
PAPER
MOBILE SUPPORT IN CSCW APPLICATIONS AND GROUPWARE DEVELOPMENT FRAMEWORKS

Mobile Support in CSCW Applications and
Groupware Development Frameworks

http://dx.doi.org/10.3991/ijim.v7i2.2469

David Johnson
University of Oxford, United Kingdom

Abstract—Computer Supported Cooperative Work (CSCW)
is an established subset of the field of Human Computer
Interaction that deals with the how people use computing
technology to enhance group interaction and collaboration.
Mobile CSCW has emerged as a result of the progression
from personal desktop computing to the mobile device
platforms that are ubiquitous today. CSCW aims to not
only connect people and facilitate communication through
using computers; it aims to provide conceptual models
coupled with technology to manage, mediate, and assist
collaborative processes. Mobile CSCW research looks to
fulfil these aims through the adoption of mobile technology
and consideration for the mobile user. Facilitating
collaboration using mobile devices brings new challenges.
Some of these challenges are inherent to the nature of the
device hardware, while others focus on the understanding of
how to engineer software to maximize effectiveness for the
end-users. This paper reviews seminal and state-of-the-art
cooperative software applications and development
frameworks, and their support for mobile devices.

Index Terms—CSCW, MCSCW, groupware, software
development frameworks, mobile applications

I. INTRODUCTION

The term groupware (a fusion of the words ‘group’ and
‘software’) was first coined in the early 1980s by Peter
and Trudy Johnson-Lenz, and the then emerging
Computer Supported Cooperative Work (CSCW)
community adopted this rubric to try and describe
computer applications to support collaboration1. There
was a broad consensus on what the aim of CSCW research
was: to explore how technology can enhance the way
people work together. But Jonathan Grudin reviewed the
different approaches to the research field in his 1994 IEEE
Computer magazine article, ‘Computer Supported
Cooperative Work: History and Focus’, and made the
following observation of the challenges of the day:

“If we think of CSCW as an emerging field or common
enterprise, we may be frustrated by this mosaic of
different pieces, the frequent misunderstandings, and the
lack of intellectual coherence. But when understood and
respected, the differences form the core of richer, shared
understandings.” [1]

What Grudin highlighted was that despite the consensus
on what CSCW research broadly entails, the approaches
to the research vary between academia and business;
between researchers rooted in different disciplines, and

1 CSCW defines the research area; groupware defines the technology

itself.

even on a cultural level as European, North American, and
Asian research each have their distinct modus operandi.
Since Grudin’s review the topic areas and approaches
within CSCW research have not become any better
defined. In fact, an ecological analysis in [2] of the
research field itself had shown that there has been a trend
showing a high churn rate of and slight decline in number
of authors contributing to CSCW research literature since
the end of the 1980s. They further conclude that CSCW’s
independence from the field of Human Computer
Interaction (HCI) may rely heavily on a small subset of
established researchers. From their analysis they propose
that perhaps the high churn exhibited may be due to a lack
of consensus on core questions in CSCW and limited
room for new research directions.

As technology evolves, new opportunities for research
arise. Roy Want and Trevor Pering have identified some
of the opportunities that ubiquitous and pervasive
computing systems present, afforded by increasing storage
capacities, network bandwidths, and environmental
sensing available to mobile devices [3] [4]. Although still
a far cry from Mark Weiser’s seminal vision of computers
becoming, “an integral, invisible part of the way people
live their lives” [5], mobile computing goes some way to
fulfilling Weiser’s prophecy. Mobile devices can be so
closely coupled with their owners some might consider
everyday life without them unthinkable. Mobile devices
are an integral part of people’s lives, if not (yet) an
invisible part.

The rest of this paper goes on to discuss and define
Mobile CSCW, review a number of groupware
applications and development frameworks, and finally
discuss motivations for further research in the
development of interactive, mobile, cooperative software.

II. MOBILE COMPUTER SUPPORTED COOPERATIVE WORK

First coined in 1984 by Greif and Cashman, the term
‘computer supported cooperative work’ (CSCW) was used
to describe a new branch of research into how technology
could be used to benefit the work environment [1].
However there has been much debate on a unified
definition of CSCW [6]. Grief defines CSCW as,

“...an identifiable research field focused on the role of
the computer in group work”. [7]

This definition places emphasis on identifying how
computing technology fits into the processes and
organization of groups. Bannon and Schmidt propose an
alternative definition that focuses on understanding how
people cooperate and designing technology accordingly:

“CSCW should be conceived as an endeavor to
understand the nature and characteristics of cooperative

54 http://www.i-jim.org

http://dx.doi.org/10.3991/ijim.v7i2.2469�

PAPER
MOBILE SUPPORT IN CSCW APPLICATIONS AND GROUPWARE DEVELOPMENT FRAMEWORKS

work with the objective of designing adequate computer-
based technologies”. [8]

There have been numerous attempts at defining what is
CSCW and what the primary aims are, but the two
aforementioned definitions highlight the essential distinct
elements: supporting group work and designing computer-
based technologies. Schmidt discusses how CSCW should
aim to fit into the cooperative work process, and not
define new processes or techniques. He also identifies that
CSCW is a design-oriented research area. As such, he
proposed a more stringent definition.

“...an endeavor to understand the nature and
requirements of cooperative work with the objective of
designing computer-based technologies for cooperative
work arrangements”. [6]

Schmidt purports that CSCW should be focused on
designing technology to support group work. To this end,
CSCW research investigates determining the nature of
cooperation, work, and group dynamics, with a significant
proportion of researchers contributing software
engineering approaches to developing groupware.
Designing the technology to support cooperative work is
not a trivial task, hence the establishment of CSCW as a
research field in its own right.

Grudin discussed how group support was approached
from the seminal years of mainstream computing [1]. He
illustrated a trend in US R&D CSCW and groupware
contexts that follows the technological advancements of
computing hardware. From the 1960s mainframe
computers provided support in the workplace via batch
data processing and management information systems.
The 1970s saw the prevalence of interactive
minicomputers and networked systems, where office
automation emerged as a solution to supporting large
groups and projects. The advent of HCI research in the
1980s was largely driven by personal computing. In the
1990s this progressed to the popularization of CSCW with
the Internet becoming more accessible and connecting
end-users at work and in the home. The mobile device
has characterized the most recent decade. Widespread
wireless access to the Internet and the convergence of
digital technologies make modern mobile phones as
functional as (or some might argue more functional than)
PCs. Each paradigm shift was driven by popularization of
the technology of the day. By extending the trend Grudin
identified one can infer that Mobile CSCW2 is the next
natural step. What can be expected beyond the age of the
mobile device? The task of finding applications of sensor
networks is currently fuelling ubiquitous computing
research. How Mobile CSCW develops beyond today’s
ubiquitous devices is an open question for future
research.

