hardware or software

failure, or natural disasters. Various mechanisms utilized to protect stored and trans-

mitted data such as Utilize Security Frameworks and Libraries [19, 20], Data Protection

(Data Loss Prevention - DLP), Error Monitoring and Handling Exception.

External threats (Information leakage): A software application could leak sensi-

tive information such as application configuration details, comments within the code or

personal data. This information could be used to attack the software application, its

network host or its users. Various security mechanisms utilized to prevent information

leakages, such as Authentication [21, 22], Access Control (Authorization), Logging and

Intrusion Detection [23, 24], Auditability, SQL Injection [25-28], Data Validation, and

Security Tests [29, 30].

3 Newly Proposed Software Security Optimization Architecture

This section proposes a new security architecture which can be used by developers

in order to protect their software application. This architecture could be described as

follows:

150 http://www.i-jim.org

Paper—A Software Security Optimization Architecture (SoSOA) and Its Adaptation for Mobile…

1. During the application development phase, the developer should secure the software

applications using:

a) Mechanisms that are used to ensure source code protection and software applica-

tion protection as described in Sections 2.1 and 2.2 respectively. Accordingly, de-

velopers could:7

i. Add a watermark to the source code and encrypt its files, in order to avoid

source code stealing.

ii. Use obfuscation to prevent reverse engineering. Furthermore, for Android ap-

plications, tools such as ProGuard, DexProtector and DexGuard could be used,

in order to avoid reverse engineering.

b) Mechanisms that are used to prevent data loss and information leakage as de-

scribed in Section 2.3.

2. Assure legal and paid software application utilization: Software application should

be published on app store and this app store manages such issues.

3. Secure software application against illegal distribution: To protect a software appli-

cation against illegal distribution, developers should use a DRM system.

3.1 Newly proposed secure software applications against illegal distribution

Whenever the developers do not want to use an external DRM system, they may use

the following new proposed DRM procedure.

The notations to be used in the proposed procedure may be described as follows:

• 𝐻: is a secure hash function.

• 𝑀𝐴𝐶: is a secure message authentication code (a keyed secure hash function).

• ∥: is the concatenation operation.

• Nonce: is a random 256 bits string that may be used only once.

• 𝐶𝑀𝐾: is the Company's Master Key, which is a 256 bits secure company's key for a

specific software application.

• 𝑀𝑆𝑁: is the machine motherboard serial number.

• 𝐼𝑀𝐸𝐼: is the International Mobile Equipment Identifier, which is also known as the

Mobile Equipment Identifier (𝑀𝐸𝐼𝐷).

• 𝑈𝑠𝑒𝑟𝐼𝐷: is the User identification, which may be the user's email, phone number,

fax number, or mobile phone number.

• 𝑀𝐴𝐶 − 𝐾𝐸𝑌: is the key that is used to generate the 𝑀𝐴𝐶 such that 𝑀𝐴𝐶 − 𝐾𝐸𝑌 =
𝐻(𝑁𝑜𝑛𝑐𝑒 ∥ 𝐶𝑀𝐾 ∥ 𝑀𝑆𝑁).

• 𝑎𝑝𝑝 − 𝐾𝐸𝑌: is a product key such that, app-𝐾𝐸𝑌 = 𝐻(𝑈𝑠𝑒𝑟𝐼𝐷 ∥ 𝑀𝐴𝐶 − 𝐾𝐸𝑌 ∥
𝑀𝑆𝑁).

• 𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒: is a file that contains the 𝑎𝑝𝑝 − 𝐾𝐸𝑌.

• 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒]: is the value of applying 𝐻 on the 𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒

such that 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒] = 𝐻(𝑀𝐴𝐶 − 𝐾𝐸𝑌 ∥ 𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒).

To avoid sending the source code to a third party to add the DRM functionalities, the

developers may use the following procedure:

iJIM ‒ Vol. 15, No. 11, 2021 151

Paper—A Software Security Optimization Architecture (SoSOA) and Its Adaptation for Mobile…

Install and activate the application: To install the application, the software devel-

opment company and the user should do as follows:

1. The company server deploys the software application on an app store.

2. The user:

a) Buys the software application from a trusted app store. The purchase-ticket con-

taining the 𝑈𝑠𝑒𝑟𝐼𝐷 and 𝑀𝑆𝑁 should be signed.

b) Downloads the purchased software application from the app store.

c) Installs the software application and opens it for the first time, then registers as a

new user.

d) Sends 𝑈𝑠𝑒𝑟𝐼𝐷, 𝑀𝑆𝑁 and purchase-ticket via a secure channel to the company’s

server.

3. The company’s server:

a) Ensures the application purchase for this 𝑈𝑠𝑒𝑟𝐼𝐷 and 𝑀𝑆𝑁.

b) Generates the 𝑎𝑝𝑝 − 𝐾𝐸𝑌 for this specific user.

c) Creates the 𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒.

d) Generates the 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒].
e) Signs the 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒] using the digital signature of the com-

pany’s server.

f) Stores the values of (𝑈𝑠𝑒𝑟𝐼𝐷, 𝑀𝑆𝑁, 𝑎𝑝𝑝 − 𝐾𝐸𝑌, 𝑆𝑖𝑔𝑛 𝑜𝑓 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 −
𝑓𝑖𝑙𝑒]) in a protected database.

g) Sends 𝑀𝐴𝐶 − 𝐾𝐸𝑌 , 𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒 and Sign of the 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 −
𝑓𝑖𝑙𝑒] to the user via a secure channel.

