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PAPER

Improved Path Testing Using Multi-Verse Optimization 
Algorithm and the Integration of Test Path Distance

ABSTRACT
Emerging technologies in artificial intelligence (AI) and advanced optimization methodologies 
have opened up a new frontier in the field of software engineering. Among these methodol-
ogies, optimization algorithms such as the multi-verse optimizer (MVO) provide a compel-
ling and structured technique for identifying software vulnerabilities, thereby enhancing 
software robustness and reliability. This research investigates the feasibility and efficacy 
of applying an augmented version of this technique, known as the test path distance multi-
verse optimization (TPDMVO) algorithm, for comprehensive path coverage testing, which is 
an indispensable aspect of software validation. The algorithm’s versatility and robustness 
are examined through its application to a wide range of case studies with varying degrees 
of complexity. These case studies include rudimentary functions like maximum and middle 
value extraction, as well as more sophisticated data structures such as binary search trees and 
AVL trees. A notable innovation in this research is the introduction of a customized fitness 
function, carefully designed to guide TPDMVO towards traversing all possible execution paths 
in a program, thereby ensuring comprehensive coverage. To further enhance the comprehen-
siveness of the test, a metric called ‘test path distance’ (TPD) is utilized. This metric is designed 
to guide TPDMVO towards paths that have not been explored before. The findings confirm 
the superior performance of the TPDMVO algorithm, which achieves complete path coverage 
in all test scenarios. This demonstrates its robustness and adaptability in handling different 
program complexities.
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1	 INTRODUCTION

Artificial intelligence (AI) has emerged as a significant force in reshaping vari-
ous sectors, enabling the creation of intelligent systems capable of learning, reason-
ing, problem-solving, perception, and language understanding [1]. In the field of 
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optimization problems, AI techniques provide a powerful set of tools, paving the way 
for efficient, intelligent, and adaptive optimization solutions [2]. One application area 
that has witnessed notable advancements due to AI’s intervention is software test-
ing. Software testing is a critical phase in the software development life cycle (SDLC)  
to ensure the functionality, reliability, and performance of the software [3].  
However, manual testing processes can be labor-intensive, time-consuming, and 
prone to errors [4]. To address these challenges, researchers have explored AI-based 
techniques to automate and enhance software testing processes [5]. However, the 
production of high-quality and robust software applications has become a funda-
mental requirement across diverse fields, ranging from communication systems 
and finance to healthcare and entertainment [6]. Ensuring the reliability, efficiency, 
and correctness of these applications requires rigorous testing processes throughout 
the software development lifecycle [7] [8].

Software testing, which includes a variety of activities aimed at evaluating the 
attributes or capabilities of a program and ensuring that it achieves the desired 
results [6], serves multiple purposes. First, it verifies that the software performs as 
expected, delivering the intended functionality to the user. Second, it validates that 
the software operates correctly in all anticipated usage scenarios and system envi-
ronments, thereby maintaining user trust and satisfaction. Third, it helps in iden-
tifying any defects or discrepancies in the software, enabling developers to rectify 
these issues before deployment. In software testing, path testing plays a crucial role 
as it uncovers the behavioral intricacies of the software by analyzing every possible 
execution path [9]. It ensures that all possible scenarios in a program are tested, 
which, in turn, reduces the likelihood of undiscovered bugs. However, due to the 
inherent complexity of path testing, creating a comprehensive test suite that ensures 
maximum path coverage is a challenging task. Furthermore, path testing provides 
valuable insights into the internal workings of a software program, including its 
structure and logic. This contributes to a deeper understanding of the software’s 
functionality and, subsequently, improves its overall quality [10]. Given its pivotal 
role in enhancing software reliability and robustness, the importance of efficient 
and comprehensive path testing cannot be overstated in modern software engineer-
ing practices.

Path testing, a white-box testing technique, revolves around the principle of exe-
cuting every feasible path within a software program at least once with the intention 
of uncovering potential bugs or inconsistencies [11]. This process involves identify-
ing all possible paths that can be taken from the start to the end of a given function 
or method within the program code. The “paths” here refer to a distinct sequence 
of code statements or instructions that lead from entry to exit points in the software 
program [12]. This escalating complexity underscores the crucial necessity for effi-
cient test data that can effectively navigate this expansive path universe [13].

However, the application of optimization algorithms can systematically and thor-
oughly explore the search space more effectively than random testing. Additionally, 
they can handle the complexity of large-scale software applications more effectively 
than symbolic execution. By integrating optimization algorithms into the process 
of test data generation, researchers and practitioners can potentially achieve better 
coverage and efficiency in path testing. This offers a promising direction to improve 
software testing practices in the era of increasingly complex software applica-
tions [14].