III. GROUPWARE APPLICATIONS

The field of CSCW and the concept of groupware
cannot be traced to a single seminal article or product.
Although the term CSCW was first coined by Grief and
Cashman, as already discussed, it was just simply label
that could be applied to existing research. Since then,
there have been numerous research projects and
commercial products that are considered groupware. This

2 Mobile CSCW is considered as a subset within CSCW and not its own

new field; the term mobile groupware is used to describe Mobile
CSCW software applications.

section reviews a number of seminal and state-of-the-art
groupware applications.

A. Basic Support for Cooperative Work
Basic Support for Cooperative Work (BSCW) [10] is a

Web-based groupware application originally developed
by the Fraunhofer Society3. Today it is maintained and
marketed by a spinoff company, OrbiTeam Software
GmbH. The original motivation of the BSCW project was
to develop cross-platform groupware where the authors
identified the Web as a means to providing the
functionality independent of the main end-user operating
systems. This section discusses the original BSCW
research before it was developed into a commercial
product.

BSCW was designed around the concept of shared
virtual workspaces. A workspace can be considered as an
object store for collaborative work that provides an
awareness agent that allows users to monitor activity
within the workspace. These workspaces are accessed
through a user’s Web browser. Shared workspaces host a
variety of multimedia including documents, pictures,
videos, Web bookmarks, and group discussions. The
contents of a workspace are organised and rendered in the
user interface (UI) as a hierarchy of files and folders.
Events are broadcast to all users whenever a single user
performs an action within the workspace. This awareness
framework allows users to keep track of the activity of the
group with respect to workspace objects. Examples of
events might include uploading or downloading
documents, updating shared bookmarks, or contributing to
a discussion topic. Event histories are personal to each
user.

BSCW was built on a standard Web server to provide
the functionality for the shared workspace through
standard HTML Web pages. The Web server also acts as a
server for Java clients that provided a rich UI to the shared
workspaces. This allows end-users who had Java
capabilities to use the BSCW system with a rich UI
instead of relying on the Web interface. The BSCW server
communicates with Java clients using XML. A tool to
broadcast real-time awareness information between end-
users’ Web browsers is provided that augments the
workspace UI: a Java-based application called a monitor
applet. A secondary server called the event server
connects with end-users’ running monitor applets using a
custom protocol.

Apart from the shared workspace and event
broadcasting, BSCW provides a number of other features
including user authentication, document versioning,
access rights, workspace search, document format
conversion, document annotation, integration with
synchronous tools such as audio/video conferencing and
shared whiteboards, and calendaring. BSCW can be
considered as the de facto seminal groupware system due
to its widespread adoption by academia and subsequent
commercialization.

B. Access Grid
Initially developed by Argonne National Laboratory,

Access Grid [11] (AG) is a set of technologies and
supporting infrastructure to enable multimedia

3 The Fraunhofer Society is a German research organization that

focuses on applied science [9].

iJIM – Volume 7, Issue 2, April 2013 55

PAPER
MOBILE SUPPORT IN CSCW APPLICATIONS AND GROUPWARE DEVELOPMENT FRAMEWORKS

 collaboration between large groups of geographically
dispersed end-users. AG itself is not a single piece of
software, but rather a collection of both hardware and
software resources that include large-format visual
displays, immersive virtual environments, and means to
access shared Grid computing resources. AG is also a
Grid itself (i.e. as in Grid computing [12]) in which
participating sites share their network and hardware
resources. Widely used in the international scientific
community, as of 2009 AG consists of over 300 registered
nodes across 30 countries. The software itself is free and
open source.

Like BSCW, AG focuses on the shared virtual
workspace concept. However, unlike BSCW, it is based
around synchronous workspaces in which end-users
interact in real-time. The primary aim is to create
computer-augmented environments to facilitate natural
audio and video group communications. AG differs from
the traditional approach to CSCW systems in two ways.
Firstly, AG aims to create environments for small groups
of users rather than single users at any one endpoint (i.e. a
group of users at one location communicates with groups
of users at other locations, as opposed to many single
users communicating with each other). To this end, part of
the research and development behind AG focuses on
creating room-based media conferencing facilities with
large displays to encompass multiple users at a single site
 [13]. Secondly, AG uses the concept of persistent virtual
venues. A virtual venue can be thought of as a location on
the Internet that AG users can find and access. Each
virtual venue hosts a number of virtual rooms that AG
users can join and through which they can interact with
others.

At a particular site, the site manager hosts an AG node.
An AG node hosts all of the audio-visual services and
connects the site to the wider network. Nodes are
dedicated room-based conferencing facilities, immersive
virtual environments, or ‘personal’ nodes for single users
using a desktop computer. Room-based nodes may consist
of multiple computers to host the audio/video services. An
AG node runs several applications including the AG
Venue Client, ViC (Video Conferencing) [14] and RAT
(Robust Audio Tool) [15]. The Venue Client connects to a
Venue Server, and it is the server which provides services
to persist objects (data, documents etc.), authorize and
authenticate users, and assign multicast addresses to
connect AG nodes running ViC and RAT. Other
synchronous collaborative tools have been developed and
integrated with AG including a shared presentation tool,
shared Web browser, and a shared whiteboard
(TigerboardAG, [16]).

Since AG is designed to utilize high-performance
networks and large-format multimedia displays, it
provides no support for mobile collaboration.

C. SOGo
SOGo (formerly known as Scalable

OpenGroupware.org) [17] is an open-source standards-
based groupware server. It was originally developed by
Skyrix Software AG and is based on source code released
by the company in 2003. The main concept of SOGo is to
provide a groupware solution that integrates with existing
tools and processes in business collaborations. By
developing support for industry standard network
protocols and data exchange formats, SOGo provides

groupware functionality independent of end-user client
software. SOGo provides services to share a range of
organizational data including calendars (including events
and task lists), personal contacts and email boxes.

Information can be organized and shared with groups of
users or kept private. Calendaring information (calendars,
events, and tasks) is stored using the iCalendar standard,
while contact information is stored in the vCard format.
Clients exchange data with the SOGo server using Web-
based Distributed Authoring and Versioning (WebDAV)
based protocols. WebDAV is an extension of HTTP that
allows clients software to manipulate files stored on a
server. SOGo uses Calendaring Extensions to WebDAV
(CalDAV) (for exchanging iCalendar data and vCard
Extensions to WebDAV (CardDAV4) for vCard data.
SOGo also supports Storage of Groupware Objects in
WebDAV (GroupDAV5) which aims to be a groupware-
specific data exchange protocol. GroupDAV encompasses
both iCalendar and vCard formats and provides a richer
command list than CalDAV and CardDAV. IMAP is used
for providing email services as it is widely supported by a
range of email clients.