4. The user completes the installation as follows:

a) Uses the 𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒 to activate the application.

b) Stores and protects the values of the 𝑀𝐴𝐶 − 𝐾𝐸𝑌 , and the Sign of the

𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒].

At the application’s start-up: At start-up, the application should check the ma-

chine’s legitimacy by:

1. Generating a new 𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒 using the 𝑀𝑆𝑁 of the current machine.

Constructing a new 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒].
Constructing the old 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒] from the signed 𝑀𝐴𝐶[𝑎𝑝𝑝 −

𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒].
Checking whether the value of the old 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒] equals the value of

the new one. If yes, then run the software application. Else, abort running the software

application.

Whenever the app starts up and the machine connected to the Internet: Imme-

diately after the device is connecting to the internet, the company’s server should ensure

that the app-KEY-file has not been altered. This should be done, even if the software

application is opened and being used. To this end, the subsequent steps should be fol-

lowed:

152 http://www.i-jim.org

Paper—A Software Security Optimization Architecture (SoSOA) and Its Adaptation for Mobile…

1. The application installed on user’s machine:

a) Generates a new 𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒 using the 𝑀𝑆𝑁 of the current machine and

then constructs a new 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒].
b) Sends 𝑈𝑠𝑒𝑟𝐼𝐷, 𝑀𝑆𝑁, and the new 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒] to the company’s

server via a secure channel.

2. The company’s server checks whether the 𝑈𝑠𝑒𝑟𝐼𝐷 is registered. If yes, then con-

structs a signed 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒] using the received 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 −
𝑓𝑖𝑙𝑒] and sends it to the user using a secure channel. Else, the company’s server

revokes the operation.

After receiving the new signed 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒], the software application

checks whether it is the equals the old signed 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒]. If yes, then

the software application runs. Else, the software application aborts.

Whenever the mobile is lost, changed or destroyed: A new product key should be

generated for the legitimate user. To this end, the subsequent steps might be followed:

1. The user:

a) Downloads the application from an authentic app store.

b) Installs the software application and opens it for the first time, then requests a new

activation.

c) Sends 𝑈𝑠𝑒𝑟𝐼𝐷 and the new 𝑀𝑆𝑁 to the company’s server via a secure channel.

2. The company’s server checks whether the 𝑈𝑠𝑒𝑟𝐼𝐷 is registered. If yes, then it sends

a validation message to this user using the 𝑈𝑠𝑒𝑟𝐼𝐷. Else, it revokes the operation.

3. After receiving the validation message, if the user has asked for a new activation,

then sends a response to the validation message with the current machine 𝑀𝑆𝑁. Else,

the user revokes the operation.

4. After receiving the response, the company’s server checks the user legitimacy. If the

user is not legitimate, then aborts the operation. Else, the company’s server:

a) Revokes the old product key associated with this mobile number.

b) Creates a new product key 𝑎𝑝𝑝 − 𝐾𝐸𝑌 for this specific 𝑈𝑠𝑒𝑟𝐼𝐷 and the new 𝑀𝑆𝑁

and sends 𝑀𝐴𝐶 − 𝐾𝐸𝑌, 𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒 and the signed 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 −
𝑓𝑖𝑙𝑒] to the user via a secure channel.

5. The user completes the installation as follows:

a) Uses 𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒 to activate the application.

b) Stores and protects the values of 𝑀𝐴𝐶 − 𝐾𝐸𝑌 , and Sign of the 𝑀𝐴𝐶[𝑎𝑝𝑝 −
𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒].

Figure 1 shows the newly proposed software security optimization architecture.

iJIM ‒ Vol. 15, No. 11, 2021 153

Paper—A Software Security Optimization Architecture (SoSOA) and Its Adaptation for Mobile…

Fig. 1. Software secure optimization architecture

3.2 Security analysis

This section provides a security analysis for the newly proposed DRM procedure to

prove its ability to prevent all famous attacks’ scenarios.

First scenario: If the attacker Eve tries to register as a new user without a purchase-

ticket, then the company’s server will revoke the operation. Also, since every purchase-

ticket contains someone’s 𝑈𝑠𝑒𝑟𝐼𝐷 and 𝑀𝑆𝑁, then Eve never be able to use it.

Second scenario: Since all communications use a secure channel, then when a legal

user tries to register for the first time, the attacker Eve cannot change the couple

(𝑈𝑠𝑒𝑟𝐼𝐷, 𝑀𝑆𝑁) to her own in order to get the activation parameters. Moreover, if Eve

succeeds to change the couple to her own data, then she cannot change it within the

purchase-ticket. Consequently, the company’s server will revoke the operation.

Third scenario: Since the activation parameters are produced for a specific machine,

then the attacker Eve cannot capture them to complete the installation and activate the

application.

Forth scenario: Whenever the attacker Eve tries to ask for a new activation, the

company’s server will revoke the operation. This is because her 𝑈𝑠𝑒𝑟𝐼𝐷 does not exist

in the company’s server database. Moreover, if Eve asks for a new activation with a

legal 𝑈𝑠𝑒𝑟𝐼𝐷, then the legal user will be acknowledged and consequently revoke the

operation. And even if the legal user responded positively, the new activation parame-

ters will be produced for the legal user’s machine, not for Eve’s machine.

Fifth scenario: When a legal user asks for a new activation, the license on the prior

machine will be revoked. As the application will not work once the prior machine is

connected to the Internet. So, the legal user will never to be able to have the application

installed on more than one machine at a time.

Sixth scenario: An attacker Eve might buy an old machine with an installed appli-

cation. As mentioned, the application checks the machine authenticity when it connects

to the Internet. Thus, the application will revoke the old license when the legal user asks

for a new activation. Consequently, the application will stop running on the old machine

when it connects to the Internet.

