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Abstract—Different models had been developed to predict crop yields based 
on remotely sensed data. Most approaches were based on developing empiri-
cal relationships between the satellite-based normalized difference vegetation 
index (NDVI) data and the crop yield. This article is proposed to introduce a 
methodological framework for constructing an object-oriented yield prediction 
model using satellite data based on the two-level regression models. Here, the 
trends caused by the influence of technological improvements were considered. 
Regression models for the wheat and barley crop yield predictions have been 
developed. The two-level regression model, including the foreword stepwise 
regression (FSR) technique, firstly selects the set of features that reflect the spa-
tial variations in crops, soil, and agriculture management within districts. After 
the steps of exploratory data analysis (EDA), object creation, and the zonal aver-
age of each object were carried out. The second level consists of yield prediction 
with multiple linear regression (MLR), least absolute shrinkage, and selection 
operator (Lasso), support vector machines (SVM) techniques. In the proposed 
model, the SVM technique outperforms the rest techniques by an average root 
mean square error (RMSE) of 5.59(4.51) for wheat(barley). The experiments 
showed that the proposed model provides stability and low prediction error in the 
vast majority of cases and the used techniques.
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1	 Introduction

The development of earth observation over the last decades aimed to increase the 
scope of satellite information and decrease the cost at the same time. It also tends to use 
bands with higher frequency [1]. However, this introduced a chance to improve tech-
nologies of automated information processing that solve important problems in related 
sectors including agriculture. One of the active tasks and field applications in agri-
culture based on satellite information is yield forecasting systems. Here, normalized 
difference vegetation index (NDVI) time series have been used for grain yield pre-
dictions since the 1980s. The studies found that NDVI variables are very significant 
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as grain yield predictors for wheat and barley [2]–[4]. This was explained as NDVI 
reflects a strong correlation with grain yield, especially in the time when the grain 
productivity becomes sensitive to weather and moisture conditions during the grain 
development period [5],[6]. This period is called the critical period, which dominates 
the final productivity. Generally, the NDVI is influenced primarily by some slowly 
changing environmental factors, such as climate, soil, and topography, which are also 
called the ecosystem components (EC). The ecosystem components affect the amount 
and distribution of vegetation on Earth [7]. It is also important to note that every geo-
graphic region on Earth contains a specific level of ecosystem resources that indicate  
the ecosystem potential, which is also known as the carrying capacity of an area. Thus 
NDVI values can measure the amount of vegetation signifying the carrying capacity of a 
particular geographic region [8]. In addition, a previous study showed that the NDVI can 
describe the crops’ health and growing conditions in the local administrative region [9].  
Also, the crop productivity can be monitored by the NDVI during the entire growing 
season in the local administrative region to be successfully used to predict crop yields 
over that area [10]. That is attributed to the spectral information that is embedded within 
the NDVI and makes it valuable data in examining the vegetation conditions [11].  
Based on the mentioned features, we were inspired to use NDVI as a predictor in our 
recent suggesting yield predicting model over a large area.

To expand the application of the prediction model to more than a single crop within 
Voronezh and obtain a solid and accurate model, the object-oriented approach was 
adopted in this work for the first time. However, the object-oriented approach of satellite 
images is meant to segment into regions, each of which is called an object. A review 
of using an object-oriented approach for vegetation analysis was carried out in [12]. 
All the previous works applied the approach of object-oriented satellite images in the 
object recognition or earth’s surface change detection applications as in [13]–[16]. The 
use of an object-oriented approach showed an increase in the accuracy of target object 
recognition, which prompted us to examine the use of this approach in the field of yield 
prediction. So, in our approach, we firstly segmented the cropland area into objects 
and selected the appropriate objects for each crop to take features from. In order to 
detect the human-induced factors, we considered the time trends of crop yields. The 
human-induced factors reveal the influence of technology factors of fertilizer and man-
agement improvement that cannot be detected by using NDVI only. Hence, the inter- 
annual variability of the NDVI can only reveal crop yield fluctuations caused by weather 
or climate conditions  [2],[17]. Therefore, we tested the combination of the remotely 
sensed data with the trends of long-term historical crop yields data in the predictor group. 
The objective of the present work was to build a methodological framework adopted for 
crop yields prediction by four assumptions: (a) establishing temporal analysis for deter-
mining the critical period of the wheat/barley growing season to extract the NDVI val-
ues of the images in these periods and use them as predictors; (b) analyze the historical 
trends in the wheat/barley yield; (c) segment the cropland image of each province into 
objects; and (d) construct two-level prediction models for wheat/barley yields, included:

	– In the first level, the optimal predictors(features) would be selected locally for each 
province.