SOGo provides mobile support in the form of a service
to synchronize PIM6 data between the SOGo server and
an end-user’s mobile device. SOGo connects to mobile
devices using the open source Funambol mobile
synchronization middleware [18]. Funambol
communicates with mobile devices using the platform
independent synchronization protocol, SyncML. By
utilizing platform independent standards, SOGo provides
groupware services to a wide range of desktop and mobile
platforms. Apart from integrating with existing client
software, the server provides a Web-based interface that
emulates rich UIs provided by native clients. Focused on
integration with end-users’ legacy collaborative processes,
SOGo’s groupware functionality is based on
asynchronous communication (via email), sharing data,
and centralized coordination tools.

D. Microsoft Office Groove
Microsoft Sharepoint Workspace [19] is a groupware

application that is integrated with Microsoft’s Office suite,
and previously popularly known as Microsoft Office
Groove [20]. Originally developed by Groove Networks
Inc., Microsoft acquired Groove Networks and its
products in 2005. In this section we discuss Office
Groove, which is now integrated into the Sharepoint
Workspace product. Office Groove aimed to be a
groupware system that facilitates dynamic collaborations
and to support teamwork when in unpredicted offline
states. When a network connection with a team member
becomes available, data synchronization is carried out to
ensure that the group has the most consistent view
possible of the resources shared within the team. The
Office Groove platform consisted of two parts. Firstly,
Office Groove itself was a decentralized client software
for end-users. Secondly, Office Groove Server was
provided to integrate shared data with other server-based

4 CardDAV is an Internet draft being developed by the Internet

Engineering Task Force (IETF).
5 GroupDAV is a draft being developed by the open-source community.
6 Personal Information Manager, a type of application for storing data

such as address books, task lists, calendars, reminders, email archives
etc.

56 http://www.i-jim.org

PAPER
MOBILE SUPPORT IN CSCW APPLICATIONS AND GROUPWARE DEVELOPMENT FRAMEWORKS

systems and to act as a relay between Groove clients
where direct network connections are not possible. Even
when two communicating clients are not online at the
same time, the relay would act as a store-and-forward
server to deliver messages as and when possible. Groove
clients communicated using a proprietary protocol, the
Simple Symmetric Transmission Protocol (SSTP) [21].

Like BSCW and Access Grid, Office Groove also used
the concept of a shared workspace. In Office Groove a
workspace is a container for shared information where, in
order to account for clients sometimes being disconnected
from the rest of the workgroup, Office Groove allowed
views on a workspace to diverge. When the clients were
reconnected, the workspaces would synchronize. This
applied to all types of data contained in a workspace
including shared documents, discussion threads, and
structured data. For example, if a team is collaboratively
editing a single document and one of the participants loses
their network connection, the disconnected user’s view
will not update the document with the other users’ edits
until a connection is reestablished. Likewise, any changes
made by the single disconnected user were not visible to
the rest of the team until the synchronization process can
occur. Presence and communication is built into
workspaces including broadcasting of presence status’,
instant messaging, and event and activity
notification. The Office Groove client ran on a desktop
PC or laptop, and its ability to allow teams to work offline
and synchronize later on means that mobile users could be
supported, albeit on laptop computers. This characteristic
made Office Groove extremely useful for teams of mobile
workers in situations where network availability is a
scarce or unpredictable, such as in emergency situations 7.
Office Groove however was not supported on any mobile
device platform.

E. Zimbra Collaboration Suite
The Zimbra Collaboration Suite (ZCS) [23] is a set of

corporate groupware applications provided primarily
through a rich Web UI developed with Ajax [24].
Originally developed by Zimbra Inc., since 2010 all
Zimbra products are owned by VMWare, Inc. The core
ZCS functionality is free and open source, however
commercial alternatives are offered that include closed
source proprietary components. Like SOGo, ZCS is
centered on providing collaboration using traditional
groupware tools such as email, calendaring and contact
management. Apart from providing a standard set of
collaboration tools, ZCS exposes all of its functionality
via a Simple Object Access Protocol (SOAP) API
allowing third-party developers to design their own front-
end UIs. Web mashups can also be developed using
ZCS’s extension mechanism called zimlets. With email at
its core, ZCS also serves email via both IMAP and POP3
protocols.

Significant effort was put into designing the ZCS Ajax
interface in order to provide a highly accessible
groupware system that requires minimal setup and
configuration for the end-user. ZCS provides a rich Web
UI that emulates the functionality of desktop applications

7 Office Groove was integrated by a team at Louisiana State University

into an Emergency Operations Center (along with a number of other
Microsoft products) in the aftermath of hurricane Katrina in 2006 to

coordinate evacuees and volunteers [22].

such as natural keyboard mapping, drag-and-drop, and
mouse actions beyond one-click hyperlinking. To simplify
the user experience further, the UI automatically provides
hover-over contextual information. For example, if within
an email the sender has written a date, ZCS will highlight
it the date when it is being read. By hovering over the
highlighted text, a popup message will display any
calendaring information linked to that date within the ZCS
system. This kind of context awareness aims to simplify
collaboration and organization.

Mobile device support using ZCS is provided two-fold.
Firstly, a mobile Web interface provides access to email
and calendaring functionality, whilst also providing read
access to shared content. Any device with a mobile Web
browser can access this interface. Secondly, ZCS provides
contact management, calendaring, and email functionality
natively on devices through vendor specific
synchronization (iOS, Android, Blackberry), mobile Web
and push email.

F. Apache Wave
Google Wave [25] [26] was a hosted groupware service

and platform developed by Google Inc. In 2010 Google
announced it would ceased providing the Google Wave
product as a service, and has subsequently released Wave
code development open-source to the responsibility of the
Apache Software Foundation [27]. Google Wave
proposed a model of collaboration based on the concept of
waves. A ‘wave’ is basically a shared document hosted on
a server that supports concurrent modifications and near
real-time updates. Each wave is comprised of wavelets
that are elements within a wave that contain specific
content elements and a list of participants. Content may
include text messages sent by a user called blips. Blips
form the basis for discussion threads (termed
conversations) within a wavelet. Other kinds of content
might include hyperlinks, video, and maps. Every user has
a personalized view of a wave according to how a user has
previously interacted with a wave. The effect is that a
single ‘wave’ can be treated as synonymous with a
workspace that stores discussion threads augmented with
different kinds of content inserted from other sources.