154 http://www.i-jim.org

Paper—A Software Security Optimization Architecture (SoSOA) and Its Adaptation for Mobile…

3.3 Efficiency analysis

The following notations are used to analyze the performance of the newly proposed

DRM procedure:

1. 𝑇𝑀𝐴𝐾 : is the time complexity of the used message authentication code.

2. 𝑇𝐺𝐴𝐾𝐹: is the time complexity of generating the 𝑎𝑝𝑝_𝐾𝑒𝑦_𝑓𝑖𝑙𝑒.

3. 𝑇𝑠𝑖𝑔𝑛: is the time complexity of the used digital signature.

Accordingly, the time complexity required to install and activate the application is

𝑇𝑀𝐴𝐾 + 𝑇𝐺𝐴𝐾𝐹 + 𝑇𝑠𝑖𝑔𝑛 . The time complexity requited at the application’s start-up is

𝑇𝑀𝐴𝐾 + 𝑇𝐺𝐴𝐾𝐹 . The time complexity required whenever the app starts up and the ma-

chine connected to the Internet is 2𝑇𝑀𝐴𝐾 + 𝑇𝐺𝐴𝐾𝐹 . The time complexity required when-

ever the mobile is lost, changed or destroyed is 𝑇𝑀𝐴𝐾 + 𝑇𝐺𝐴𝐾𝐹 + 𝑇𝑠𝑖𝑔𝑛 .

Since the newly proposed DRM procedure just sends and receives a few messages

with negligible time according to the current Internet's speed. Besides, it performs at

most three security mechanisms such as MAC and digital signature with trivial time

according to the modern computers' speed. Consequently, the efficiency of the newly

proposed DRM procedure is similar to the efficiency provided by Google or any other

companies DRM procedures.

3.4 A comparative study among various related security architectures

This section provides a comparative study among the proposed SoSOA, and various

related security architectures (Android applications licensing) that provide DRM func-

tionality such as Google play licensing, Amazon DRM, Android licensor, Droid acti-

vator, etc [7].

The proposed SoSOA is an open source architecture for software security optimiza-

tion. It enables software developers to add DRM functionality in-house as described in

Section 3.1. The DRM functionality will be adapted in Section 4.1 for mobile applica-

tions. Furthermore, the proposed SoSOA urges software developers to secure the source

code and the data using the mechanisms described in Sections 2.1 and 2.3 respectively.

Besides, the proposed SoSOA, is a platform-independent software security architecture.

Google play licensing is an open source system. that provide digital rights manage-

ment (DRM) functionality. Even though, Google play licensing requires having Google

accounts for both developers and users. Also, it requires source code to add the protec-

tion mechanisms. Moreover, the copy protection mechanism is no longer supported.

Furthermore, it does not support Java/C/C++ code protection.

Amazon DRM provides DRM functionality. Even though, it requires source code to

automatically add the protection mechanisms, which produce unexpected results. For

example, sometimes verification errors cause apps to close. Moreover, it does not sup-

port Java/C/C++ code protection. Besides, it is a proprietary system.

Android licenser is an open source system that provides DRM functionality. Even

though, it requires source code to add the protection mechanisms. Also, it provides low

level of protection. Moreover, an adversary could bypass the protection due to using

iJIM ‒ Vol. 15, No. 11, 2021 155

Paper—A Software Security Optimization Architecture (SoSOA) and Its Adaptation for Mobile…

public channels to deliver the keys. Furthermore, it does not support Java/C/C++ code

protection. Besides, it is a paid DRM service.

Droid activator is an open source system. Even though, the developer needs to de-

ploy his/her own server, for the sake of storing the server part of Droid activator pro-

tection. Also, it provides a low level of protection. Moreover, it is easy to capture the

activation keys. Furthermore, it does not support Java/C/C++ code protection.

Unfortunately, these Android applications licensing provide neither source code pro-

tection nor data protection. Moreover, software developers have to provide their own

application source code to a software security company to add DRM functionality.

Thus, the proposed SoSOA is superior to the Android applications licensing, as it pro-

vides source code protection, DRM, and data protection functionalities in-house.

Table 1 summarizes the comparative study, which presents the results of the com-

parison among the proposed SoSOA and various Android applications licensing.

Table 1. A comparative study summrization

Functions
Google Play

Licensing
Amazon DRM Android Licenser

Droid

Activator
SoSOA

Open Source System Yes No Yes Yes Yes

DRM Functionality Yes Yes Yes Yes Yes

In-house DRM Functionality No No No No Yes

High Level Protection Yes Yes No No Yes

Source Code Protection No No No No Yes

In-house Source Code Protection No No No No Yes

Data Protection No No No No Yes

4 An Adapted Software Security Optimization Architecture for

Mobile Applications (SoSOA-MA)

To adapt SoSOA to mobile applications, 𝑈𝑠𝑒𝑟𝐼𝐷 and 𝑀𝑆𝑁 will be replaced by the

𝑀𝑜𝑏𝑖𝑙𝑒 𝑃ℎ𝑜𝑛𝑒 𝑁𝑢𝑚𝑏𝑒𝑟 (𝑀𝑃𝑁) and 𝐼𝑀𝐸𝐼 respectively. To secure software mobile

app against illegal distribution, this section presents an applied algorithmic methodol-

ogy for the adapted architecture. It also presents an Android implementation for the

proposed DRM algorithms in Section 4.1. Moreover, it presents a case study (VirTour

application) in Section 4.2.

4.1 An applied methodology for securing mobile applications against illegal

distribution

This section presents the algorithms that may be used to secure mobile applications

against illegal distribution after deploying it on an app store.

