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PAPER

An Effective Intrusion Detection in Mobile  
Ad-hoc Network Using Deep Belief Networks  
and Long Short-Term Memory

ABSTRACT
A Mobile Ad-hoc Network (MANET) is a self-organizing collection of mobile devices commu-
nicating in a distributed fashion across numerous hops. MANETs are an appealing technol-
ogy for many applications, including rescue operations, environmental monitoring, tactical 
operations, and so on, because they let people communicate without the usage of permanent 
infrastructure. This flexibility, however, creates additional security vulnerabilities. Because 
of its benefits and expanding demand, MANETs have attracted a lot of interest from the sci-
entific community. They do, however, seem to be more vulnerable to numerous attacks that 
wreak havoc on their performance than any network. Traditional cryptography techniques 
cannot entirely defend MANETs in terms of fresh attacks and vulnerabilities due to the dis-
tributed architecture of MANETs; however, these issues can be overcome by using machine 
learning approaches-based intrusion detection systems (IDS). IDS, typically screening system 
processes and identifying intrusions, are commonly employed to supplement existing security 
methods because preventative techniques are never enough. Because MANETs are continually 
evolving, their highly limited nodes, and the lack of central observation stations, intrusion 
detection is a complex and tough process. Conventional IDSs are difficult to apply to them. 
Existing methodologies must be updated for MANETs or new approaches must be created. This 
paper aims to present a novel concept founded on deep belief networks (DBN) and long short-
term memory (LSTM) for MANET attack detection. The experimental analysis was performed 
on the probe, root to local, user to root, and denial of service (DoS) attacks. In the first phase 
of this paper, particle swarm optimization was used for feature selection, and subsequently, 
the DBN and LSTM were used for the classification of attacks in the MANET. The experimental 
results gave an accuracy reaching 99.46%, a sensitivity of 99.52%, and a recall of 99.52% for 
DBN and LSTM accuracy reaching 99.75%, a sensitivity of 99.79%, and a recall of 99.79%.
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1	 INTRODUCTION

Along with the rapid adoption of lower-cost, smaller, and more capable wireless 
nodes in recent years, mobile ad-hoc networks (MANETs) have garnered considerable 
interest, establishing them as among the most promising fields of wireless network 
growth [1], [2]. Ad hoc networks are widely utilized in wireless systems and are 
employed in a wide variety of contexts, spanning rescue operations, personal area 
networking, disaster relief, and a variety of business, scientific, and defense applica-
tions [3]. Due to the current proliferation of cutting-edge technology, MANETs have 
garnered a considerable reputation in recent years [4]. MANETs, which feature self- 
maintenance, self-configuration, low-cost deployment, are collections of mobile nodes 
that rely on one another to transport packets and extend the mobile nodes’ restricted 
transmission ranges. The MANET doesn’t require any additional infrastructure to be 
deployed and is extremely inexpensive to implement anywhere [5], [6].

Typically, MANETs do not rely on centralized equipment like routing backbones 
or fixed routers. There are no connected wires. As a result, nodes are limited to 
communicating with nodes in their communication range. Because MANET nodes 
can freely join and leave networks, network elements are unpredictable. It’s worth 
noting that, because wireless technology utilizes open transmission means, monitor-
ing is quite straightforward. Additionally, the absence of a coordinated and unified 
dubious filtering infrastructure poses significant security challenges for MANETs. 
As a result, MANETs are especially susceptible to assault. When a source node 
wishes to transfer packets of data to a destination node over a medium that is open, 
it employs multi-hop transmission with the assistance of a relay node. Considering 
the unstructured network, dynamic topology, open media, and great movement of 
the nodes, hostile nodes can readily infiltrate the network [7].

Malicious nodes attempt to disrupt network resources by dropping data pack-
ets, stealing critical information, or modifying data packets, all of which result in 
unwanted situations[8], a phenomenon referred to as a Denial of Service (DoS) 
attack[9]. A DoS is an occurrence that impairs or removes a network’s ability to exe-
cute its intended purpose. The objective is to deprive nodes’ interaction of network 
capacity, resulting in data packets being dropped and bandwidth being reduced, by 
prohibiting people from accessing resources [10].