Like ZCS, Wave provides a rich Web UI and also a
Web services API. Apart from third-party developers
being able to develop Web mashups and custom client
software to interact with Google Wave using the Google
Wave API, the underlying design of Wave was being
developed as a set of open architecture and specification
documents. Their vision was to allow the hosted Google
Wave service to interoperate with other systems hosted on
other Internet domains and implementing the published
protocol specifications. There are two published draft
protocol specifications:

(1) Google Wave Federation Protocol - an extension to
XMPP (Extensible Messaging and Presence Protocol) that
enables near real-time updating of waves between wave
service providers and,

(2) Google Wave Conversation Model - a description of
how to implement the structure of conversation elements
within a wave, specifically XML descriptions and
schemas for representing blips and conversations.

Despite providing an open API and published protocol
specifications, Wave did not provide explicit mobile
support, however since the UI was Web-based, it was
possible to access the Google Wave service through a

iJIM – Volume 7, Issue 2, April 2013 57

PAPER
MOBILE SUPPORT IN CSCW APPLICATIONS AND GROUPWARE DEVELOPMENT FRAMEWORKS

smartphone’s Web browser [28]. The possibility remains
however to build custom mobile clients to communicate
using the Wave API.

G. Comparison of Groupware Applications
A comparison of the groupware applications discussed

is shown in TABLE I. Throughout the examples
described, there are some common thematic and recurring
approaches. BSCW, SOGo, ZCS and Wave all provide
Web based interfaces. This is because the Web has moved
away from a purely content-driven medium to a universal
medium for serving applications to end-users [29]. SOGo
and ZCS are based on integration with legacy tools, in
particular making the assumption that email is the
communication medium of choice in corporate scenarios
where end-users are already setup and familiar with email
software. The learning curve for such systems is therefore
less steep. Another recurring theme when comparing
groupware applications is that apart from SOGo and ZCS,
the other systems are all based around shared virtual
workspaces. In Access Grid their concept of a virtual
venue is functionally synonymous with a workspace, as is
Apache Wave’s ‘wave’.

TABLE I.
COMPARISON OF GROUPWARE APPLICATIONS.

Client

platform
Concept Async Sync Mobile

BSCW Web Workspace Yes No No

AG
Win, Mac,

Linux
Venue Yes Yes No

SOGo
Web,
email

Legacy tools Yes No Yes

Office Groove Windows Workspace Yes Yes No

ZCS
Web,
email

Legacy tools Yes No Yes

Wave Web Wave Yes Yes Yes

Where there is less coherence is in whether or not to

provide synchronous services. AG is based primarily on
providing live audio and video feeds to all group
participants, while Wave allows near real-time editing of
waves. Office Groove also provides real-time
communication, albeit in a limited form, through instant
messaging. Asynchronous collaboration is however
provided by all groupware products. Persistent
workspaces provide a medium in which to leave messages
for other users whether or not they are currently online.
Using email as a primary communication method, as in
SOGo and ZCS, means that messages can be delivered as
and when possible. Finally, it is clear that mobile devices
are not particularly well supported by these groupware
systems. Where there is mobile device support, it relies on
provision of functionality through the mobile Web in a
similar way to desktop browsers [30]. SOGo and ZCS
additionally provide mobile device synchronization of
email, contacts and calendaring natively. None provide
dedicated groupware clients for mobile devices.

IV. FRAMEWORKS FOR DEVELOPING GROUPWARE

Several of the groupware applications described in the
previous section can be extended to build new UIs and
tools. AG and SOGo are completely open source, as is
ZCS in part. Office Groove could be customized and
combined with other Microsoft products to create domain
specific collaboration systems, as illustrated by the

Katrina Emergency Operations Center developed by
Louisiana State University [22]. ZCS and Wave provide
open Web service APIs for developers to develop new
software clients to access groupware functionality.
However none of these groupware applications provides
or builds on a dedicated development framework for
engineering groupware. The extension mechanisms for
each product are based on interoperation with the
respective existing systems.

There have been a number of attempts to develop
generic collaboration software frameworks. Researchers
have attempted to formalize abstractions of collaborative
work and provide tools for rapid development of
groupware. This section reviews a selection of the state-
of-the-art frameworks for developing groupware.

A. GroupKit
GroupKit, first described in [31], is an open-source

software framework for building real-time group
conferencing applications. Developed at the University of
Calgary, Canada, the authors built on their experiences of
engineering groupware applications. They identified that
groupware systems had commonality that could be
exploited in a reusable programming toolkit. Roseman and
Greenberg formally state the motivation for GroupKit:

“A developer using a well-designed toolkit should find
it only slightly harder to program usable groupware
systems when compared to the effort required to program
an equivalent single-user system”. [32]

By aiming to create tools that make groupware as easy
to design and program as single-user applications, the
authors set themselves an optimistic target of not only
solving HCI issues in engineering groupware, but also in
engineering systems for multiple, distributed, and
unpredictable end-users. In [31] they specify two sets of
requirements for GroupKit in two broad categories:
Human-centered design requirements and programmer-
centered design requirements. Examples of human-
centered requirements include supporting different group
processes and integrating with traditional ways of doing
work, such as using single-user applications or non-
computer based methods. These requirements center
around the notion of creating a framework that is flexible
enough to support group work without imposing any new
ways of working. The programmer-centered requirements
focus on the need for solving common challenges that
arise in multi-user computer systems such as in
groupware, including supporting multiple distributed
processes, shared data, and a shared graphics model.

With these requirements in mind, GroupKit provides
the following generic components:

(1) A runtime infrastructure - to create distributed
processes and manage inter-process communication
between end-user workstations.

(2) Groupware programming abstractions - a set of
programming primitives to hide the complex functionality
for supporting the groupware system.

(3) Session managers - to enable end-users to find each
other and create or join conference application sessions.

The GroupKit runtime infrastructure is formed
generally of three components: A registrar, session
managers (on each end-user workstation), and conference
applications. The registrar acts as a central process that
GroupKit applications connect to that manages

58 http://www.i-jim.org

PAPER
MOBILE SUPPORT IN CSCW APPLICATIONS AND GROUPWARE DEVELOPMENT FRAMEWORKS

connections between session managers and conference
application processes. It usually resides at a specific
network address to serve a single community of end-users.
When session manager processes are started, they connect
to a registrar to discover available conferences created by
other users. The session manager then deals with creating
conference application processes to join or register
conference sessions. Conference processes can then
communicate directly with each other, as managed by the
session manager.

