
Paper—Developing an Android-Based City Tour App using Evolutionary Algorithm

Developing an Android-Based City Tour App using
Evolutionary Algorithm

https://doi.org/10.3991/ijim.v15i14.20275

Abidatul Izzah (*),	Irmala A. Kusuma, Yudi Irawan,
Toga A. Cinderatama, Benni A. Nugroho

PSDKU Politeknik Negeri Malang, Kediri, Indonesia
abidatul.izzah@polinema.ac.id

Abstract—Traveling around a city and making transit in certain areas is
called a city tour. Furthermore, determining the optimal city tour route can be
considered as a traveling salesman problem. There are many kinds of algo-
rithms to solve this, one of which is the Genetic Algorithm (GA). In developing
the City Tour application, a platform is needed to be taken to various places an-
ywhere and anytime. Finally, we developed an application that runs on mobile
devices. This application is built on the Android platform so that its use can be
more efficient. Furthermore, it can be concluded that the GA applied to the An-
droid-based City Tour Application is reliable to determine city tour routes; this
is evidenced by comparing GA with the brute force method, where GA provides
optimum results with less running time.

Keywords—Brute force, City tour, Genetic algorithm, Mobile application

1 Introduction

Travelling is an activity that many people do every day. It is taken to meet the
needs of tourism and work. It also needs to be considered when we are in a foreign
city or when we have several destinations in one trip. Furthermore, traveling around a
city and making transit in certain areas is called a city tour. If we look at the computa-
tional discipline, determining the optimal city tour route can be considered as a travel-
ing salesman problem. Traveling Salesman Problem is a category of NP-Hard Prob-
lem where the problem is difficult to solve so that there are many variations of meth-
ods that can be used [1][2][3]. The problem faced is how to build an optimal route by
considering the rules on TSP, namely passing every location other than the initial
location only once, to get the minimum total mileage to have an impact on saving
transportation costs. Analytically, Traveling Salesman Problem (TSP) is a problem
that is difficult to solve because many route combinations may occur along with the
number of cities to be visited and must also pay attention to the applicable rules [4].
The number of studies that have been carried out has resulted in various completion
methods that have been used. One method often used to solve NP-Hard problems is
an algorithm adapted from nature or an evolutionary algorithm. There are many kinds
of algorithms, one of which is the Genetic Algorithm (GA). GA has also developed

iJIM ‒ Vol. 15, No. 14, 2021 193

https://doi.org/10.3991/ijim.v15i14.20275
mailto:abidatul.izzah@polinema.ac.id

Paper—Developing an Android-Based City Tour App using Evolutionary Algorithm

and implemented both conventional and hybridized [1]–[3], [5]–[8]. Other studies
have also developed this method in mobile devices so that the application of GA be-
comes more real [9]–[11]. However, the device built is still a general location; no
route determination application specifically addresses tourist visits.

Therefore, in this study, an application will be developed to determine City Tour
tourist locations in Kediri, Indonesia by implementing a Genetic Algorithm. The City
Tour problem will be presented using the TSP approach. There have been many stud-
ies implementing Genetic Algorithms for solving TSP. In developing the City Tour
application, a platform is needed to be taken to various places anywhere and anytime.
Therefore, this application is developed on the mobile platform to be more efficient
and easier to use anywhere. As we know, developments on mobile platforms are cur-
rently very rampant and have been implemented in many cases such as route search
optimization, languages, retail, and others. As an example in a study [12], a mobile
application was developed for the tour guide during Umrah. Other developments in
banking and finance have also been carried out in [13], which produced a mobile
application prototype that allows users to search for trilingual terms, namely Malay-
Arabic-English. A study [14] presents the facts of a review about the factors affecting
the use of mobile applications in retail. And there are many more application devel-
opments on smartphones today.

Furthermore, Android OS rules the smartphone market in Indonesia. Statcounter in
[15] shows that 90 percent of smartphone users in Indonesia are Android users. There-
fore, this study decided to implement GA for solving the city tour problem on An-
droid-based. However, it does not rule out developing in other mobile OS versions
such as iOS, Windows, Symbian, or another.

Finally, the output of this study is an application that is expected to provide the
most optimal route desired by the user. As previously explained, the apps will be
developed to solve city tour problems in Kediri, Indonesia, so that the apps will store
data on tourist destinations. Thus, this study contributes to implementing GA in a TSP
model and developing city tour apps to provide recommendations for travellers in
Kediri, Indonesia.