Download, install and activate a mobile application: Once a user buys the mobile

application and gets the purchase-ticket, the newly proposed algorithm 1 may be used

to complete legal installation of the mobile application. This algorithm generates the

activation parameters for a specific mobile phone. Algorithm 1 creates 𝑀𝐴𝐶 − 𝐾𝐸𝑌,

156 http://www.i-jim.org

Paper—A Software Security Optimization Architecture (SoSOA) and Its Adaptation for Mobile…

𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒 , 𝑆𝑖𝑔𝑛𝑒𝑑 − 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒] for a particular user and

stores them in a database. Meanwhile, the company’s server delivers these values to the

user via a secure channel. After getting these values, the app on the mobile device

should protect them from being altered. After that, the app will generate and use

the 𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒 for its activation. Then, the app constructs 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 −
𝑓𝑖𝑙𝑒], which cannot be altered. This algorithm is activated only once at application’s

installation.

Algorithm 1 Install and activate a Mobile Application

1: Input: MPN, IMEI, purchase-ticket
2: Output: Complete installation of a mobile app for a specific mobile
3: Begin
4: procedure GENERATE ACTIVATION PARAMETERS AT THE SERVER (𝑀𝑃𝑁, 𝐼𝑀𝐸𝐼, pur-

chase-ticket)
5: if valid purchase-ticket == false then
6: Abort the operation.
7: Else

8: Generate the 𝑎𝑝𝑝 − 𝐾𝐸𝑌 for this specific user.
9: Create the 𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒.

10: Generate the 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒].
11: Sign the 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒].
12: Store the values of (𝑀𝑃𝑁, 𝐼𝑀𝐸𝐼, 𝑎𝑝𝑝 − 𝐾𝐸𝑌, Sign of 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒]).
13: return 𝑀𝐴𝐶 − 𝐾𝐸𝑌, 𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒 and 𝑆𝑖𝑔𝑛𝑒𝑑 − 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒].
14: end if

15: end procedure

16: Activate the application using 𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒.
17: Store and protect the values of 𝑀𝐴𝐶 − 𝐾𝐸𝑌, and 𝑆𝑖𝑔𝑛𝑒𝑑 − 𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒].
18: End

Whenever the application starts up: Every time the application is running, the newly

proposed algorithm 2 ensures mobile authenticity, i.e., it checks whether the application

is installed on a legitimate mobile.

Algorithm 2 Mobile Authenticity

1: Input: 𝑀𝑃𝑁, 𝐼𝑀𝐸𝐼, 𝑀𝐴𝐶−𝐾𝐸𝑌
2: Result: Ensure the mobile authenticity
3: Begin
4: Generate a new 𝑎𝑝𝑝−𝐾𝐸𝑌−𝑓𝑖𝑙𝑒 using 𝑀𝑃𝑁, 𝑀𝐴𝐶−𝐾𝐸𝑌, and 𝐼𝑀𝐸𝐼 of the current machine.
5: Construct a new 𝑀𝐴𝐶[𝑎𝑝𝑝−𝐾𝐸𝑌−𝑓𝑖𝑙𝑒].
6: Construct the old 𝑀𝐴𝐶[𝑎𝑝𝑝−𝐾𝐸𝑌−𝑓𝑖𝑙𝑒] from the signed 𝑀𝐴𝐶[𝑎𝑝𝑝−𝐾𝐸𝑌−𝑓𝑖𝑙𝑒].
7: if the Old 𝑀𝐴𝐶[𝑎𝑝𝑝−𝐾𝐸𝑌−𝑓𝑖𝑙𝑒]==the new 𝑀𝐴𝐶[𝑎𝑝𝑝−𝐾𝐸𝑌−𝑓𝑖𝑙𝑒] then
8: Run the mobile application.
9: Else

10: Abort running the mobile application.
11: end if
12: End

Whenever the app starts up and the mobile connected to the Internet: To maximize

the copyrights protection, the newly proposed algorithm 3 ensures the app authenticity

whenever the app’s starts up and the mobile is connected to the Internet.

iJIM ‒ Vol. 15, No. 11, 2021 157

Paper—A Software Security Optimization Architecture (SoSOA) and Its Adaptation for Mobile…

Algorithm 3 Mobile Authenticity over the Internet

1: Input: 𝑀𝑃𝑁, 𝐼𝑀𝐸𝐼, 𝑀𝐴𝐶−𝐾𝐸𝑌
2: Result: Ensure the mobile authenticity
3: Begin
4: Generate a new 𝑎𝑝𝑝−𝐾𝐸𝑌−𝑓𝑖𝑙𝑒 using 𝑀𝑃𝑁, 𝑀𝐴𝐶−𝐾𝐸𝑌, and 𝐼𝑀𝐸𝐼 of the current machine.
5: Construct a new 𝑀𝐴𝐶[𝑎𝑝𝑝−𝐾𝐸𝑌−𝑓𝑖𝑙𝑒].
6: procedure CHECK THE MOBILE AUTHENTICITY AT THE SERVER(𝑀𝑃𝑁, 𝐼𝑀𝐸𝐼,

𝑀𝐴𝐶[𝑎𝑝𝑝−𝐾𝐸𝑌−𝑓𝑖𝑙𝑒])
7: if registered MPN==true & registered IMEI==true then
8: Construct a 𝑠𝑖𝑔𝑛𝑒𝑑−𝑀𝐴𝐶[𝑎𝑝𝑝−𝐾𝐸𝑌−𝑓𝑖𝑙𝑒] using the received 𝑀𝐴𝐶[𝑎𝑝𝑝−𝐾𝐸𝑌−𝑓𝑖𝑙𝑒]
9: return the new 𝑆𝑖𝑔𝑛𝑒𝑑−𝑀𝐴𝐶[𝑎𝑝𝑝−𝐾𝐸𝑌−𝑓𝑖𝑙𝑒]