From a groupware engineering perspective, the
programming abstractions and widgets are the key
building blocks for creating conferencing applications.
GroupKit provides three main programming abstractions:
multicast remote procedure calls (RPC), events, and
environments. Multicast RPC enables the broadcast of
function calls to all members of a group conference, thus
allowing shared actions to be executed on replicated data.
The authors identified this as a method to easily turn
single-user applications into shared multi-user ones.
Events are a mechanism whereby conference applications
are notified when things happen within the session and
within other instances of conference applications.
GroupKit’s infrastructure provides standard session events
such as when users join and leave conference sessions.
Events can be sent to the whole group or to single users,
for example, when a user joins a session as a latecomer
and needs their entire conference application state
updated. Environments are simple shared data structures
provided on a per-conference basis. Data is stored in an
environment through key-value pairs. A conference
environment is replicated between all conference
participants, and changes to the environment can trigger
callback functions bound to allow notification of data
being added, removed, or modified.

The groupware widgets that GroupKit provides enables
programmers to use reusable UI components that are
common and useful in many groupware applications. The
widget functionality includes participant status to allow
users to visualize other users joining and leaving
conferences, telepointers to enabled user gesturing
through an overlaid cursor, and location awareness to
enable multiple users to gauge what another user is
viewing on a shared window or data object.

B. Activity Based Computing
Activity Based Computing (ABC) [33] [34] is a

framework for supporting computer-based collaboration
through explicit modelling of activities. Developed by the
Centre for Pervasive Computing at the University of
Aarhus, Denmark, ABC is based on collaboration and
activity theory also developed by one of the original
authors [35] [36] [37]. The concepts of ABC are a result
of studying and modelling medical environments such as
in hospitals. The authors argue that such environments are
significantly different from office work. In office
scenarios end-users are stationed at a single location (e.g.
usually their desk), and communicate with other workers
through their desktop computer (e.g. by email), even if
they are in the same office or building. In the medical
environment, activities are typified by extreme mobility,
spontaneous collaboration, frequent interruptions, and a
higher degree of communication.

In ABC, three levels of abstraction are modelled. At the
most general level of abstraction, the activity level consists

of human-centered activities. At the next level down,
ABC models the computer-based services and
applications required to support the higher-level activity.
This level is called the application level. Finally, the
lowest abstraction is at the data level which models data,
files, or other material manipulated by the application
level.

The ABC framework itself, like GroupKit, provides
both a runtime infrastructure and programming tools to
create ABC applications. ABC provides a set of server-
side components that communicate with a set of standard
client-side processes that in turn interface with an ABC
application. On the server-side, an activity server manages
activities, sessions, and has a persistent activity store. On
the client-side, an activity controller maintains
communication with the activity server. A state manager
and service registry maintain the set of ABC applications
that can handle activity services. Finally, a session
manager maintains real-time collaborative sessions
managed on the server-side by a collaboration manager.

ABC’s activity server provides facilities for stateful
applications by enabling ABC applications to persist their
application states. Through this mechanism, ABC
supports mobility by allowing applications to suspend and
resume from the persisted states. The authors make it clear
however that the intention is not to support mobile device,
but rather to support end-users that might move from
device to device. This is in accordance with their original
studies of user behaviours in the hospital environment
where medical staff may move throughout the hospital
and interact on various different devices. Stateful
applications in ABC enable users to suspend their activity
sessions and resume them on another device.

C. Agilo
Agilo [38] [39] is an open-source groupware

framework based on Java to simplify the development of
groupware applications. Like BSCW, it is developed by
the Fraunhofer Society, and aims to be flexible enough to
develop a diverse range of groupware applications. The
framework design is based on an analysis of the different
variation points of groupware application features and
how the variations are realized as functional components
of groupware. The authors identified that many groupware
frameworks are inflexible and that groupware variations
are based around five key characteristics: distribution
model, communication infrastructure, sharing model,
concurrency model, and synchronization model. This then
lead to the creation of a taxonomy centered on the
variations of each point as expressed in specific system
implementation.

On each variation point, the authors of Agilo attempted
to design for flexibility in the software framework. Each
point is described as follows:

(1) Distribution model - The first variation in
groupware systems the authors of Agilo identified is how
the nodes of the groupware system are distributed. They
identified that typically distribution models either follow
client-server or peer-to-peer (P2P) topologies. In practice,
many P2P systems are in fact hybrid topologies
incorporating some element of centralization. For
example, GroupKit can be thought of as a hybrid P2P
system as it uses a central registrar server, but is designed
to allow communication directly between group
workstations in a P2P manner. To allow both client-server

iJIM – Volume 7, Issue 2, April 2013 59

PAPER
MOBILE SUPPORT IN CSCW APPLICATIONS AND GROUPWARE DEVELOPMENT FRAMEWORKS

and P2P distribution models, the Agilo framework
provides components for building client and server parts
separately, and for P2P models, both a client and server
can be used on the same node.

(2) Communication infrastructure - The authors
secondly identify that the underlying communication
infrastructure and available transport protocols
significantly affect the design of groupware applications.
For example, software running in a LAN environment
may have access to protocols such as TCP and UDP.
However over WANs such as the Internet HTTP or
connectivity through firewalls is required. To implement
flexibility in transport protocols, the Agilo framework at a
low-level implements multiple transport mechanisms for
commonly used protocols including TCP and HTTP. For
application-level protocols, Agilo provides a higher-level
entry point for developers to build their own marshalling
mechanism to interpret protocols over the low-level
transports.

(3) Sharing model - Groupware systems commonly
provide functionality for data sharing. The authors of
Agilo identify that the way in which data objects are
shared between distributed nodes as a key variation point.
For example, data might be centralized, replicated in
whole on each node, or support a loose consistency policy
that can periodically resynchronize. In the Agilo
framework, the data object distribution scheme is
decoupled from the objects themselves. Shared objects
implement a specific interface for the Agilo Object
Manager to handle.

(4) Concurrency model - In distributed systems, such as
in groupware, concurrency is an important issue. The way
in which groupware systems deal with concurrent
processes that may be distributed across nodes can vary,
processes could be treated with different degrees of
synchronicity depending on the quality of service required
by the function of those processes. Agilo uses a variety of
methods to process network messages on each node, and
within a node can interweave synchronous and
asynchronous message thread handling.

(5) Synchronization model - Finally, the authors
identify a number of different methods to ensure
consistency across shared resources in Agilo. Consistency
can be preserved through two general approaches: avoid
conflicts by using data locks such as semaphores, or detect
and resolve conflicts by allowing modifications and fixing
conflicting reads and writes after the event. As Agilo is
built on Java, the underlying Java platform already
provides some object synchronization mechanisms.
Besides these, Agilo also implements semaphores and
mutexes, as well as atomic transactions.