2 Literature Review

2.1 City tour optimization as traveling salesman problem

Visiting the desired locations when doing a city tour will cost fuel prices, mileage,
and travel time. The city tour trip would be better if the optimum route is available.
Generally speaking, Traveling Salesman Problem(TSP) modeled the problem of de-
termining the route. Traveling Salesman Problem is a problem that connects several
cities with 𝐶!" as the distance between city 𝑖 and city 𝑗, the goal is to make a closed
route by visiting each city once with the minimum total distance of all possible routes
[4]. Several studies of determining the route in visiting specific locations have been
conducted. A study mention that TSP is a classic problem that arises in the shipping
business. In TSP, optimizations are carried out to find the shortest travel route passes

194 http://www.i-jim.org

Paper—Developing an Android-Based City Tour App using Evolutionary Algorithm

the number of destinations with a specific path. As the result, each destination is
passed once and the trip ends by returning to the starting place. Hence, TSP is a prob-
lem to find the most optimal route that can be taken, provided that each city must be
visited once. If 𝑐!" is the cost between location 𝑖 and location 𝑗, then the cost matrix 𝐶
can be written as follows:

𝐶 =

⎣
⎢
⎢
⎢
⎡
𝑐## 𝑐#$ 𝑐#% … 𝑐#&
𝑐$# 𝑐$$ 𝑐$% … 𝑐$&
𝑐%# 𝑐%$ 𝑐%% … 𝑐%&
…			 …			 …		 ⋱			 ⋮
𝑐&# 𝑐&$ 𝑐&% … 𝑐&&⎦

⎥
⎥
⎥
⎤

Let 𝑥!" represents whether there is a trip from location 𝑖 to location 𝑗	in a route,
then the value of 𝑥!" can be written as follows:

𝑥!" = 11,0,
										if	there	is	a	trip	from	i	to	j

										otherwise

If Z is the TSP objective function, and 𝑖, 𝑗 = 1, 2, 3, . . . , 𝑁 then the objective func-
tion Z is formulated by minimizing:

 𝑍 = ∑ ∑ 𝑐!"𝑥!"&
"'#

&
!'# 	 (1)

2.2 Genetic algorithm for city tour problem

Genetic Algorithm (GA) is an algorithm that adopts a natural selection process
known as the evolutionary process proposed by Charles Darwin[16]. In the process of
evolution, individuals continuously change genes to adapt to their living environment.
"Only strong individuals can survive." GA may not always achieve the best results,
but it often solves problems reasonably well. The genetic algorithm represents a solu-
tion to a problem as a chromosome. This chromosome will then regenerate into the
optimal solution. There are several essential aspects in GA, including the definition of
fitness function, definition and implementation of genetic representation, definition
and genetic operations implementation. The three aspects above strongly support the
performance of GA. The search algorithm on GA is based on natural selection mech-
anisms and biological evolution. The genetic algorithm combines a series of structures
with the exchange of random information into a search algorithm with some human
aptitude changes. A new set of individual sequences are created in each generation
based on matches in the previous generation.

In its development, GA is widely used to solve high-complexity searching and op-
timization problems that often occur in dynamic programming such as TSP, Shortest
Path, Minimum Spanning Tree, or Knapsack Problem[1], [17]–[19].

The GA method stages include chromosome coding, population initialization, cal-
culation of fitness values, selection, crossover, and mutation. The following is the
pseudocode of GA [16]:

iJIM ‒ Vol. 15, No. 14, 2021 195

Paper—Developing an Android-Based City Tour App using Evolutionary Algorithm

Generate initial population P (0);
T = 0;
While has not met the criteria to quit
 Evaluate P(t);
 I(t) = Selection(P(t))
 If random < Pc //Probability of Crossover
 A(t) = Crossover(I(t));
 If random < Pm //Probability of Mutation
 A(t) = Mutation (I(t));
 EndIf
 EndIF
 t = t + 1
EndWhile
Output : the best individual P(t)

The coding of a GA chromosome can be done using the Binary Encoding, Integer
Encoding, or Real-number Encoding methods. Furthermore, because the solution to
this problem is the sequence of locations to be visited, the coding technique chosen is
Integer Encoding, where an integer number symbolizes each location. The shape of
the chromosomes can be seen in Figure 1 below:

1 3 2 9 2 4 0 8

Fig. 1. Genetic algorithm chromosome

In the case study of determining the shortest route, the value of the objective func-
tion (𝑓(𝑥)) of the chromosomes is the sum of the distance traveled from one to the
next location, as in equation (1). Then if 𝑓(𝑥) = 𝑧, then the fitness function is ob-
tained from the following equation:

 𝑓𝑖𝑡 = #
((*)

		 (2)

3 Method

3.1 System requirement

At this section, the requirement analysis contains a description of the software
requirements to be developed. This requirement analysis includes functional and non-
functional system requirements. Functional system requirements aim to register the
access of a user as an application user. From this step, the user needs to select the
location to be visited, delete unnecessary locations, view genetic algorithm
calculations results to find the shortest route, and view the shortest route display on
Google Map.

196 http://www.i-jim.org

Paper—Developing an Android-Based City Tour App using Evolutionary Algorithm

Furthermore, non-functional system requirements include the hardware and
software requirements in application development. Hardware requirements used for
the manufacture and testing of this application are a personal computer with an intel
core i3 processor, 4GB minimum RAM, 14 "resolution 1366 x 768 monitor, 1 TB
hard drive as storage media, and 3GB Android RAM phone. , OS 9.0 (Pie).

3.2 System design

After we finished the requirement analysis, the next stage is modeling the Unified
Modeling Language (UML) with software modeling language. UML is a modeling
language with an object-oriented approach. UML has various diagrams to explain the
system to be developed, one of which is a use case diagram. Use cases describe the
needs of each system user visually in interactions between systems and actors.

In this use case it will be known what functions are in the system being created. In
the City Tour application, the system has a function that is more dominant than the
user. Users can enter the destination location and view the optimal distance and route
results, while the system has the task of displaying maps, looking for distance
information per point, determining the optimal route with the Genetic Algorithm, and
displaying the results. As shown in Figure 2 below:

Fig. 2. Use case diagram

The next step is designing diagram architecture of the application. The diagram
architecture is the structure of a system in the form of an image, which explains the
concepts, principles, elements, and components, including how they work and
instructions for use. There are three components in the City Tour Application, namely
Cloud (Google Maps API), User, System. The Google Maps API acts as a source of

iJIM ‒ Vol. 15, No. 14, 2021 197

Paper—Developing an Android-Based City Tour App using Evolutionary Algorithm

information, the system acts as a calculation of the Genetic Algorithm, and the user
acts as a brainware that inputs the location. As illustrated in Fig 3 below

Fig. 3. Architecture Diagram

In the City Tour application, the tables are static, and some are dynamic. The fol-
lowing is a database design from City Tour Application:

1. Location Master Table: Location master table functions for the location master
data storage. The location master data will be displayed on the first page of the ap-
plication, where users can select the desired location by checking the checkbox on
the location they want to go to.

2. Distance Master Table: Distance master table works for the storage of distance
master data between locations. Distance data is taken from retrieving information
from Google Maps.

3. Location Table: The location table serves to store the location data selected from
the master location table. Location tables are unlike master location and distance
master tables, which are static. The location table is dynamic, which means it is
always changing. The location table will be filled when the user checks the loca-
tion on the first page, and all data will be erased when the user opens the applica-
tion.

4. Table Location2: Table location2 serves to store locations. The location table is a
complement to the location table by adding a column number. Column number will
be used to connect table location2 with other tables. 5. Genetic Algorithm Table:
The Genetic Algorithm table serves to store data on the Genetic Algorithm's evalu-
ation results.

5. Result Table: The result table is used to store the optimal route results.
6. Route Table: The mix route table functions to store data on the longitude and lati-

tude of the selected optimal route locations. Longitude and longitude data will be
used to draw the route on maps.

4 Result and Discussion

4.1 Result

In this research work, we developed an application that runs on mobile devices. An
Android-based City Tour application has one user. It has four layouts: Splash screen,
List of destination, Computational Result, and Route Map. As shown in Fig. 4(a), the

198 http://www.i-jim.org

Paper—Developing an Android-Based City Tour App using Evolutionary Algorithm

interface will appear when the user opens the application, and this page is called the
splash screen.