A DoS assault is among the greatest famous kinds of network intrusion, to degrade 
the service offered by a particular target to other genuine customers [11], [12], [13]. 
There are various types of DoS attacks, including blackhole, wormholes, flooding, and 
gray hole [14], [15], [16], [17]. Each leverages a unique security flaw in the network 
and wreaking havoc on variables like connection interruption, traffic flooding, system 
interruption, and access blocking in the wireless link [18]. The initial three assaults 
outlined above alter the system’s behavior of routing by fabricating and modifying 
routing pathways. In contrast to the other approaches, flooding attacks target specific 
network users by sending a large number of bogus data. According to [19], a flood-
ing assault can reduce the packet distribution ratio by much to 84 percent. The UDP 
flooding assault [20] is a type of data syn flood assault in which the chosen target is 
overrun by a constant stream of data circulation at a higher bit rate and packet scope 
than normal. IDS are used to monitor and identify network infractions to recognize 
and respond to them [21]. As a result, it is critical to successfully implement and man-
age such systems to assure the integrity and availability of network services [19] [22].

The remainder of the paper is laid out as follows. The related work was described 
in Section 2. The recommended approach is then presented in Section 3, followed 
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by the evaluation data gathered through experiments and comparative studies in 
Section 3. Finally, in Section 4, the conclusion is offered.

2	 RELATED	WORK

To reveal separate sorts of DoS attacks, ref. [23] presented a cross-layer IDS. 
They’ve also used data mining and clustering methods to Figure out how often intru-
sive activity occurs. When compared to other existing models, this technique results 
in faster detection of unlawful activities.

Ref. [24] gives another intriguing paper that continues the trend of association-rule 
(ARM) mining for IDS in the MANET ecosystem. They’ve released a cross-layer ID 
framework that can identify malicious networks and other sorts of DoS assaults. 
This method uses a fixed-width clustering method to capture harmful behavior in 
MANETs properly. In Moradi et al., [25] the authors presented ANNs used in the 
MANET viewpoint. They described a neural network-based IDS in MANET for 
detecting DoS assaults. To capture DoS attacks, the experimental stage is carried out 
in a virtual MANET setting while reviewing the outcomes of ANN modeling. This set 
of works gives evidence that the method used can efficiently achieve a high degree 
of detection for DoS assault. Abdel-Fattah et al. [26] describe an application of IBL 
in the domain of IDS for MANET. Traditional systems have struggled to gather real-
time attacks, prompting scientists to find and resolve the issue by inventing a new 
intrusion mechanism to reliably identify fraudulent efforts in MANET. The research 
shows that the unique method can detect anomalous behaviors with small positive 
percentages whilst attaining a greater detection rate, based on experimental results. 
In MANET, the authors [27] investigated the K-NN technique further. The goal of this 
research is to develop a novel intrusion detection model for MANET. To categorize 
the audit’s foreknowledge for anomaly detection, this model uses the CP-KNN algo-
rithmic approach. With the highest accuracy rates, high confidence rate, and a low 
false-alarm rate, the unique work indicates the accurate detection of many anoma-
lies. Lately, a method for noticing DoS assaults in WMN was developed [28]. The algo-
rithm’s performance was tested using average packet drop rate, delay metrics, and 
packet delivery ratio. By including a priority system in the system, it has remained 
demonstrated that the projected IDS positively remove malevolent nodes and boost 
the packet distribution ratio while decreasing the drop of the packet. To track down 
fraudulent nodes in MANET, a novel tracing approach dubbed ZSBT has been sug-
gested [29]. Before forwarding a packet, nodes insert the area ID into it with a par-
ticular frequency using the suggested algorithm. In these instances, the rogue node’s 
identification is inaccurate. SVMs were studied in detail in [30] to detect DoS assaults. 
The suggested method’s performance has been experimentally confirmed, demon-
strating that the proposed SVM-based detection methodology provides extremely 
high accuracy. Ref. [31] proposes a proactive detection approach for DDoS threats 
with reduced processing complexity. Additionally, a thorough examination of rout-
ing assaults and their countermeasures in MANET can be discovered in [17], [14]. 
The articles conduct reviews of IDS and discuss their fortes and weaknesses. Other 
systems for dealing with DoS and DDoS assaults in MANETs have been proposed 
[32], [18]. The earlier suggestions are primarily based on methods that consider a 
single network attribute, such as hello-interval attack delay [18], or the answer is 
limited to a single routing algorithm [32]. Hence, the major gaps noticed in previous 
studies, such as improving the limiting feature selection for data collecting, must be 
filled. Another issue noticed in existing works is the focus on one specific assault.
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Contrary to previous attempts, this paper proposed an FS approach based on PSO 
for feature selection as against existing studies. The DBN and LSTM models were 
utilized for the classification of the probe, user-to-root, root-to-local, and DoS attacks 
as against previous studies that focused on only the DoS attack.