The key software design concepts in the Agilo
framework are encapsulated as modules, messages, and
connections. These are very generic concepts that
developers can use to build groupware; modules being
client or server-side software components that
communicate with each other; messages being
application-specific data chucks transferred between client
and server modules to implement groupware functionality;
connections being an abstraction above the raw transport
layer for transferring messages. Agilo is designed as to
allow the development of message handlers independent
of underlying network transports to allow support for
standardized protocols such as SOAP and XMPP, or for
developers to implement custom application specific

protocols (see point 2 on Communication infrastructure
above).

D. The Coco Collaborative Computing Platform
The Coco Collaborative Computing project developed

a P2P platform for ad-hoc group formation and
collaboration and described in [40], [41], [42] and [43].
Coco was developed at the University of Reading, UK, as
a P2P desktop platform for software developers to build
Java SE groupware applications. In addition to the core
platform, Coco provided of a suite of standard groupware
applications that included instant-messaging, shared
whiteboards, shared Web-browsing, and content
management with collaborative metadata annotation
capabilities. The development framework is built on a
services-based architecture with collaborative community
services hosted by JXTA8 peers and peer groups.
Community data (such as user profiles and content) is
represented using Resource Description Framework
(RDF9) data structures and exchanged by peers using the
Coco metadata content service [41]. Synchronous
interactions are supported by the Coco Messaging Service
which enables groups of participants to engage in real-
time video, audio, and IM interactions and the Interaction
Service, which supports real-time presence notification
within group interactions. The objective in providing
distinct services is to enable collaborative community
applications to access either all or a subset of Coco
services hosted by participating peers.

MicroCoco aimed to interoperate with the full desktop
version to provide collaboration services across the device
domain with the following goals: Be interoperable with
full Coco peers; Provide a subset of Coco’s services for
collaboration; Provide useful disconnected services for
when network access is limited; Be small enough to
operate on hardware constrained devices; Provide a
suitable user interface depending on the type of device
 [44]. The success of MicroCoco was somewhat limited.
Due to limitations of the underlying platform support for
JXTA for mobile devices at the time, pervasive
connectivity between Coco and MicroCoco was possible
but very inefficient. There was also a significant added
complexity to bridging between Coco and MicroCoco as
many of the collaboration services could not be built on
the same underlying JXTA service set. The design
 approach of MicroCoco was to make mobile peers
interoperate with desktop peers, without consideration
for what makes a suitable mobile groupware application.
To this end, MicroCoco could only go so far in terms of
providing satisfactory groupware applications for mobile
end-users.

E. Comparison of Groupware Frameworks
A comparison of the groupware frameworks discussed

is shown in TABLE II. These groupware frameworks
have a number of similarities. Each of the groupware
frameworks aims to provide two key pieces of
collaboration functionality: group conferencing and
content/data sharing. They also provide different
abstractions and metaphors that attempt to relate software
objects to real world objects - a technique commonly used

8 JXTA is an open-source generic platform independent P2P protocol

with a Java reference implementation.
9 RDF is an XML-based generic metadata description framework.

60 http://www.i-jim.org

PAPER
MOBILE SUPPORT IN CSCW APPLICATIONS AND GROUPWARE DEVELOPMENT FRAMEWORKS

in object-oriented design (OOD) [45]. GroupKit centers
on multicast RPC, events, and environments; ABC’s
framework is based on breaking activities down into their
component computer-based applications and
corresponding data. Agilo simply uses modules and
messages to encompass all collaborative software modules
and their application-level communication protocols.
Coco takes a service-oriented approach and defines
messaging, content, and interaction services. Finally, all
frameworks provide a runtime infrastructure as well
programming tools to support groupware systems.

TABLE II. COMPARISON OF GROUPWARE FRAMEWORKS.

 Key theme Conferencing
Content
Sharing

Mobile

GroupKit Synchronous tools Yes Yes No

ABC
Stateful

applications
Yes Yes Yes

Agilo
Flexible

framework
Yes Yes No

Coco Heterogeneity Yes Yes Yes

Despite aiming to support conferencing and sharing,

each framework approaches developing groupware in
their own unique way. GroupKit’s main theme is to
develop synchronous conferencing applications, and
supports creating conferences by using a centralized
registrar to aid in creating P2P connections between
applications. ABC, in contrast, aims to support
collaboration by providing an infrastructure that supports
user mobility between devices where activity states can be
saved and reloaded. Agilo looks to provide flexibility in
its framework by supporting multiple and extendable
configurations of groupware system. Finally, Coco, like
Agilo, addresses diversity. However Coco builds on
platform independent technologies to provide a set of
collaboration services that can work on multiple OS
platforms and unpredictable network configurations.

In terms of mobile collaboration, GroupKit and Agilo
do not provide support for mobile devices at all. ABC is
designed to be device independent, and the authors
recognize that ABC applications may run on different
kinds of devices, from desktops to PDAs. Coco provides
MicroCoco for mobile support. However as already
discussed, its development as an afterthought to
interoperate with full Coco services means MicroCoco
applications cannot provide the full experience of desktop
Coco groupware applications.

V. CONCLUSION

By examining what the various features that groupware
applications and frameworks aim to offer, one can
conclude that there are a number of common themes that
run throughout designing groupware. The comparison of
groupware applications highlights the recurring concept of
the shared workspace. This implies that a shared
workspace is an essential component of any groupware
system and should be supported. The analysis highlights
that state-of-the-art groupware systems also aim to
integrate with existing single-user software. To support
this, a groupware framework should ideally have
mechanisms for integrating with existing applications, as
well as having an effective approach to developing or
extending those applications for group work.

Groupware has begun to include support for mobile
users however much of this functionality is developed as
an afterthought in efforts to interoperate with legacy
applications. This top-down approach to groupware
development leads to mobile end-users being less well
supported in group collaborations. Mobile CSCW is by
no means immune from the fragmentation that Grudin
previously described. In fact, developing for the mobile
device domain fuels this fragmentation with diversity in
hardware and software platforms that is unprecedented in
modern personal desktop computing. Significant
research has been carried out in Mobile CSCW, but many
of the mobile groupware systems that have been
developed are application specific, singleton instances of
experimental software, often developed for a uniform
class of mobile devices. Dealing with fragmentation in
opinion of what functionality forms effective groupware,
coupled with addressing diversity of mobile device
hardware and software, are key motivations for new
research.