(a) Splash Screen (b) Choose the destination

(c) Computational Result (d) Route Map

Fig. 4. City Tour Apps

After running for 3 seconds, the application will move to the select location page,
as shown in Fig. 4 (b). On the choose location page, the user will select several loca-
tions to visit. After the user chooses several places, the next step is to press the Genet-
ic Algorithm button to perform calculations using the genetic algorithm method to
find the shortest route from several formed routes. In this application, we also code a
brute force algorithm to evaluate and compare to GA's solution. Brute force is an
algorithm that works by finding the best solution by generate and test. Thus, we pro-
vide two button options to find a solution for the city tour, using GA or brute force.
These options also can be seen in the Fig(b), the brute force button is on the lower left
and GA is next to it.

iJIM ‒ Vol. 15, No. 14, 2021 199

Paper—Developing an Android-Based City Tour App using Evolutionary Algorithm

When the shortest route is formed, then the evaluation results of the genetic algo-
rithm calculation will appear, which can be seen in Figure 4 (c). Finally, the applica-
tion displays the shortest route shown on the Google Map, as in Figure 4 (d). This
route will provide recommendations for the order of locations that must be visited
first to start doing a city tour. The starting and ending points of the route are the points
where the user is located.

GA did well in determining the shortest route of the city tour. GA’s solution will
converge and try to find the optimum solution at the end of the generation. The fol-
lowing is an example of GA's computation with PopSize = 10 and MaxGen = 50,
which shows the solution has been found in the 6th generation.

Fig. 5. Optimizing Process in GA

Moreover, three tests have been conducted: the black box testing method, the com-
putational testing method, and the effectiveness solution. Black box testing is used to
determine whether the application features are well developed or not by trying all the
available features, as shown in the table below:

Table 1. Blackbox Testing Result

No Scenario Expected Result Valid/ Not Valid
1 Open the application The application shows the splash screen Valid
2 Show locations list List of locations successfully displayed Valid

3 Choose the location The location can be selected and stored
in the database. Valid

4 Delete location The selected location can be removed
from the view and database. Valid

5 Genetic algorithm calculation The system performs genetic algorithm
calculations. Valid

6 Displays the results of the calculation of
the genetic algorithm

Successfully displays the results of the
genetic algorithm calculations and
displays the route with the shortest
distance

Valid

7 View the selected route on the Map Displays the shortest route into the map
marked with a marker and a polyline Valid

11

12

13

14

15

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

GA	for	City	Tour	Optimization

200 http://www.i-jim.org

Paper—Developing an Android-Based City Tour App using Evolutionary Algorithm

4.2 Discussion

Furthermore, computational testing is carried out to see the reliability of Genetic
Algorithm, by comparing GA with the brute force method, which of these two meth-
ods has a higher level of effectiveness in terms of time and solution. The test is car-
ried out by increasing the complexity of the search space. Apart from comparing time,
the application is also evaluated for the algorithm capabilities. Brute force was chosen
because it is considered a method that will solve the problem and can find the best
solution even by trying one by one and calculating it (generate and test). Or in other
words, the solution generated by the brute force is always optimum. Thus, if GA
shows the same result with brute force’s, the GA’s solution is the optimum solution.
The following is a comparison of the results of GA and brute force computational
testing in complexity and capability:

Table 2. Experiment Result

Number of city
Brute Force Genetic Algorithm

Computation time rate Solution Computation time rate Solution
3 0,9 s 11,3 km 0,5 s 11,3 km
4 1,9 s 11,5 km 0,6 s 11,5 km
5 2,8 s 12,4 km 0,7 s 12,3 km
6 4,5 s 12,9 km 0,8 s 12,9 km
7 26 s 15.7 km 0,8 s 15.7 km

From the experiment result, the application can optimize regardless of the number

of visited locations. However, with a value of n > 7, applications using the brute force
method require a very high running time of more than one hour. Therefore, Table 2
only shows the time ratio up to n = 7. The difference in time required by the brute
force and GA in determining city tour routes is obvious from the results shown above.
The brute force method with a small dimension gives optimum value and shorter time.
However, brute force becomes ineffective if the dimensions increase. While GA
works well even though the dimensions have increased, but the running time does not
increase significantly. Afterward, we also compare the effective solution that given by
two algorithms. The application tested by solving the same tour problem using Brute
Force and GA. The result shows that the solution given by both of them are similar. If
any difference, it is less significant. So, we can conclude that an application using GA
can provide a good one.