2.1	 Proposed	DL-IDS	for	MANET

The proposed DL-IDS is made up of four modules; the collection of data module, a 
feature selection module, a detection engine module, and a response module. The data 
collection module feeds the PSO for feature selection operation. The FS feeds the detec-
tion engine module with the necessary network facts for specialized data analysis, and 
the response module acts on the detection engine module’s output [33]. Each of the 
modules is created in stages, with the demands of the ultimate system in mind.

2.2	 Collection	of	data	module

The criterion collected in this section is determined by the type of threat to be 
alleviated. Each type of network interruption impacts distinct system performance 
factors, and different types of the user to root, probe, remote to local, DoS assaults 
necessitate different detection and neutralization strategies. When a misbehaving 
node floods the target in a MANET, it causes a substantial rise in the packets number 
targeted at the destination per unit of time, effectively outsourcing the target and 
exceeding the bandwidth boundary which leads to packet drops frequently.

2.3	 Feature	selection	module

The method began with the acquisition of a dataset, followed by data filtering 
and normalization, which helps to eliminate inconsistent and outlier data. Finally, 
PSO was used to select the best fraction solution from the dataset, after which the 
data was separated into two parts: training and testing.

2.4	 Detection	engine	module

The detection module is at the heart of the IDS system and has a significant impact 
on its performance. It can be created with the help of special algorithms, an ML model, 
or any ANN [34]. The architecture of the proposed system is given in Figure 1. Nodes 
(N) contribute to conventional MANET parts such as receiving and delivering data 
during normal operation, as shown in Figure 2. The destination base (D) collects and 
processes packets of data without difficulty. Figure 3 depicts a hypothetical circum-
stance in which the system is under attack. In this case, network nodes (N) keep func-
tioning normally; however, the offending node (A) begins sending a large volume of 
useless data to its victim (D), which gradually ceases to function properly, resulting in 
many node failures and delayed signal arrival. The intrusive and normal data statis-
tics are used to train the DBN and LSTM detection modules. The mean of one-second 
periods is used to calculate the statistics of each feature. The data is separated into 
test and training portions, which are then normalized and used as the system’s input. 
Because the detection unit has been taught to learn how the network behaves under 
normal and attack settings, large departures from the norm are labeled as an intrusion.  
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The system has been tested with various nodes in the network and its performance is 
verified after teaching the detection module with five nodes.

Data collection
module

MANET ecosystem
Feature selection

module
(PSO)

DBN
LSTM

Response module

Fig. 1. The architecture of the PSO + DBN-LSTM for IDS-MANET

Fig. 2. An example of a MANET environment [35]

Fig. 3. A MANET amid a DoS assault using UDP flooding [35]
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2.5	 Response	module

The detection module sends the DBN-IDS and LSTM-IDS output to the response 
module, which makes the ultimate decision. After processing the inputs, the final 
response is formed, and the relevant actions are taken. Before reacting to the detec-
tion module’s output, two crucial considerations must be taken into account: the 
detection module’s precision and the potential patterns of future DoS assaults.