One of the key motivations for research, such as that
described in [46], is to enable groupware engineers to
build mobile groupware from the bottom-up; to give
groupware engineers the means to create mobile-centric
collaboration software. Mobile CSCW is by no means
immune from the fragmentation that Grudin described. In
fact, developing for the mobile device domain fuels this
fragmentation with diversity in hardware and software
platforms that is unprecedented in modern personal
desktop computing. Significant research has been carried
out in Mobile CSCW, but many of the mobile groupware
systems that have been developed are application specific,
singleton instances of experimental software, often
developed for a uniform class of mobile devices. There is
a clear need to provide tools to support rapid engineering
of mobile groupware. Dealing with fragmentation in
opinion of what functionality forms effective groupware,
coupled with addressing diversity of mobile device
hardware and software, are key motivations for future
research in the mobile technology, software engineering
and CSCW domains.

REFERENCES
[1] J. Grudin, “Computer-supported cooperative work: history and

focus”, Computer, vol. 27, no. 5, pp. 19-26, May 1994.
http://dx.doi.org/10.1109/2.291294

[2] D.B. Horn, T.A. Finholt, J.P. Birnholtz, D. Motwani and S.
Jayaraman, “Six degrees of Jonathan Grudin: a social network
analysis of the evolution and impact of CSCW research”, in Proc.
2004 ACM Conf. Computer Supported Cooperative Work,
Chicago, IL, 2004, pp. 582-591. http://dx.doi.org/10.1145/
1031607.1031707

[3] R. Want and T. Pering, “New horizons for mobile computing”, in
Proc. 1st IEEE International Conference on Pervasive Computing
and Communications, Dallas-Fort Worth, TX, 2003, p. 3-8.

[4] R. Want and T. Pering, “System challenges for ubiquitous and
pervasive computing”, in Proc. 27th International Conference on
Software Engineering, St. Louis, MO, 2005, pp. 9-14.

[5] M. Weiser, “The computer for the 21st century”, Scientific
American, pp. 94-104, September 1991. http://dx.doi.org/10.1038/
scientificamerican0991-94

[6] K. Schmidt and L.J. Bannon, “Taking CSCW seriously:
supporting articulation work”, Computer Supported Cooperative
Work, vol. 1, no. 1-2, pp. 7-40, March 1992. http://dx.doi.org/
10.1007/BF00752449

[7] I. Grief, Computer-supported cooperative work: a book of
readings. San Francisco, CA: Morgan Kaufman, 1988.

iJIM – Volume 7, Issue 2, April 2013 61

http://dx.doi.org/10.1109/2.291294�
http://dx.doi.org/10.1145/1031607.1031707�
http://dx.doi.org/10.1145/1031607.1031707�
http://dx.doi.org/10.1038/scientificamerican0991-94�
http://dx.doi.org/10.1038/scientificamerican0991-94�
http://dx.doi.org/10.1007/BF00752449�
http://dx.doi.org/10.1007/BF00752449�

PAPER
MOBILE SUPPORT IN CSCW APPLICATIONS AND GROUPWARE DEVELOPMENT FRAMEWORKS

[8] L.J. Bannon and K. Schmidt, “CSCW: Four characters in search of
a context”, in Studies in computer supported cooperative work:
theory, practice and design, pp. 3-16, North-Holland Publishing,
1991.

[9] M. Thum and C. Schraivogel, “Profile of the Fraunhofer-
Gesellschaft”, 2005.

[10] W. Appelt, “WWW based collaboration with the BSCW system”,
SOFSEM’99: Theory and Practice of Informatics, LNCS 1725,
pp. 66-78, 1999. http://dx.doi.org/10.1007/3-540-47849-3_4

[11] R. Stevens, M.E. Papka and T. Disz, “Prototyping the workspaces
of the future”. IEEE Internet Computing, vol. 7, no. 4, pp. 51-58,
July-August 2003. http://dx.doi.org/10.1109/MIC.2003.1215660

[12] I.T. Foster, “The anatomy of the Grid: enabling scalable virtual
organizations”. Euro-Par 2001: Parallel Processing, LNCS 2150,
pp. 1-4, 2001.

[13] L. Childers, T. Disz, R. Olson, M.E. Papka, R. Stevens and T.
Udeshi, “Access Grid: immersive group-to-group collaborative
visualization”, in Proc. IPT 2000: Immersive Projection
Technology Workshop, Ames, IA, 2000.

[14] S. McCanne and Van Jacobson, “vic: a flexible framework for
packet video”, in Proc. 3rd ACM international conference on
Multimedia, San Francisco, CA, 1995, pp. 511-522.

[15] O. Hodson,, S. Varakliotis, and V. Hardman, “A software platform
for multiway audio distribution over the internet”, in Proc. IEE
Colloquium on Audio and Music Technology: the Challenge of
Creative DSP, London, UK, 1998, pp. 114-116.

[16] D.L Nguyen, “TigerboardAG”, in Proc. 2006 ACM/IEEE
conference on Supercomputing, Tampa, FL, 2006, p. 314.
http://dx.doi.org/10.1145/1188455.1188785

[17] F. Lachapelle and L. Marcotte, “Scalable OpenGroupware.org”.
Linux Journal, vol. 2008, no. 168, April 2008.

[18] M. Gagné, “Cooking with Linux: Linux, Thunderbird and the
Blackberry - a love story”. Linux Journal, vol. 2009, no. 183,
2009.

[19] J. McCoy, “Makeover for Groove: SharePoint Workspace 2010!”
MSDN Blogs. [Online] Available: http://tinyurl.com/cvjp5lz (Last
retrieved 29 December 2012)

[20] Y. Chou, “Get into the Groove: solutions for secure and dynamic
collaboration”. TechNet Magazine, October 2006. [Online]
Available: http://tinyurl.com/cn5epf5 (Last retrieved 29 December
2012)

[21] [MS-GRVSSTP] - v20091106: Simple Symmetric Transport
Protocol (SSTP) Specification, Microsoft Corporation, 2009.

[22] J. Morello, “Building an Emergency Operations Center on Groove
and SharePoint”. TechNet Magazine, October 2006 [Online]
Available: http://tinyurl.com/alhvle (Last retrieved 29 December
2012)

[23] M. Gagné, “Zimbra collaboration suite, Version 4.5”. Linux
Journal, vol. 2007, no. 157, 2007.