Emerging from the broad spectrum of optimization algorithms, the multi-verse 
optimizer (MVO) has gained significant recognition due to its excellent performance 
in solving a variety of complex optimization problems [15]. Rooted in the concepts 
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of cosmology, the MVO takes its inspiration from three astronomical phenomena: 
the white hole, black hole, and wormhole. Each of these phenomena plays a specific 
role within the algorithm. The white-hole concept aids in exploration by introducing 
diversity into the solutions, while the black hole concept supports exploitation by 
directing the search towards promising regions in the solution space. The wormhole 
phenomenon, on the other hand, enables local search within existing solutions [16].  
The combination of these concepts allows the MVO to maintain a fine balance 
between exploration (searching new areas in the solution space) and exploitation 
(refining the solutions in the current areas), making it an effective tool for tackling 
optimization problems. Due to its balanced and robust approach to exploration and 
exploitation, the MVO algorithm has demonstrated remarkable efficiency and effec-
tiveness in solving optimization problems. It has outperformed other popular algo-
rithms on a variety of benchmark problems, highlighting its potential as a powerful 
optimization tool [15].

Given its proven capabilities, incorporating the MVO into the process of test data 
generation for path testing holds significant potential to bring about substantial 
improvements in this critical aspect of software testing. By utilizing the algorithm’s 
robust capabilities in navigating through complex search spaces, the process of gen-
erating test data can be optimized to achieve better path coverage, efficiency, and 
reduced redundancy [16]. The MVO algorithm’s exploration and exploitation capa-
bilities can be utilized to generate test data that covers a wide range of paths in the 
software, including complex paths that may be overlooked by traditional methods. 
The local search mechanism of MVO can further enhance the quality of test data by 
fine-tuning it to uncover intricate bugs or inconsistencies in the software. The pro-
posed use of TPD in MVO not only enhances the efficiency of the test data generation 
process but also potentially improves the overall quality of the software applications 
being tested. It represents a significant advancement in the journey towards cre-
ating more dependable and resilient software systems, which are essential in our 
ever-growing digital and interconnected world. This study utilizes the capabilities of 
AI and focuses on an optimization algorithm called TPD MVO, which draws inspira-
tion from the multi-verse algorithm.

1.1	 Problem statement

The software testing process, especially path testing, is essential for producing 
robust and reliable software applications. Despite its importance, generating suit-
able test data for path testing remains challenging due to the complexity of modern 
software. Traditional test data generation methods, such as random testing and sym-
bolic execution, have limitations. Random testing does not guarantee comprehensive 
coverage due to its unpredictability, while symbolic execution can become time- 
intensive because of the state explosion problem associated with complex software. 
Manual methods are also impractical for large projects due to the time, expertise, 
and risk of errors involved. There is, therefore, a need for automated and efficient 
techniques for generating data.

Optimization algorithms, specifically the MVO, offer potential solutions. MVO, 
which draws inspiration from cosmological phenomena such as black holes and 
wormholes, has demonstrated its effectiveness in various optimization scenarios. 
However, its application in test data generation, particularly for path testing, has not 
been thoroughly investigated. The primary objective of the research is to develop 
and investigate the TPDMVO algorithm for generating test data in path testing.
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1.2	 Research importance

The significance of this research lies in its potential to greatly improve the pro-
cess of generating test data in path testing, which is a crucial aspect of software test-
ing. By innovatively adapting the TPDMVO algorithm for this purpose, the research 
addresses the limitations of traditional test data generation methods and offers a 
unique, potentially more effective and efficient solution. As software applications 
become increasingly complex, ensuring thorough path testing becomes a vital neces-
sity for maintaining high software quality and reliability. Improving the generation 
of test data, as proposed in this research, directly contributes to achieving this goal. 
Additionally, incorporating a TPD measure into the TPDMVO algorithm represents 
a unique approach that could further enhance the quality of generated test data, 
thereby increasing the effectiveness of path testing. Therefore, this research holds 
significant implications for software developers, testers, and, ultimately, end-users 
who stand to benefit from more robust and reliable software applications.