	– In the second level, previous features would be train globally and combined with 
additional constructed features related to yield trends.
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2	 Research material

2.1	 Study area

The Voronezh region is considered one of the main producers of good-quality grain. 
More than half of the sowing of crops is occupied by cereals including winter wheat, 
corn, barley and others. Due to the existing rich resources and an appropriate climate 
for grain crop production. According to [18], the area of agricultural land covers 4005.1 
thousand hectares, and the arable land (cropland) represents 79.5% of agricultural land; 
i.e. 3038.2 thousand hectares. An analysis of the crop yields in the Voronezh region 
shows that there is an increase in grain yield. For example, the average yield of winter 
wheat for 2006–2010 reached 24.2 c/ha. In the period of 2011–2012, the winter yield 
continued in the same trend during the 2013, where it reaches 28.4 c/ha. This increase 
in productivity was perhaps due to the increasing in the number of applied mineral 
fertilizationers. The Voronezh Region is part of the Central Federal District and the 
administrative-territorial division of Russia, the Voronezh region is a territorial organi-
zation of the state (administrative-territorial structure of the subject of the Russian Fed-
eration), consisting of 31 municipal areas (Figure 1) of rural and urban settlements [19].  
We chose 27 from them, which are described as famous region for growing wheat  
and barley.

Fig. 1. The NDVI map of Voronezh with plotted boundaries of districts and subregions
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2.2	 Satellite and yield data

The annual time series of wheat and barley crop data was analysed and modeled in 
centner per hectare (c/ha) from 2001 to 2014 for 27 districts of the Voronezh region. These 
data were obtained from tables of official statistics, which is taken from the work [3].  
The Terra Moderate Resolution Imaging Spectroradiometer (MODIS) MOD13Q1 prod-
uct [20], was used to collect NDVI images for all provinces during the growing season 
(April-August). MODIS land cover (MCD12Q1) [21] images that provide global land 
cover types were used to create a crop area mask of Voronezh to collect satellite data 
for that area, by extracting the only pixels which were recorded as cropland from NDVI 
images of the study area throughout 2001–2014.

3	 Methods: data analysis and regression model

3.1	 The exploratory data analysis

First of all, it is necessary before applying any machine-learning algorithm to do 
exploratory data analysis (EDA), to reduce the input dimensionality and select the 
appropriate inputs. In our case, we conducted EDA in two steps; the first one was 
to determine the critical period of crop growing season. Where the captured NDVI 
images consisted of a 16-day composite that span the length of the growing season 
from April to August. To determine the dates of the critical period, the NDVI images 
were spatially accumulated (mean of NDVI pixels) within each district, yielding 
27(districts) × 5(growing season) × 2( images per month) × 14(years) = 3780 NDVI values. Then a scatter plot 
of median_NDVI among the same dates in all years of the study period was done. The 
scatter plot (Figure 2) showed that the maximum of the annual NDVI cycle in June–July  
reaches saturation of about 0.7 when the projective coverage is 100%, and generally, 
when reaching the saturation, NDVI stops working. This means that the critical period 
in the June-July period. The second step of EDA was to determine the best dates of the 
growing season to make an accurate crop yield prediction.
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Fig. 2. The temporal analysis of NDVI data in various districts of the Voronezh

However, the lead time must be long enough for the prediction to be useful [22]. 
So to ensure a significant lead time, not as in other works, we considered the only data 
from the dates before the critical period. This was done by conducting Spatio-temporal  
correlation analysis separately for each crop. The correlations were calculated at the 
district level twice per month across the growing season between the mean_NDVI 
series and wheat/barley yields. The result of Spatio-temporal analysis showed that the 
“true crop density” occurred in April and May (Figure 3). Hence, if the winter crops 
successfully passed the winter in a well way and good tillering. Then in the conditions of 
usually rainy and warm May and June, the plant will quickly reach the flowering phase 
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(in only one week). Therefore, as a result, the dates of the first and second part of April 
and the first part of May are the most suitable date for using their data (NDVI-images) 
in the prediction model.