[24] J.J. Garrett, “Ajax: a new approach to web applications”. Adaptive
Path, 2005. [Online] Available: http://tinyurl.com/29nlsm (Last
retrieved 29 December 2012)

[25] D. Peterson, “Hello world, meet Google Wave”. The official
Google Code Blog, Google Inc., May 2009. [Online] Available:
http://tinyurl.com/chvrxft (Last retrieved 29 December 2012)

[26] L. Rasmussen, “Went walkabout. Brought back Google Wave”.
Official Google Blog, Google Inc., May 2009. [Online] Available:
http://tinyurl.com/cptfumu (Last retrieved 29 December 2012)

[27] A. North, “Introducing Apache Wave”. Google Wave Developer
Blog, Google Inc., December 2010. [Online] Available:
http://tinyurl.com/cwrulw9 (Last retrieved 29 December 2012)

[28] E. Schonfeld, “Google Wave’s little secret: it already works on the
iPhone”. Tech Crunch, October 2009. [Online] Available:
http://tinyurl.com/29elvwj (Last retrieved 29 December 2012)

[29] T.V. Raman, “Toward 2W, beyond Web 2.0”. Communications of
the ACM, vol. 52, no. 2, pp. 52-59, February 2009.
http://dx.doi.org/10.1145/1461928.1461945

[30] M. Halvey, M.T. Keane and B. Smyth, “Mobile web surfing is the
same as web surfing”. Communications of the ACM, vol. 49, no. 3,
pp. 76-81, March 2006. http://dx.doi.org/10.1145/
1118178.1118179

[31] M. Roseman and S. Greenberg, “GROUPKIT: a groupware toolkit
for building real-time conferencing applications”, in Proc. 1992

ACM conference on computer-supported cooperative work,
Toronto, ON, Canada, 1992, pp. 43-50.
http://dx.doi.org/10.1145/143457.143460

[32] M. Roseman and S. Greenberg, “Building real-time groupware
with GroupKit, a groupware toolkit”. ACM Transactions on
Computer Human Interaction, vol. 3, no. 1, pp. 66-106, March
1996. http://dx.doi.org/10.1145/226159.226162

[33] H.B. Christensen and J.E. Bardram, “Supporting human activities
- exploring activity-centered computing”. UbiComp 2002:
Ubiquitous Computing, LNCS 2498, pp. 107-116, 2002.

[34] J.E. Bardram, “Activity-based computing: support for mobility
and collaboration in ubiquitous computing”. Personal and
Ubiquitous Computing, vol. 9, no. 5, pp. 312-322, 2005.
http://dx.doi.org/10.1007/s00779-004-0335-2

[35] J.E. Bardram, “Plans as situated action: an activity theory
approach to workflow systems”, in Proc. 5th European conference
on conference on computer-supported cooperative work,
Lancaster, UK, 1997, pp. 17-32. http://dx.doi.org/10.1007/978-94-
015-7372-6_2

[36] J.E. Bardram, “Collaboration coordination, and computer support
- an activity theoretical approach to the design of computer
supported cooperative work”. Doctoral dissertation, Institute of
Computer Science, University of Aarhus, Denmark, 1998.

[37] J.E. Bardram, “Designing for the dynamics of cooperative work
activities”, in Proc. 1998 ACM conference on computer supported
cooperative work, Seattle, WA, 1998, pp. 89-98.
http://dx.doi.org/10.1145/289444.289483

[38] A. Guicking, P. Tandler and P. Avgeriou, “Agilo: a highly flexible
groupware framework”. Groupware: Design, Implementation, and
Use, LNCS 3706, pp. 49-56, 2005.

[39] A. Guicking and T. Grasse, “A framework designed for
synchronous groupware applications in heterogeneous
environments”. Groupware: Design, Implementation, and Use,
LNCS 4154, pp. 203-218, 2006.

[40] I.M. Bhana, D. Johnson and N.S. Alexandrov, “Supporting ad-hoc
collaborations in peer-to-peer networks”, in Proc. ISCA 17th Conf.
Parallel and Distributed Computing Systems, San Francisco, CA,
2004, pp. 491-496.

[41] I.M. Bhana and D. Johnson, “A peer-to-peer approach to content
dissemination and search in collaborative networks”. Compu-
tational Science - ICCS 2005, LNCS 3516, pp. 391-398, 2005.

[42] I.M. Bhana and D. Johnson, “Developing Collaborative Social
Software”. Computational Science – ICCS 2006, LNCS 3992, pp.
581-586, 2006.

[43] I.M. Bhana, “Coco: a common platform for collaborative
computing in heterogeneous peer-to-peer networks”. Doctoral
dissertation, School of Systems Engineering, University of
Reading, UK, 1998.

[44] D. Johnson and I.M. Bhana, “Pervading Collaborative Learning
with Mobile Devices.” Book chapter in Technological Advances in
Interactive Collaborative Learning, Chapman and Hall/CRC
Press, 2012.

[45] J. Noble, R. Biddie and E. Tempero, “Metaphor and metonymy in
object-oriented design patterns”. Australian Computer Science
Communications, vol. 24, no. 1, pp. 187-195, January-February
2002.

[46] D. Johnson, “A Platform for Supporting Micro-Collaborations in a
Diverse Device Environment”. International Journal of
Interactive Mobile Technologies (iJIM), vol. 3, no. 4, pp. 8-16,
December 2009.

AUTHOR

David Johnson is with the Department of Computer
Science, University of Oxford, Wolfson Building, Parks
Road, Oxford OX1 3QD, United Kingdom (e-mail:
david.johnson@cs.ox.ac.uk).

The contributions in this paper were produced as part of the author’s
doctoral thesis work supported by a PhD scholarship from 2003-2007
from the School of Systems Engineering, University of Reading, UK.
Received 02 January 2013.. Published as resubmitted by the author 20
March 2013.

62 http://www.i-jim.org

http://dx.doi.org/10.1007/3-540-47849-3_4�
http://dx.doi.org/10.1109/MIC.2003.1215660�
http://dx.doi.org/10.1145/1188455.1188785�
http://tinyurl.com/cvjp5lz�
http://tinyurl.com/cn5epf5�
http://tinyurl.com/alhvle�
http://tinyurl.com/29nlsm�
http://tinyurl.com/chvrxft�
http://tinyurl.com/cptfumu�
http://tinyurl.com/cwrulw9�
http://tinyurl.com/29elvwj�
http://dx.doi.org/10.1145/1461928.1461945�
http://dx.doi.org/10.1145/1118178.1118179�
http://dx.doi.org/10.1145/1118178.1118179�
http://dx.doi.org/10.1145/143457.143460�
http://dx.doi.org/10.1145/226159.226162�
http://dx.doi.org/10.1007/s00779-004-0335-2�
http://dx.doi.org/10.1007/978-94-015-7372-6_2�
http://dx.doi.org/10.1007/978-94-015-7372-6_2�
http://dx.doi.org/10.1145/289444.289483�

	iJIM – Vol. 7, No. 2, April 2013
	Mobile Support in CSCW Applications and Groupware Development Frameworks