1.3	 Research contribution

The research envisions two primary contributions to the field of software testing. 
First, it introduces an innovative adaptation of the TPDMVO algorithm, specifically 
customized for the task of generating test data in path testing. This novel application 
of the TPDMVO algorithm signifies a significant advancement in the utilization of 
optimization algorithms in software testing, particularly in path testing. By capital-
izing on TPDMVO’s potent capabilities in exploration, exploitation, and local search, 
this study opens up a new avenue for enhancing the efficiency and effectiveness 
of test data generation. Second, the research introduces a novel measure of TPD, 
specifically designed to be incorporated into the modified TPDMVO algorithm. This 
measure is designed to improve the quality of the generated test data, which could 
potentially increase the success rate of path testing. The development of this dis-
tance measure may offer valuable insights and guidelines for similar efforts aimed 
at enhancing the utilization of optimization algorithms in test data generation.

2	 LITERATURE REVIEW AND RELATED WORK

In this section, there is an in-depth examination of previous work related to the 
application of the MVO in test data generation for path testing. An extensive review 
of the relevant literature helps to highlight the significance of the problem at hand, 
place the proposed solution within the broader academic discourse, and identify 
gaps that this research aims to address. We will examine research in three main 
areas: software testing with an emphasis on path testing, traditional methods of test 
data generation, and the application of optimization algorithms, particularly the 
MVO, in software testing.

2.1	 Multi-verse optimizer

The MVO algorithm is a global optimization algorithm inspired by concepts 
from cosmology, namely black hole, white hole, and wormhole phenomena [16]. 
The design of the algorithm leverages the principles of these phenomena, offering 
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powerful capabilities for exploration, exploitation, and local search. This makes it 
a versatile tool for optimization tasks. The underlying premise of MVO is the idea 
that universes (potential solutions) undergo three types of operations: the White 
Hole, Black Hole, and Wormhole. In the Black Hole operation, universes are pulled 
towards the fittest universe, simulating the gravitational pull of a black hole. In the 
White Hole operation, new universes are generated and randomly placed in the 
search space, simulating the hypothetical phenomenon where matter and energy 
are ejected into our universe from elsewhere [16]. In MVO, each universe rep-
resents a potential solution to the optimization problem. The quality or fitness of 
each universe is determined by an objective function that is relevant to the problem. 
Universes gravitate towards the most optimal universe based on their fitness. This 
movement mirrors the gravitational attraction exerted by black holes. The closer a 
universe is to the optimal solution, the more it influences other universes to cover-
age towards it. This phenomenon simulates the theoretical process in cosmology, 
where matter and energy are projected into our universe from external sources. 
Benefiting from randomness, this operation allows universes to “teleport” within the 
search domain, aiding in the exploration of the solution space and avoiding being 
trapped in local optima [16].

2.2	 Test data generation techniques

The process of test data generation has been central to the field of software test-
ing, with a variety of methods and techniques developed over the years. These tech-
niques, which can be broadly divided into static and dynamic methods, each bring 
their own unique set of benefits and challenges. Static techniques are those in which 
test data is manually created by software testers [17]. In these methods, testers gen-
erate test cases based on their understanding of the software’s requirements and 
structure. The testing process often relies on techniques such as equivalence parti-
tioning, boundary value analysis, and decision table testing. The significant advan-
tage of these techniques lies in the tester’s ability to create highly customized tests 
tailored to specific software features. However, they tend to be time-consuming, 
may not scale well for large applications, and are subject to human error due to the 
extensive manual input required [18]. Transitioning from manual to automated test 
data generation, we encounter dynamic techniques, where test data is automatically 
generated during software execution. These techniques are further classified into 
three types: random, goal-oriented (systematic), and model-based testing. Random 
testing is a straightforward technique where random test data is generated within 
the input domain of the software being tested. The simplicity and low cost of this 
method make it appealing [19]. However, as software complexity grows, the proba-
bility of encountering important corner cases or triggering complex behavior solely 
through random inputs decreases, thereby limiting its effectiveness [20].

Goal-oriented or systematic testing, on the other hand, aims to generate test 
data that meets specific testing criteria. Techniques such as symbolic execution and 
search-based software testing fall under this category [21]. Their goal often revolves 
around maximizing code coverage or achieving other predefined objectives. These 
techniques can be powerful, but they also require complex computations. For 
instance, symbolic execution can lead to the problem of “path explosion,” which 
limits its applicability for complex programs [22]. In model-based testing, test data 
generation is based on a model of the software being tested. The advantage of this 
approach is that it can provide comprehensive test coverage based on the model. 
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However, the need to create a model can make this method more time-consuming 
and complex than others [23]. In recent years, with the rise of modern computa-
tional techniques, there has been a growing interest in incorporating optimization 
algorithms in test data generation. Techniques such as genetic algorithms, particle 
swarm optimization, and ant colony optimization have shown promising results in 
various aspects of software testing [24].