Fig. 3. The correlation coefficient for spatially accumulated NDVI versus the yield of crops in 
the regions of the Voronezh every 16 days (noted as numbers 1,2..9) from April through August. 

Wheat on the left, barley on the right

3.2	 Crop yield trends analysis

Over the 14 years, the crop yields frequently is experienced a significant statistic 
long-term trend (upward most often) because of the technological improvements in 
crop cultivation (Figure 4). This trend can be approximated by a polynomial linear/
nonlinear equation, which describes this change over time. While the short-term fluc-
tuations in crop yields around this trend are often caused as a result of variations in the 
weather/climate over the growing season from one year to the other [23].
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Fig. 4. Yields of winter wheat (upper) and barley (down) in 27 districts of the Voronezh from 
2001 to 2014. The dotted curve represents a quadratic trend (polynomial fit of degree 2)

Considering the yield trends analysis, the historical time series of wheat and barley 
yield Y was decomposed into two components: the first deterministic component Yt 
describes the long-term trend related to technological change. The second random com-
ponent Yr describes the yield deviation from the technological trend due to weather 
fluctuations as:

	 Y = Yt + Yr	 (1)

Usually, in other works, the first component is approximated by de-trend methods 
such as moving averages, exponential algorithms, least-squares, or polynomial regres-
sions [24]. While the second component is approximated by the difference or ratio 
between the actual yield and the trend yield (first component) [25]. In this study, we 
preferred to un-detrend the yield, to avoid prejudicing the chances of successfully using 
processed data in estimating relationships and building effective prediction models 
designed to take into account seasonal fluctuations [26]. Instead, we tended to adopt 
both components as predictors in training the prediction model. Here, we approximated 
the second component Yr using remotely sensed data (NDVI), because NDVI reflects 
environmental conditions and vegetation as mentioned in section 1. The first compo-
nent Yt was approximated by one of these variables: linear time, quadratic time, last 
year’s yield, yield trend (quadratic polynomial) DY, and their combinations.
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3.3	 Segmentation of districts into subregions (The object’s creation)

After the EDA analysis was carried out and determined the best dates to consider 
their data as predictors, only the three images (two in April and the third in May) for 
each district were considered. A (3 × 27) NDVI images were collected for each year. 
Thus over 14 years, we had 1134 MODIS-NDVI images. The most common approach 
is to spatially accumulate NDVI pixels (by using samples, integrated, summed, or 
average image pixels) per county or district [27]. These approaches reflect only spatial 
variations in management and soil properties between districts without any attention to 
variations between crops characteristics such as greenness, biomass, and planting date; 
also, without attention to spatial variations in agriculture management and soil within 
the same district. The contribution is to integrate the principle of object-oriented mod-
eling into the analysis and pre-processing stage. The object-orient in remote sensing 
involves the process of sensed image separation into separate areas or regions with sim-
ilar statistical characterization. The areas (regions) obtained at the segmentation stage 
will be called objects [28]. In our method, the NDVI-images of districts were separated 
into several sub-region (objects) according to official rural and settlements partitions 
in each district to ensure control of variations in agriculture management. For example 
the type of crop and its cultivation conditions, including the phases of the growing 
season for each crop cultivated in each rural and settlements within each district. After 
the objects’ creation, NDVI values were spatially accumulated (zonal mean operation) 
for each object resulting in 17304 numeric features (Table 1) representing the initial 
predictors set.