10: else
11: Revoke the operation.
12: end if
13: end procedure
14: if the Old 𝑆𝑖𝑔𝑛𝑒𝑑−𝑀𝐴𝐶[𝑎𝑝𝑝−𝐾𝐸𝑌−𝑓𝑖𝑙𝑒]==the New 𝑆𝑖𝑔𝑛𝑒𝑑−𝑀𝐴𝐶[𝑎𝑝𝑝−𝐾𝐸𝑌−𝑓𝑖𝑙𝑒] then
15: Run the mobile application.
16: Else
17: Abort running the mobile application.
18: end if
19: End

Whenever the mobile is lost, changed or destroyed: In this case, the legitimate user

may request new activation parameters for the new mobile. So, after download, install,

and open the mobile app on the new mobile, the newly proposed algorithm 4 validates

the legitimate user. Meanwhile, this algorithm creates new activation parameters for

this new mobile.

Algorithm 4 A New Installation of The Application on a New Mobile

1: Input: 𝑀𝑃𝑁, 𝐼𝑀𝐸𝐼
2: Result: Complete a new installation of the mobile app on a new mobile for a legal user
3: Begin
4: Install the app on a new mobile
5: procedure GENERATE A NEW ACTIVATION PARAMETERS AT THE SERVER(𝑀𝑃𝑁,

𝐼𝑀𝐸𝐼)
6: if registered MPN == true then
7: Generate and send a ValidationMessage to the user.
8: procedure VALIDATE ACTIVATION PARAMETERS’ REQUEST AT THE CLIENT

SIDE(ValidationMessage)
9: if The user asked for a new activation == true then

10: Generate a response message to the company’s server with IMEI of the current mobile
device.

11: return the response message.
12: Else
13: Revoke the operation
14: end if
15: end procedure
16: if isLegitimateUser == ture then
17: Revoke the old license associated with this mobile number.
18: Create a new 𝑎𝑝𝑝−𝐾𝐸𝑌 for this specific 𝑀𝑃𝑁 and the new 𝐼𝑀𝐸𝐼.
19: return MAC−KEY, app−KEY−file and Signed−MAC[app−KEY−file].
20: else
21: Abort the operation
22: end if
23: else
24: Abort the operation
25: end if
26: end procedure
27: Use 𝑎𝑝𝑝−𝐾𝐸𝑌−𝑓𝑖𝑙𝑒 to activate the application.
28: Store and protect the values of the 𝑀𝐴𝐶−𝐾𝐸𝑌, and 𝑆𝑖𝑔𝑛𝑒𝑑−𝑀𝐴𝐶[𝑎𝑝𝑝 − 𝐾𝐸𝑌 − 𝑓𝑖𝑙𝑒].
29: End

158 http://www.i-jim.org

Paper—A Software Security Optimization Architecture (SoSOA) and Its Adaptation for Mobile…

The advantages of using the proposed algorithms can be listed as follows:

1. As illustrated in Sections Fig. 1 and 3.3, the newly proposed algorithms are secure

and efficient. For instance, an adversary cannot bypass the protection due to the use

of a secure channel to deliver the 𝐻(𝑁𝑜𝑛𝑐𝑒 ∥ 𝐶𝑜𝑚𝑝𝑎𝑛𝑦𝑀𝑎𝑠𝑡𝑒𝑟𝐾𝑒𝑦 ∥ 𝑀𝐸𝐼𝐷).

2. The code is open and free to be used. It may be adapted and/or enhanced.

3. The new algorithms provide digital rights management (DRM) functionality inter-

nally. So, there is no need to send the source code to a third party to add the DRM

services.

4. The new algorithms are applicable to all mobile application types (Android, iOS,

etc.) [5].

4.2 Development of an android secure mobile application

This section presents an Android secure mobile application demonstration that re-

sists illegal distribution. This demonstration provides DRM functionality for a secure

mobile app. It utilizes the new algorithms proposed in Section 4.1.

An android mobile application demonstration: Due to the embedded security

functions based upon the newly presented algorithms, the developed Android applica-

tion prevents its illegal distribution. This application can be illustrated as follows:

Installation: At the beginning, a user purchases and downloads the mobile applica-

tion from a trusted App Store. Immediately, the installation process will begin.

Figure 2 illustrates the different stages of the installation process.

Fig. 2. Installation process: (a) get user permission. (b) installing the app.

(c) Successful installation (d) the app’s interface

Registration: According to algorithm 1, the user should register before login to the

application. At the first opening of the application on a particular mobile, the user

should prove his identity as a legal user who purchases the application. Figure 3 (a)

shows that the user should register before login for the first time. In Figure 3 (b), the

user enters his mobile number and then hits the register button. In Figure 3 (c), the

application asks the user to enter the secret code. Meanwhile, the company’s server

stores the mobile data into a secure database and generates a random secret code for

iJIM ‒ Vol. 15, No. 11, 2021 159

Paper—A Software Security Optimization Architecture (SoSOA) and Its Adaptation for Mobile…

this mobile number, as shown in Figure 3 (d). Then, the company’s server sends this

secret code to the user. Thereafter, the user enters the secret code as shown in Figure 3

(e). Once the user hits the submit button, the user logs in as shown in Figure 3 (f). The

mobile should connect to the Internet during the registration process

Fig. 3. Registration process: (a) login without registration. (b) begin the registration.(c) the se-

cret code demands (d) the server generates the secret code (e) entering the secret code

(f) successful login

Log In: When startup, the application should check the user’s authenticity, as stated

by the algorithms 2 and 3. A user cannot log in using an unregistered mobile number

or an unregistered device as shown respectively in Figure 4 (a) and Figure 4 (b). To log

in, the user should use a registered mobile number with a registered device as shown in

Figure 4 (c) and Figure 4 (d).