5 Conclusion

In this research work, we developed an application that runs on mobile devices. An
Android-based City Tour application has one user. It has four layouts: Splash screen,
List of destination, Computational Result, and Route Map. It developed by using java
programming with Android Studio as editor. Furthermore, based on system testing, it
can be concluded that the GA applied to the Android-based City Tour Application is
reliable to determine city tour routes; this is evidenced by comparing GA with the

iJIM ‒ Vol. 15, No. 14, 2021 201

Paper—Developing an Android-Based City Tour App using Evolutionary Algorithm

brute force method, where GA provides optimum results with less running time. The
application also has store tourist destinations data in Kediri city, Indonesia. Finally,
this study successfully contributes by developing an android city tour app and imple-
menting GA in a mobile device that can provide recommendations for someone who
will travel in Kediri, Indonesia.

Further, this research is still limited. There is so much that can be extracted from
this conclusion. The city tour application can be developed in areas that are not dis-
cussed here. It has a chance to develop in other mobile OS versions such iOS, win-
dows, Symbian, or another. It can also use other evolutionary algorithms such as Par-
ticle Swarm Optimization (PSO), Ant Colony Optimization (ACO), or another.

6 Acknowledgement

The travel expense and registration of this paper to be published in I-JIM is fully
sponsored by The Indonesian Ministry of Research and Higher Education through the
Penelitian Kerjasama antar Perguruan Tinggi (PKPT) grant 2020.

7 References

[1] J. Grefenstette, R. Gopal, B. Roamaita, and D. Van Gucht, “Genetic algorithms for the
traveling salesman problem,” Evol. Comput. Foss. Rec., no. June 2014, pp. 532–540, 1998.

[2] C. M. White and G. G. Yen, “A hybrid evolutionary algorithm for traveling salesman
problem,” in Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat.
No. 04TH8753), 2004, vol. 2, pp. 1473–1478. https://doi.org/10.1109/cec.2004.1331070

[3] M. Albayrak and N. Allahverdi, “Development a new mutation operator to solve the trav-
eling salesman problem by aid of genetic algorithms,” Expert Syst. Appl., vol. 38, no. 3,
pp. 1313–1320, 2011. https://doi.org/10.1016/j.eswa.2010.07.006

[4] G. Reinelt, “TSPLIB—A traveling salesman problem library,” ORSA J. Comput., vol. 3,
no. 4, pp. 376–384, 1991. https://doi.org/10.1287/ijoc.3.4.376

[5] Z. H. Ahmed, “Genetic Algorithm for the Traveling Salesman Problem using Sequential
Constructive Crossover Operator,” Int. J. Biometrics Bioinforma., vol. 3, no. 6, pp. 96–
105, 2010.

[6] L. V. Snyder and M. S. Daskin, “A random-key genetic algorithm for the generalized trav-
eling salesman problem,” Eur. J. Oper. Res., vol. 174, no. 1, pp. 38–53, 2006.
https://doi.org/10.1016/j.ejor.2004.09.057

[7] G. Sun, C. Li, J. Zhu, Y. Li, and W. Liu, “An efficient genetic algorithm for the traveling
salesman problem,” Commun. Comput. Inf. Sci., vol. 107 CCIS, pp. 108–116, 2010.

[8] G. A. Jayalakshmi, S. Sathiamoorthy, and R. Rajaram, “a Hybrid Genetic Algorithm — a
New Approach to Solve Traveling Salesman Problem,” Int. J. Comput. Eng. Sci., vol. 02,
no. 02, pp. 339–355, 2001. https://doi.org/10.1142/s1465876301000350.

[9] Ilhan \.Ilhan, “An Application On mobile devices with android and IOS operating systems
using google maps APIs for the traveling salesman problem,” Appl. Artif. Intell., vol. 31,
no. 4, pp. 332–345, 2017. https://doi.org/10.1080/08839514.2017.1339983

[10] L. Helshani, “An Android Application for Google Map Navigation System, Solving the
Travelling Salesman Problem, Optimization throught Genetic Algorithm The mathematical
formulation throught graphs theory,” pp. 89–102, 2015.