Table 1. The initial predictors set of Yr, composed of NDVI objects, the initial set was 
computed as (number of sub-regions × 3 × 14)

District Name Sub
Regions

Number of 
Initial Predictors District Name Sub

Regions
Number of 

Initial Predictors

Kashirsky 14 588 Verkhnekhavsky 17 714

Talovskiy 24 1008 Ostrogozhsky 20 840

Novokhopersky 11 462 Kamensky 11 462

Verkhnemamonsky 10 420 Pavlovsky 15 630

Kalacheevsky 17 714 Buturlinovsky 16 672

Vorobievsky 11 462 Khokholsky 15 630

Podgorensky 16 672 Anninsky 23 966

Liskinsky 23 966 Paninsky 16 672

Repyevsky 11 462 Nizhnedevitsky 15 630

Bobrovsky 19 798 Semiluksky 15 630

Ertilsky 14 588 Ramonsky 16 672

Olkhovatsky 8 336 Gribanovsky 17 714

Povorinsky 9 378 Ternovsky 14 588

Novousmansky 15 630
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3.4	 Two-level prediction model

After extraction of the initial set of NDVI feature predictors, the features are exported 
into the prediction model. The proposed model consists of two levels:

First level: features selection. Before using the initial set of features, a feature 
selection step was done to reduce the total number of features and to remove irrelevant 
and redundant data. In many machines learning models, a wide range of input features 
(predictors) are available. Which can be used as input predictors to the machine learning 
model. However, it is difficult to determine which ones are most relevant or useful at 
all [29]. In meteorological forecasts, one of two approaches to the choice of predictors 
is usually used [30]. Using the entire possible set of predictors and gradually excluding 
less significant predictors, or starting from significant features and gradually adding 
new predictors. The successful application of feature selection must not only reflect 
the important information for prediction but also must reduce the computational and 
analytical work for the analysis of high-dimensional data [31]. Variety techniques for 
finding an optimal subset from features were introduced. For example, the decision tree 
approach, genetic algorithm (GA), forward feature selection based on a chi-square score 
or p-value, and multiple linear regression model based on significant feature selection, 
and backward-elimination procedure for SVM-based feature ranking. Generally, the 
multiple linear regression MLR models don’t consider the nonlinear relations. While 
the SVM has a limitation in kernel selection caused by inaccurate selection. The GA has 
an expensive runtime cost and suffers from slow convergence before finding an accurate 
solution because of the use of minimal prior knowledge and failure in exploiting local 
information [32]. In the proposed model, a Foreword Stepwise Regression (FSR) 
technique was employed to identify the best set of features from the given initial 
dataset of features. The stepwise regression provides a good performance and a way 
to avoid multicollinearity without high complex and time-consuming because it was 
originally developed as a feature-selection technique for linear regression. The forward 
stepwise regression approach is a sequential feature selection technique different from 
generalized sequential feature selection. It can remove added features or add features 
that have been removed. Features are sequentially added to the empty set of candidates 
until the addition of new features leads to a further decrease in the error criterion [33]. 
For each district, FSR is implemented ‘locally’ to find the best eight features that predict 
the yield in that district. The selected features reflect local relation to their district. For 
example, the features from May were selected for some districts while the another 
had the features from April. Also the featured from north sub-regions were selected 
for wheat while other features from other sub-regions were selected for barley. This 
method will enable the model to deal with the variability characteristics of each district 
and overcome the drawback of other works.

Second level: prediction. The next step is to use the features produced in the 
previous level to be training ‘generally’ in the prediction model. The feature selection in 
the previous level helped in standardizing the number of features for each district to be 
then used as predictors of a single general prediction model in this level. The prediction 
model would deal with each district as the sample, each sample has 9 features (NDVI 
features with technological improvements trend). Three techniques were employed to 
train the prediction model, which are Multiple linear regression (MLR), Lasso (L1), 
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and SVM. Then finally the results were compared for evaluation and determination of 
the best technique.

4	 Results and model measurement

To be that the feature set is independent of the evaluation set and also to avoid pre-
diction bias, the predictors and yield for the first ten years were used for training the 
model. While the last 4 years (2011–2014) were used for test the model.