2.6	 Particle	swarm	optimization

Particle Swarm Optimization (PSO) is a swarm intelligence-based numerical opti-
mization technique developed by social psychologist James Kennedy and electrical 
engineer Russell Eberhart in 1995 [36]. PSO is a metaheuristic optimization algo-
rithm paradigm that has garnered popularity in recent years because of its ease of 
use in unstructured, large high-dimensional data that cannot be handled with clas-
sic algorithms [37]. PSO stands for “particle swarm optimization”. A set of completely 
random potential solutions is used to carry out this search. A swarm is a cluster of 
potential solutions, and each viable solution is referred to as a particle. The search 
in PSO is impacted by two forms of particle learning. During the motion, each par-
ticle learns from other particles as well as from its own experience. Learning from 
others is referred to as social learning, whereas learning from one’s own experience 
is referred to as cognitive learning. As a consequence of social training, the parti-
cle remembers the best solution that any particle in the swarm has visited, which  
we refer to as gbest [36]. As a consequence of learning skills, the particles save the 
best answer it has found so far in their memory, dubbed pbest. Figure 4 shows a 
typical geometric representation of a particle’s motion in two dimensions.

Fig. 4. Particle movement in the PSO process as a geometric illustration [36]

2.7	 Deep	belief	network

The DBN [38], a probabilistic generative system, is a deep neural network classifier 
that combines RBM [39], a multilayer unsupervised learning network, and BP [39], a 
supervised learning network. Figure 5 depicts a multilayer generative model with sym-
metric unguided links in the two highest layers and directed top-down interconnections 
from the level above in the lower layers [40]. The recognition system is represented 
by the upward arrows, while the generative model is represented by the downward 
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arrows [41]. A graphical model of a DBN having m levels can be created. The following 
is the joint probability of the position as a leading u and the hidden layer ij for j = 1:m.

 p u i i p u i P i i p i i
j

mm j j m m
( ) ( | ) ( | ) ( | ), , ,

1 1 1 1

1

2
 �

�
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  (1)

Fig. 5. A DBN and its parameters [41]

2.8	 Long	short-term	memory

The LSTM is a type of recurrent neural network [42]. Hochreiter and Schmidhuber 
introduced LSTM in 1997 [43]. LSTM are recurrent neural networks (RNNs), which 
are neural networks with at least one cycle in their underlying structure of inter-neu-
ronal connections. LSTM is designed primarily to understand long-term connections 
and can overcome the challenges that RNNs had previously [44]. An input layer, one 
or even more concealed units, and a production (output) layer comprise an LSTM 
network. The LSTM is arranged in a chain structure. The recurring module, on the 
other hand, has a unique structure. It features four cooperating levels with a unique 
form of communication, rather than a single neural network like a normal RNN [45]. 
Figure 6 showed the diagrammatic representation of LSTM memory cell structure.

Fig. 6. The LSTM memory cell’s structure [44]
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3	 RESULTS	AND	DISCUSSION

The system was created to select an efficient DL model for ID in MANET, and this 
section offers the analysis of the results of the DBN and LSTM methodologies utilized 
for the experimentation of this research. Among the DBN and LSTM, the experimen-
tal model aims to find the best DL classification approach. The training and testing 
set of data was split in half and passed to DBN and LSTM classifiers, respectively, at a 
percentage ratio of 75 percent and 25%. Machine learning statistical variables such 
as classification accuracy, true positive rate, false-negative rate, error rate, specificity, 
sensitivity, and training duration were used to analyze the outcomes.

3.1	 Experimental	performance	of	DBN	classification	phase

Table 1 lists the DBN classification evaluation parameters for reduced features 
based on the accuracy, sensitivity, f-score, specificity, recall, and error rate.

Table 1. Performance of the DBN model

Technique Accuracy Sensitivity F-Score Specificity Recall Error Rate

DBN 99.46 99.52 98.79 97.75 99.52 0.5399

3.2	 DBN	results	of	system	computational	time

The actual computing time spent training and processing the DBN for training 
the dataset is recorded in Table 2, and it is expressed in total seconds spent on the 
training process.