202 http://www.i-jim.org

https://doi.org/10.1109/cec.2004.1331070
https://doi.org/10.1109/cec.2004.1331070
https://doi.org/10.1016/j.eswa.2010.07.006
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1016/j.ejor.2004.09.057
https://doi.org/10.1142/s1465876301000350
https://doi.org/10.1080/08839514.2017.1339983

Paper—Developing an Android-Based City Tour App using Evolutionary Algorithm

[11] T. Narwadi and Subiyanto, “An application of traveling salesman problem using the im-
proved genetic algorithm on android google maps,” AIP Conf. Proc., vol. 1818, no. March
2017, 2017. https://doi.org/10.1063/1.4976899

[12] M. S. Sahrir, M. F. Yahaya, T. Ismail, M. A. Zubir, W. Rusli, and W. Ahmad, “Develop-
ment and Evaluation of i-Mutawwif: A Mobile Language Traveller Guide in Arabic for
Mutawwif (Umrah Tour Guide),” pp. 54–68. https://doi.org/10.3991/ijim.
v12i2.7708

[13] Z. Omar, “Prototype Development of Mobile App for Trilingual Islamic Banking and Fi-
nance Glossary of Terms via iOS and Android Based Devices Learning via Mobile Tech-
nology,” vol. 11, no. 3, pp. 145–161. https://doi.org/10.3991/ijim.v11i3.6620

[14] A. Wohllebe and P. Dirrler, “Mobile Apps in Retail: Determinants of Consumer Ac-
ceptance – A Systematic Review,” vol. 14, no. 20, pp. 153–164. https://doi.org/10.3991
/ijim.v14i20.18273

[15] GlobalStats, “Mobile Operating System Market Share Indonesia | StatCounter Global
Stats,” Www.Gs.Statcounter.Com. 2020.

[16] D. Whitley, Computer Science a Genetic Algorithm Tutorial. 1993.
[17] C. W. Ahn and R. S. Ramakrishna, “A genetic algorithm for shortest path routing problem

and the sizing of populations,” IEEE Trans. Evol. Comput., vol. 6, no. 6, pp. 566–579,
2002. https://doi.org/10.1109/tevc.2002.804323

[18] S. Khuri, T. Bäck, and J. Heitkötter, “The zero/one multiple knapsack problem and genetic
algorithms,” in Proceedings of the 1994 ACM symposium on Applied computing, 1994,
pp. 188–193. https://doi.org/10.1145/326619.326694

[19] G. Zhou and M. Gen, “Genetic algorithm approach on multi-criteria minimum spanning
tree problem,” Eur. J. Oper. Res., vol. 114, no. 1, pp. 141–152, 1999
https://doi.org/10.1016/s0377-2217(98)00016-2

8 Authors

Abidatul Izzah is a lecturer at State Polytechnic of Malang, PSDKU Kediri Indo-
nesia. She received the master’s degree from Sepuluh Nopember Institute of Technol-
ogy, Indonesia. Her research mainly focused on Artificial Intelligence and Software
Engineering. Email: abidatul.izzah@polinema.ac.id

Irmala Arin Kusuma Wardani is a student at State Polytechnic of Malang,
PSDKU Kediri Indonesia. She is programmer and graphic designer.

Yudi Irawan is a student at State Polytechnic of Malang, PSDKU Kediri Indone-
sia.

Toga Aldila Cinderatama is a lecturer at State Polytechnic of Malang, PSDKU
Kediri Indonesia. He received the master’s degree from Chang Gung University, Tai-
wan. His research mainly focused on Networking, Information Systems, and Software
Engineering.

Benni Agung Nugroho is a lecturer at State Polytechnic of Malang, PSDKU Kedi-
ri Indonesia. He received the master’s degree from Gajah Mada University, Indonesia.
His research mainly focused on Mobile Programming and Networking.

Article submitted 2020-12-04. Resubmitted 2021-05-24. Final acceptance 2021-05-25. Final version
published as submitted by the authors.

iJIM ‒ Vol. 15, No. 14, 2021 203

https://doi.org/10.1063/1.4976899
https://doi.org/10.1063/1.4976899
https://doi.org/10.3991/ijim.v12i2.7708
https://doi.org/10.3991/ijim.v12i2.7708
https://doi.org/10.3991/ijim.v11i3.6620
https://doi.org/10.3991/ijim.v11i3.6620
https://doi.org/10.3991%0b/ijim.v14i20.18273
https://doi.org/10.3991%0b/ijim.v14i20.18273
https://doi.org/10.1109/tevc.2002.804323
https://doi.org/10.1145/326619.326694
https://doi.org/10.1145/326619.326694
https://doi.org/10.1016/s0377-2217(98)00016-2
mailto:abidatul.izzah@polinema.ac.id
mailto:abidatul.izzah@polinema.ac.id