The crop yields were first estimated using the NDVI features selected by FSR only. 
Then by adding one of the features of (last year’s yield Y(t – 1), linear time t, quadratic 
time t2, yield trend DY as computed in section 3.2) to produce 15 models for both wheat 
and barley, different in their training data and techniques. The comparison between 
these models was done based on the coefficient of determination (R2) and Root Mean 
Squared Error (RMSE) values. However, the values of R2 and RMSE showed that the 
model trained with the combination of NDVI and yield trend DY features gave the best 
estimations. So, we adopted this training set to predict the wheat/barley yields through 
2011–2014 using MLR, Lasso, and SVM techniques. Figure 5 shows the scatter plots 
of the predicted against measured yields trained with NDVI and yield trend DY data.

Fig. 5. Scatter plots of predicted vs. observed yield from 2001 to 2014, Wheat on the left, 
barley on the right

To demonstrate which technique has better results, the comparison between pre-
dicted and observed yield through testing intervals can be performed. Hence, each year 
(2011–2014) has different training data which can output a different model resulting in 
the prediction of yield from 2011 to 2014. The performance can be evaluated for each 
district, year-by-year as well as by 4-overall evaluation. To do that, some metrics were 
selected such as Absolute Error and RMSE. Table 2 and Table 3 showed the actual and 
prediction errors for wheat and barley through each year and district. The absolute error 
between the predicted and observed yields of 2011–2014 years was not exceed 19(16) 
centner/ha for wheat(barley) in the worst case.
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Table 2. Absolute errors of wheat c/h for 2011–2014 years