Table 2. Training of DBN model

Timing Results Training Time

DBN 58.53

3.3	 Experimental	performance	of	the	LSTM	classification	phase

Table 3 displays the LSTM classification’s evaluation criteria for reduced features 
based on the accuracy, sensitivity, f-score, specificity, recall, and error rate.

Table 3. Performance of the LSTM model

Technique Accuracy Sensitivity F-Score Specificity Recall Error Rate

LSTM 99.75 99.79 99.46 99.01 99.79 0.2413

3.4	 LSTM	results	of	system	computational	time

The actual computing time spent training and processing the LSTM network for 
training the dataset is calculated in seconds. Table 4 summarizes the findings.

Table 4. LSTM training time

Timing Results Training Time

LSTM 52.33
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3.5	 Comparative	evaluation	of	DBN	and	LSTM	models

Table 5 illustrates the f-score, specificity, sensitivity, accuracy, and error rate eval-
uation metrics for the DBN and LSTM models.

Table 5. Evaluation of the performance of the DBN and LSTM models

Techniques Accuracy Sensitivity F-Score Specificity Recall Error Rate

DBN 99.46 99.52 98.79 97.75 99.52 0.5399

LSTM 99.75 99.79 99.46 99.01 99.79 0.2413

The classification accuracy demonstrates that the LSTM network model achieved 
the best classification rate, implying that the LSTM performed most effectively. 
Figure 7 showed that the LSTM outperformed the DBN in terms of accuracy, sensi-
tivity, F-score, specificity, and recall while the LSTM model indicates lower error as 
compared to the DBN network.

DBN LSTM

ACCURACY SENSITIVITY F-SCORE SPECIFICITY RECALL ERROR RATE

99.46 99.52 98.79 97.75 99.52

0.5399

99.75 99.79 99.46 99.01 99.79

0.2413

Fig. 7. Comparative evaluation of DBN and LSTM

3.6	 Performance	of	sensitivity	vs	specificity

The number of right positive predictions divided by the total number of positives 
is used to compute Sensitivity (SN), whereas the number of correct negative predic-
tions divided by the total number of negatives is used to determine Specificity (SP). 
The best sensitivity and specificity fall at 1. The obtained results show the sensitivity 
and the specificity rate have a value close to 1, indicating a good predictive rate. The 
LSTM proved better than its counterpart as its specificity and sensitivity equate to 1. 
Figure 8 depicts the metrics of sensitivity and specificity.

DBN

LSTM

95

100

Sensitivity Specificity

DBN LSTM

Fig. 8. Sensitivity and specificity metrics
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4	 CONCLUSION	AND	FUTURE	WORK

MANETs are a far more appealing target for a multitude of different decen-
tralized threats, which generally target the protocol stack’s network and data link 
layers. As a result, deploying an IDS as a second line of protection in MANETs is crit-
ical. While authentication and encryption measures may safeguard in some ways, 
such as lowering the number of invasions, they cannot guard against unknown or 
unique threats. In this scenario, a deep-learning solution aids in the detection of 
previously undetected intrusive activity. In this research, we offer MANET detection 
methods based on DBN and LSTM. The PSO was used for feature selection, while 
the DBN and LSTM networks were used for the classification of MANET attacks. The 
results findings showed that the LSTM model gave an outstanding performance 
when compared with the DBN model. This study identified PSO-LSTM and PSO-
DBN as promising AI techniques for estimating attacks in a MANET environment. 
Especially in the proposed PSO-LSTM model, they could predict the attacks with 
high reliability.

However, the field of MANET classification techniques is fairly small. When con-
trasted with the body of information that researchers have studied in other domains, 
it isn’t as extensive. As a result, we recommend that this area be researched further to 
improve the classification-based IDS in MANET in future work. Additionally, future 
work may look into the aspect of addressing the classification of IDS in MANET as 
a multi-class problem and not as a binary problem as shown in this current study.
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