Fig. 4. Login process: (a) invalid MPN. (b) invalid device.

(c) MPN and device are valid.(d) successful login

Acquiring a new licensing: A legitimate user may demand a new licensing

whenever (s)he changed her/his mobile device. Firstly, a legitimate user downloads and

installs the application as shown in Figure 5 & Figure 6 illustrates that the user cannot

log in or register before (s)he revokes the old license and demands a new one. Figure 6

(c) illustrates that the user cannot register without an Internet connection. To log in, the

legitimate user should revoke the old license and demand a new one by pressing

“REVOKE MY LICENSE” button, as shown in Figure 7 (a). Afterwards, the

160 http://www.i-jim.org

Paper—A Software Security Optimization Architecture (SoSOA) and Its Adaptation for Mobile…

company’s server creates an activation code and sends it to the legitimate user via SMS,

as shown in Figure 7 (b). Subsequently, the user enters the correct activation code and

press’ the “SUBMIT” button, as shown in Figure 7 (c). Figure 7 (d) shows that the new

mobile is registered and log in into the application. The mobile should be connected to

the Internet during the whole process.

Fig. 5. Installation process on a new mobile: (a) get user permission.

(b) installing the app.(c) successful installation (d) the app’s interface

Fig. 6. Login or register from the new mobile before renewing the license:

(a) login with empty MPN (b) login from invalid device (c) no Internet connection

(d) register a new device before renewing the license

iJIM ‒ Vol. 15, No. 11, 2021 161

Paper—A Software Security Optimization Architecture (SoSOA) and Its Adaptation for Mobile…

Fig. 7. Acquiring a new licensing: (a) the secret code demand. (b) the server generates

the secret code. (c) entering the secret code. (d) successful login

The Case Study (Virtour mini-game): VirTour is a new paradigm of virtual tour-

ism [31]. It is a gaming platform which introduces a new technology-based approach

to site attraction in Egypt. As a mobile application, the VirTour’s platform needs to be

protected against all types of attacks. So, developers could use the newly presented

architecture to protect VirTour’s platform. Section 4.1 presented algorithms that protect

mobile applications against illegal distribution. So, VirTour’s developers may use those

algorithms to protect their platform against illegal distribution as shown in Section 4.2.

5 Conclusion

Protecting software applications is a critical task for application developers. This

paper aimed at providing an optimized security solution for developers. Accordingly,

it surveyed the current security mechanisms for software applications. Then, it proposed

a new software security optimization architecture (SoSOA). SoSOA may guide soft-

ware developers to secure their software applications. Furthermore, this paper adapted

the software security optimization architecture to suit mobile applications. Subse-

quently, it proposed security algorithms and its implementation for securing mobile

applications (such as VirTour gaming platform) against illegal distribution.

The further work includes generating a new framework and security libraries which

reflect the proposed software security optimization architecture and its adaptation for

mobile applications.

6 Acknowledgement

This research is funded by the Academy of Scientific Research and Technology

(ASRT), Cairo, Egypt, project titled “VirTour - New Paradigm of Virtual Tourism”,

(project ID: 1494).

162 http://www.i-jim.org

Paper—A Software Security Optimization Architecture (SoSOA) and Its Adaptation for Mobile…

7 References

[1] V. A. Padaryan and I. N. Ledovskikh, "On the Representation of Results of Binary Code

Reverse Engineering," Programming and Computer Software, vol. 44, no. 3, pp. 200-206,

2018/05/01 2018, https://doi.org/10.1134/s0361768818030064

[2] D. Geethanjali, T. L. Ying, M. W. J. Chua, and V. Balachandran, "AEON: Android Encryp-

tion based Obfuscation," in Proceedings of the Eighth ACM Conference on Data and Appli-

cation Security and Privacy, Tempe, AZ, USA, 2018: ACM, pp. 146-148,

https://doi.org/10.1145/3176258.3176943

[3] N. Nabeel, M. H. Habaebi, N. A. Che Mustapha, and M. R. Islam, "IoT Light Weight (LWT)

Crypto Functions," International Journal of Interactive Mobile Technologies (iJIM), Diffu-

sion; lightweight hashing techniques; Mersenne number; energy efficiency. vol. 13, no. 04,

p. 13, 2019-04-10 2019, https://doi.org/10.3991/ijim. v13i04.10524

[4] Y. Wang, D. Gong, B. Lu, F. Xiang, and F. Liu, "Exception Handling-Based Dynamic Soft-

ware Watermarking," IEEE Access, vol. 6, pp. 8882-8889, 2018, https://doi.org/10.1109/ac-

cess.2018.2810058

[5] K. Kumar and P. Kaur, "A Comparative Analysis of Static and Dynamic Java Bytecode

Watermarking Algorithms," in Software Engineering, Singapore, M. N. Hoda, N. Chauhan,

S. M. K. Quadri, and P. R. Srivastava, Eds., 2019// 2019: Springer Singapore, pp. 319-334,

https://doi.org/10.1007/978-981-10-8848-3_31

[6] I. A. Aljazaery, H. T. S. Alrikabi, and M. R. Aziz, "Combination of Hiding and Encryption

for Data Security," International Journal of Interactive Mobile Technologies (iJIM), embed-

ding and encryption, exponential function, information security technique, Wavelet trans-

former. vol. 14, no. 09, p. 14, 2020-06-17 2020, https://doi.org/10.3991/ijim. v14i09.14173

[7] N. Yashenkova. "DRM for Android apps licensing and copy protection." StarForce Tech-

nologies Inc. http://www.star-force.com/blog/index.php?blog=2695 (accessed 22/11/2020,

2020).