District 
Name

Absolute Error

MLR Lasso SVM

2011 2012 2013 2014 2011 2012 2013 2014 2011 2012 2013 2014

Kash. 7.9 3.1 3.6 2.4 7.0 2.4 4.0 6.0 7.4 3.0 3.7 2.7

Talov. 0.2 4.0 1.9 3.7 1.1 5.3 4.9 7.8 0.5 4.8 1.9 2.7

Novokh. 3.2 11.2 4.1 0.5 0.8 10.1 4.4 0.1 2.1 11.0 2.8 0.9

Verkhm. 2.8 3.3 3.3 1.8 3.6 2.9 3.7 2.7 1.9 2.1 4.3 2.1

Kalach. 7.0 6.3 6.3 0.4 6.2 7.5 7.1 2.5 6.0 6.7 7.8 0.6

Vorob. 0.9 2.3 0.3 0.2 3.0 1.6 0.6 3.4 1.9 1.7 0.3 0.1

Podgo. 8.8 1.5 0.1 3.1 6.6 0.9 0.0 1.6 7.4 1.4 0.5 2.3

Liski. 0.9 1.3 9.6 5.1 1.4 1.3 10.4 7.8 1.3 1.6 9.7 6.7

Repy. 1.2 1.3 5.9 6.5 3.0 2.8 8.5 9.0 1.6 1.8 6.0 7.7

Bobro. 1.1 2.8 2.0 4.2 4.1 3.3 4.2 7.0 1.9 3.3 2.8 3.9

Ertil. 4.9 6.1 0.2 19.7 3.7 5.3 1.3 18.5 5.5 5.4 1.1 19.6

Olkho. 6.4 3.4 3.2 3.8 5.2 3.2 3.7 6.1 6.2 4.0 3.5 5.3

Povo. 4.8 3.4 1.5 0.2 2.9 3.6 0.6 1.3 3.8 4.0 1.1 0.7

Novousm. 5.6 5.6 6.0 8.9 6.0 3.0 6.9 12.0 5.5 3.9 5.8 8.9

Verkhn. 1.2 5.8 15.4 12.9 0.7 3.6 14.7 11.2 0.5 3.1 12.8 9.1

Ostrog. 5.2 2.7 8.8 0.3 5.5 2.6 8.7 5.4 4.4 3.2 8.4 1.7

Kame. 0.6 0.3 0.2 2.7 2.6 0.4 1.1 3.5 1.3 0.2 0.3 3.0

Pavlo. 8.7 2.9 5.0 7.9 6.3 3.6 2.5 7.4 8.1 1.9 5.4 7.4

Buturl. 0.5 1.0 0.1 1.6 2.0 1.4 0.9 3.6 1.5 1.4 0.8 2.2

Khokh. 5.6 2.6 8.9 8.5 4.2 0.5 9.8 10.9 6.5 0.6 8.6 9.6

Annin. 3.1 0.5 6.9 5.3 3.7 0.7 8.9 7.8 3.2 0.7 5.7 7.8

Panin. 3.9 1.2 9.0 5.0 3.8 1.3 10.4 7.3 4.3 1.3 9.1 6.7

Nizhne. 13.4 2.5 10.7 8.1 11.3 2.8 11.9 12.0 12.5 3.3 10.8 9.2

Semi. 3.9 0.1 6.5 1.5 1.9 1.0 7.8 4.8 3.3 0.5 5.6 3.1

Ramo. 3.1 7.2 7.6 9.1 2.2 6.2 9.0 9.8 3.8 7.6 7.1 11.4

Grib. 7.0 4.6 7.0 5.8 8.0 4.5 7.5 5.7 7.3 5.8 5.4 5.6

Terno. 7.8 5.4 6.2 3.6 7.4 4.4 6.6 5.6 8.8 6.0 5.2 4.0
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Table 3. Absolute errors of barley c/h for 2011–2014 years