2.3	 Path testing

Path testing is a critical component of structural testing techniques. It focuses 
on identifying and examining all possible executable paths through a software pro-
gram to uncover potential faults and improve software quality [25]. It holds a signif-
icant position in the spectrum of software testing techniques due to its potential for 
uncovering hidden bugs that other testing methods might overlook. The underlying 
principle of path testing involves deriving a set of test data that can activate different 
possible paths in the software under test [26]. A path is defined as a distinct sequence 
of code statements or instructions that are executed from the beginning to the end of 
a program or a program segment. As a testing method, path testing places a strong 
emphasis on how control structures, such as loops and conditionals, influence the 
flow of program execution [27].

However, the key challenge in path testing is its complexity in terms of combi-
nations. A software program can have a significant number of potential execution 
paths, particularly those involving loops or recursion [28]. This potential infinity of 
paths, also known as the “path explosion” problem, makes it infeasible to exhaustively 
test every single path, especially in complex or large-scale software systems [29].  
To address this problem, numerous techniques and strategies have been proposed. 
These techniques include independent path testing, cyclomatic complexity, basis 
path testing, loop testing, and data flow testing. Each technique has its own unique 
approach to selecting critical paths for testing, which helps to reduce the computa-
tional demand [30]. Even though these methods bring some relief to the problem 
of path explosion, the selection and generation of test data that can effectively and 
efficiently cover important paths remains a challenge [31].

3	 TEST PATH DISTANCE MULTI-VERSE OPTIMIZER FOR PATH TESTING

This section presents the proposed enhancement of the MVO algorithm, which 
utilizes the TPD for generating test data in path testing.

3.1	 Overview of enhancements

The proposed enhancement to the MVO involves integrating the concept of TPD 
into the algorithm’s mechanics. The idea is to utilize the MVO’s powerful optimi-
zation capabilities to minimize the TPD, which quantifies the “distance” between 
a programs’ actual execution path and a target path. The incorporation of TPD in 
the MVO aims to guide the generation of test data more efficiently, with the goal of 
achieving path coverage. In essence, the proposed enhancements to the MVO take 
the form of adaptations in the representation of solutions, the fitness measure, and 
the algorithm’s operations. Each solution or “universe” in the MVO is redefined to 
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correspond to a set of test data capable of executing a program. This adaptation 
allows the MVO to operate directly on test data, aligning TPDMVO with the require-
ments of path testing.

The fitness measure in the MVO, which is represented by the inflation rate in 
the cosmological context, has been replaced with the TPD. Thus, lower TPD values, 
which signify a closer match between the actual and target execution paths, trans-
late to “better” solutions or universes with lower inflation rates. This change ensures 
that the MVO’s optimization process is directed towards minimizing the TPD, thereby 
generating test data that leads to the desired execution paths in the software. Finally, 
the operations of the MVO—the creation, selection, and local search mechanisms 
based on the white hole, black hole, and wormhole phenomena, respectively—are 
adapted to work with this new representation of solutions and the TPD measure. 
These adaptations retain the robust search capabilities of the MVO while customiz-
ing them for the specific task of generating test data for path testing. The proposed 
enhancements to the MVO involve integrating the TPD concept into TPDMVO to 
guide the generation of test data for path testing. The ultimate goal is to improve the 
efficiency and effectiveness of this testing technique.

3.2	 Description of test path distance

The concept of TPD plays a crucial role in the approach of this research to enhance 
the MVO for test data generation in path testing. TPD is a numerical measure that 
quantifies the “distance” between the actual execution path of a program with a 
given set of test data and a target execution path. By minimizing this distance, it 
becomes possible to guide a program’s execution towards desired paths, thereby 
achieving more comprehensive and effective path coverage in testing. To provide a 
deeper understanding, TPD is computed based on the differences between the actual 
and target execution paths at each decision point in the program. Decision points 
refer to locations in a program where the control flow could diverge, such as condi-
tional statements or loops. At each decision point, the outcome (e.g., the branch taken 
in a conditional statement) with the given test data is compared with the outcome on 
the target path using the given test data.

The “distance” for a single decision point is typically computed as a binary value: 
zero if the outcomes match (i.e., the test data leads to the same branch as the target 
path) or one if they do not match. However, more sophisticated distance measures 
could be employed for specific types of decision points, such as loops, where the 
distance could be influenced by the number of iterations. In such cases, the dis-
tance could be computed based on the difference in the number of iterations. After 
calculating the distances at each decision point, the TPD is obtained by summing 
these distances. This results in a single numerical value that measures the overall 
“distance” between the actual and target execution paths. The goal of the test data 
generation process is to find the test data that minimizes the TPD. This effectively 
guides the program’s execution towards the target paths and improves path cover-
age in testing.