[8] C. A. Ardagna, M. Cremonini, E. Damiani, S. De Capitani di Vimercati, and P. Samarati,

"Location Privacy Protection Through Obfuscation-Based Techniques," in Data and Appli-

cations Security XXI, Berlin, Heidelberg, S. Barker and G.-J. Ahn, Eds., 2007// 2007:

Springer Berlin Heidelberg, pp. 47-60 https://doi.org/10.1007/978-3-540-73538-0_4

[9] J.-M. Borello and L. Mé, "Code obfuscation techniques for metamorphic viruses," Journal

in Computer Virology, vol. 4, no. 3, pp. 211-220, 2008/08/01 2008.

https://doi.org/10.1007/s11416-008-0084-2

[10] I. You and K. Yim, "Malware Obfuscation Techniques: A Brief Survey," in 2010 Interna-

tional Conference on Broadband, Wireless Computing, Communication and Applications,

4-6 Nov. 2010 2010, pp. 297-300, https://doi.org/10.1109/bwcca. 2010.85

[11] A. Cimitile, F. Martinelli, F. Mercaldo, V. Nardone, and A. Santone, "Formal Methods Meet

Mobile Code Obfuscation Identification of Code Reordering Technique," in 2017 IEEE 26th

International Conference on Enabling Technologies: Infrastructure for Collaborative Enter-

prises (WETICE), 21-23 June 2017 2017, pp. 263-268, https://doi.org/10.1109/wetice.

2017.23

[12] M. D. Preda and F. Maggi, "Testing android malware detectors against code obfuscation: a

systematization of knowledge and unified methodology," Journal of Computer Virology and

Hacking Techniques, vol. 13, no. 3, pp. 209-232, 8 2017, https://doi.org/10.1007/

s11416-016-0282-2

[13] Y. Zhou et al., "ProGuard: Detecting Malicious Accounts in Social-Network-Based Online

Promotions," IEEE Access, vol. 5, pp. 1990-1999, 2017, https://doi.org/10.1109

/access.2017.2654272

iJIM ‒ Vol. 15, No. 11, 2021 163

https://doi.org/10.1134/s0361768818030064
https://doi.org/10.1145/3176258.3176943
https://doi.org/10.3991/ijim.v13i04.10524
https://doi.org/10.1109/access.2018.2810058
https://doi.org/10.1109/access.2018.2810058
https://doi.org/10.1007/978-981-10-8848-3_31
https://doi.org/10.3991/ijim.v14i09.14173
http://www.star-force.com/blog/index.php?blog=2695%20
https://doi.org/10.1007/978-3-540-73538-0_4
https://doi.org/10.1007/s11416-008-0084-2
https://doi.org/10.1109/bwcca.%202010.85
https://doi.org/10.1109/wetice.2017.23
https://doi.org/10.1109/wetice.2017.23
https://doi.org/10.1007/s11416-016-0282-2
https://doi.org/10.1007/s11416-016-0282-2
https://doi.org/10.1109%0b/access.2017.2654272
https://doi.org/10.1109%0b/access.2017.2654272

Paper—A Software Security Optimization Architecture (SoSOA) and Its Adaptation for Mobile…

[14] I. Kinash and M. Dudarev. "DexProtector - Mobile Application Security." Licel Corpora-

tion. https://dexprotector.com/ (accessed 22/11/2020, 2020)

[15] [15] R. Caers and E. Lafortune. "Protecting Android applications and SDKs against reverse

engineering and hacking." Guardsquare nv. https://www.guardsquare.

com/en/products/dexguard (accessed 22/11/2020, 2020)

[16] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, "A Survey of App Store Analysis

for Software Engineering," IEEE Transactions on Software Engineering, vol. 43, no. 9, pp.

817-847, 2017, https://doi.org/10.1109/tse.2016.2630689

[17] D. A. Cooper, L. Feldman, and G. A. Witte, "Protecting Software Integrity Through Code

Signing," 23/5/2018. [Online]. Available: https://www.nist.gov/publications/protecting-

software-integrity-through-code-signing

[18] D. A. Almeida, G. C. Murphy, G. Wilson, and M. Hoye, "Investigating whether and how

software developers understand open-source software licensing," Empirical Softw. Engg.,

vol. 24, no. 1, pp. 211–239, 2019, https://doi.org/10.1007/s10664-018-9614-9

[19] D. Schürmann, S. Dechand, and L. Wolf, "OpenKeychain: An Architecture for Cryptog-

raphy with Smart Cards and NFC Rings on Android," Proc. ACM Interact. Mob. Wearable

Ubiquitous Technol., vol. 1, no. 3, p. Article 99, 2017, https://doi.org/10.1145/3130964

[20] M. Hussain et al., "Conceptual framework for the security of mobile health applications on

Android platform," Telematics and Informatics, vol. 35, no. 5, pp. 1335-1354, 2018/08/01/

2018, https://doi.org/10.1016/j.tele.2018.03.005

[21] G. L. Masala, P. Ruiu, and E. Grosso, "Biometric Authentication and Data Security in Cloud

Computing," in Computer and Network Security Essentials, K. Daimi Ed. Cham: Springer

International Publishing, 2018, pp. 337-353.https://doi.org/10.1007/978-3-319-58424-9_19

[22] P. V L, "A Novel Authentication Mechanism to Prevent Unauthorized Service Access for

Mobile Device in Distributed Network," International Journal of Interactive Mobile Tech-

nologies (iJIM), Authentication, Unauthorized Service Access, Mobile, Distributed Network

vol. 12, no. 8, p. 16, 2018-12-24 2018,https://doi.org/10. 3991/ijim.v12i8.8194

[23] F. Cheng, Exploring Java 9: Build Modularized Applications in Java. Apress, 2018.