District  
Name

Absolute Error

MLR Lasso SVM

2011 2012 2013 2014 2011 2012 2013 2014 2011 2012 2013 2014

Kash. 6.1 3.4 5.7 2.8 5.9 2.9 5.4 2.5 6.6 2.1 3.8 1.6

Talov. 3.3 1.4 1.5 5.6 2.9 1.3 1.0 5.0 3.2 1.0 0.5 4.1

Novokh. 4.3 3.5 2.4 0.9 4.6 3.6 2.1 1.3 5.9 2.2 2.9 1.2

Verkhm. 8.1 0.3 2.0 3.4 8.0 1.1 2.7 3.7 8.2 0.9 2.7 2.3

Kalach. 10.0 5.9 0.1 1.2 9.5 6.4 1.0 1.1 9.7 4.6 0.2 1.7

Vorob. 15.3 6.6 7.3 3.9 14.5 6.3 7.2 3.2 14.9 4.6 5.3 2.0

Podgo. 10.0 4.8 0.5 3.0 10.0 4.0 0.0 2.7 9.7 3.2 1.2 3.5

Liski. 8.6 4.5 3.7 6.0 8.1 4.4 3.2 6.3 5.7 3.6 1.8 4.0

Repy. 1.4 5.5 4.4 8.6 0.7 5.0 4.8 8.1 0.4 4.0 6.2 6.3

Bobro. 7.9 0.7 2.4 8.1 7.4 0.6 2.9 7.7 7.1 0.0 4.7 5.6

Ertil. 1.7 0.6 1.1 15.2 1.7 0.4 1.1 14.2 3.1 0.3 1.7 11.2

Olkho. 9.5 7.7 3.8 0.7 8.6 7.1 4.4 1.2 7.7 5.7 5.5 0.6

Povo. 8.0 2.3 3.0 4.2 7.4 2.2 3.4 3.6 8.0 1.1 2.7 3.9

Novousm. 3.7 5.3 0.8 4.2 3.7 4.6 0.6 4.2 5.3 4.5 0.0 2.4

Verkhn. 0.1 11 6.3 6.4 0.2 10.1 5.5 5.6 0.6 7.7 3.8 2.8

Ostrog. 2.5 5.5 1.0 2.4 2.2 4.3 0.3 2.8 1.1 1.7 1.6 1.4

Kame. 7.1 4.6 5.2 4.3 6.7 4.3 5.2 4.2 7.2 3.6 6.1 2.1

Pavlo. 12.8 1.5 7.7 5.0 12.0 1.9 8.1 4.8 10.4 1.0 7.2 3.1

Buturl. 10.0 2.4 6.8 3.5 9.6 2.5 6.8 3.3 10.2 1.3 4.9 2.6

Khokh. 0.2 2.0 7.5 7.2 0.8 1.9 6.6 6.7 2.1 0.8 4.5 4.2

Annin. 4.6 6.6 1.2 7.7 4.2 5.7 1.0 7.0 3.3 3.7 0.3 4.9

Panin. 8.4 12.5 5.2 4.7 8.6 12.0 4.5 4.3 8.8 10.2 2.7 3.0

Nizhne. 1.5 8.7 1.1 6.2 1.8 7.9 0.9 6.2 2.9 5.9 1.5 4.1

Semi. 1.4 3.7 3.8 4.9 0.5 3.4 3.2 4.6 1.4 1.1 0.9 3.2

Ramo. 2.6 3.5 3.2 5.4 2.3 2.7 2.5 6.0 3.0 1.3 0.2 6.4

Grib. 0.4 1.1 0.1 3.5 0.2 0.7 0.4 3.3 0.1 1.2 0.5 3.7

Terno. 2.5 0.8 5.8 2.8 2.1 0.5 5.4 2.4 1.3 0.1 4.5 0.8

Table 4 shows the performance of the yield prediction based on the different tech-
niques including the MLR, Lasso, SVM. The first four rows correspond to the evalua-
tion between predicted and observed yield made for that year and measured in RMSE 
(c/ha). The last row is the average RMSE for above four years. The result shows 
that the SVM model has the advantage of yield prediction in each year for barley, 
while for wheat Lasso model advantage for 2011, 2012 years. The other years shared 
between MLR and SVM Models. In general, the SVM outperforms competing tech-
niques significantly for both wheat and barley. However, the average RMSE of the  
SVM (in barley) has a ~14.09% and ~18.59% reduction of RMSE from the Lasso and 
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MLR, respectively. While (in wheat) it has a ~1.23% reduction from the Lasso and 
~5.29% from MLR.

Table 4. Model performance of wheat/barley yield prediction measured in RMSE

Year
Wheat Barley

MLR Lasso SVM MLR Lasso SVM

2011 5.46 4.91 5.27 6.95 6.63 6.63

2012 4.21 3.88 4.16 5.30 4.93 3.77

2013 6.42 7.08 6.08 4.22 4.07 3.57

2014 6.56 7.78 6.84 5.67 5.37 4.05

Avg 5.66 5.91 5.59 5.54 5.25 4.51

Also, to show and compare the spatially correlated errors for each technique, in the 
plot of error map from 2011to 2014 years for both wheat and barley in Figure 6 and 
Figure 7, the color represents the prediction error in the c/h. The error maps showed that 
most of the prediction absolute error is less than 10%.
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Fig. 6. Error maps at the district level from 2011 to 2014 for wheat yield
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Fig. 7. Error maps at the district level from 2011 to 2014 for barley yield

The dark color in Figure 6 and Figure 7 means high error and vice versa. The predic-
tion error attributes to many factors, such as weather, fertilization conditions, disease, 
and pests. Also, according to [3] the state subsidies to support agricultural producers 
varied from year to year. At the same time, starting from 2008, financing for the pur-
chase of mineral fertilizers was unstable, which may affect the production and thus the 
prediction. In general, Figure 6 and Figure 7 show that the proposed model produces 
more low absolute errors (<8) across all years and techniques for both yields. Also, the 
high absolute errors always happen in the same regions. This refers to the stability of 
the proposed model.

5	 Conclusions

This paper presents a framework for crop yield prediction by using remote sensing 
data. A model was proposed for effective learning representation for object-oriented 
crop yield prediction, and successfully learn much more effective features from NDVI 
image series derived from multispectral satellite images. The model is also including 
the strategy of integrating remote-sensing data with the yield time series analysis to 
make yield prediction more robust and accurate. The results of R2 and RMSE were 
shown that yield trends in combination with NDVI are the best predictors for yield pre-
diction. The proposed model consisted of two-level: in the first level the dimensionality 
reduction approach based on the FSR technique was employed, whereas the second 
level consist of yield prediction with MLR, Lasso and SVM techniques. In comparing 
the MLR, Lasso, and SVM techniques, the SVM in combination with FSR showed 
a robust method for grain yield prediction in terms of overall accuracy; while MLR and 
LASSO regression yield similar results. The results also show that the proposed model 
is stable and produces a high rate of the low absolute errors on the district-level across 
all years and the used techniques.
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