[24] M. Mabey, A. Doupé, Z. Zhao, and G.-J. Ahn, "Challenges, Opportunities and a Framework

for Web Environment Forensics," in Advances in Digital Forensics XIV, Cham, G. Peterson

and S. Shenoi, Eds., 2018// 2018: Springer International Publishing, pp. 11-33.

https://doi.org/10.1007/978-3-319-99277-8_2

[25] J. Clarke-Salt, SQL Injection Attacks and Defense, 2nd ed. Syngress, 2012, p. 576.

[26] R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, 7th ed. Pearson India,

2017.

[27] S. Agrawal and U. Singh, "Prevention of SQL Injection Attack in Web Application with

Host Language," International Research Journal of Engineering and Technology (IRJET),

vol. 4, no. 11, pp. 1468-1470, 2017. [Online]. Available: https://www.irjet.net/archives

/V4/i11/IRJET-V4I11268.pdf

[28] Z. S. Alwan and M. F. Younis, "Detection and Prevention of SQL Injection Attack: A Sur-

vey," International Journal of Computer Science and Mobile Computing, vol. 6, no. 8, pp.

5-17, 2017.

[29] H. El-Sofany and S. Abou El-Seoud, "A Novel Model for Securing Mobile-based Systems

against DDoS Attacks in Cloud Computing Environment," International Journal of Interac-

tive Mobile Technologies (iJIM), mobile computing; cloud computing; mobile security; mo-

bile attacks; denial of service attacks; distributed denial-of-service attacks vol. 13, no. 01, p.

14, 2019-01-29 2019, https://doi.org/10.3991/ijim. v13i01.9900

[30] M. McCamon and H. Blankenship, "OWASP Top 10 - 2017: The Ten Most Critical Web

Application Security Risks." [Online]. Available: https://owasp.org/www-pdf-

164 http://www.i-jim.org

https://dexprotector.com/
https://doi.org/10.1109/tse.2016.2630689
https://www.nist.gov/publications/protecting-software-integrity-through-code-signing
https://www.nist.gov/publications/protecting-software-integrity-through-code-signing
https://doi.org/10.1007/s10664-018-9614-9
https://doi.org/10.1145/3130964
https://doi.org/10.1016/j.tele.2018.03.005
https://doi.org/10.1007/978-3-319-58424-9_19
https://doi.org/10.3991/ijim.v12i8.8194
https://doi.org/10.1007/978-3-319-99277-8_2
https://www.irjet.net/archives%0b/V4/i11/IRJET-V4I11268.pdf
https://www.irjet.net/archives%0b/V4/i11/IRJET-V4I11268.pdf
https://doi.org/10.3991/ijim.v13i01.9900
https://owasp.org/www-pdf-archive/OWASP_Top_10-2017_%28en%29.pdf.pdf

Paper—A Software Security Optimization Architecture (SoSOA) and Its Adaptation for Mobile…

archive/OWASP_Top_10-2017_%28en%29.pdf.pdf. https://doi.org/10.1007/978-3-642-

16120-9_10

[31] H. Sayed. "VirTour." https://youtu.be/AD94Oa1wNi4 (accessed 22/11/2020, 2020).

8 Authors

Dr. Amr Abozeid is an assistant professor of computer science at Computer Science

Department, College of Science & Arts (Gurayat), Jouf University, Saudi Arabia. He

also worked as assistant professor of Computer Science at the Mathematics and Com-

puter Science department, Faculty of Science, Al-Azhar University. His fields of re-

search include video processing, computer vision, deep learning, and mobile compu-

ting.

Dr. AbdAllah A. AlHabshy is an assistant professor of computer science at Math-

ematics department, Faculty of Science, Al-Azhar University. His fields of research are

Cryptography, Network Security, Mobile Security, Database Security, Software Secu-

rity, Internet of things, and Video Protection. Email: AbdAllah@Azhar.edu.eg

Prof. Kamal Abdelraouf ElDahshan is a professor of Computer Science and In-

formation Systems at Al-Azhar University in Cairo, Egypt. At Al-Azhar, he founded

the Centre of Excellence in Information Technology, in collaboration with the Indian

government, and was also the founder and former president of the coordination bureau

of the Egyptian Knowledge Bank, the country’s largest initiative for academic access.

Among other accolades, he is a Fellow of the British Computing Society, and a Found-

ing Member of the Egyptian Mathematical Society.

Article submitted 2020-11-29. Resubmitted 2021-03-27. Final acceptance 2021-03-27. Final version pub-
lished as submitted by the authors.

iJIM ‒ Vol. 15, No. 11, 2021 165

https://owasp.org/www-pdf-archive/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://doi.org/10.1007/978-3-642-16120-9_10
https://doi.org/10.1007/978-3-642-16120-9_10
https://youtu.be/AD94Oa1wNi4
file:///C:/Users/INSOREDS/Downloads/AbdAllah@Azhar.edu.eg