3.3	 Mathematical formulation of the enhanced multi-verse optimizer

To mathematically express the TPDMVO incorporating the TPD, it is crucial to first 
define the key elements involved in the model.
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Let’s consider a universe, U, represented as a vector of size n, where each element 
corresponds to an input variable for the software being tested. Thus, U = [u1, u2, …, un].  
The MVO maintains a collection of universes that serve as candidate solutions for 
the problem of test data generation.

The TPD, denoted by D(U), is computed as the sum of distances at each decision 
point in the software’s control flow graph, as described in Section 6.2. The distance at 
a decision point is computed based on the difference between the actual and target 
outcomes, using the test data represented by universe U.

Under the enhanced MVO, the objective is to find the universe U that mini-
mizes the TPD. Thus, the optimization problem can be mathematically formulated 
as follows:

	 Minimize D(U)	 (1)

Subject to U ∈ S, where S is the search space defined by the feasible range of each 
input variable.

The search process of the MVO involves creating new universes (candidate solu-
tions) and updating existing ones based on the principles of white hole, black hole, 
and wormhole phenomena. These processes are adapted in the TPDMVO to work 
with the TPD and the new representation of universes as sets of test data.

3.4	 Adaptation of wormhole mechanism

The wormhole mechanism is one of the critical components that distinguishes the 
MVO from other optimization algorithms. It plays an instrumental role in exploring 
the search space, improving solution diversity, and preventing TPDMVO from get-
ting trapped in local optima. In the context of the TPDMVO for test data generation, 
the wormhole mechanism has been adapted to effectively work with the TPD and 
the new representation of universes as sets of test data. Conceptually, the wormhole 
mechanism represents the phenomenon of information exchange among universes 
through a high-dimensional tunnel, enabling a universe to move to a completely dif-
ferent location in the search space. This helps TPDMVO to explore the search space 
more effectively and escape from local optima.

In the original MVO, the wormhole mechanism is realized by occasionally replac-
ing a universe with a completely new and randomly generated one. In the enhanced 
MVO, a more sophisticated approach is used to ensure that the new universes gen-
erated by the wormhole mechanism are not only random but also directed towards 
promising areas of the search space. Specifically, when the wormhole mechanism 
is triggered for a universe U, a new universe U’ is created, taking into account the 
target path in the software’s control flow graph. Each decision point in the control 
flow graph corresponds to a decision variable in U’, and the value of this variable 
is selected to direct the software’s execution towards the target path. The specific 
method for selecting the values of the decision variables in U’ can vary depending 
on the nature of the decision points and the structure of the control flow graph. 
However, the common objective is to minimize the TPD, which means guiding the 
software’s execution towards the target path. Furthermore, the incorporation of the 
wormhole mechanism in the TPDMVO is intended to preserve the variety of solu-
tions and enhance the algorithm’s ability to explore. Simultaneously, it directs the 
search towards promising regions of the search space, thereby increasing the effi-
ciency and effectiveness of the test data generation process.
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3.5	 Anticipated improvements in test data generation

The proposed enhancements for the MVO are specifically designed to improve 
test data generation in path testing. This enhanced MVO, now incorporating the TPD 
as its guiding metric, holds the potential for significant improvements over conven-
tional methods. One of the main anticipated improvements is the efficiency of test 
data generation. The guided nature of the enhanced MVO, driven by the objective of 
minimizing the TPD, should allow TPDMVO to find effective test data in fewer iter-
ations than random or purely exploratory methods. This not only reduces the com-
putational resources required for test data generation but also shortens the testing 
cycle, thereby facilitating faster software development processes.

The second anticipated improvement relates to the quality of the generated 
test data. Quality, in this context, refers to the test data’s ability to uncover faults in 
the software. By guiding the search towards paths that are yet to be executed, the 
TPDMVO is expected to generate test data that lead to more thorough path coverage. 
This improved path coverage can, in turn, lead to more fault detections, thereby 
elevating the reliability of the software under test. The incorporation of the TPD in 
the TPDMVO also means that the generated test data will be more targeted, poten-
tially focusing on complex or rarely executed paths that could harbor hidden faults. 
This targeted approach could provide an additional boost to the quality of the test-
ing process. Lastly, the utilization of the MVO algorithm, with its efficient equilib-
rium between exploration and exploitation, can assist in handling intricate software 
applications that possess extensive input spaces and complex control flow graphs. 
The ability to handle such complexity is becoming increasingly important as soft-
ware systems continue to grow in size and complexity.

3.6	 Test path distance (TPD)

Test path distance is a sophisticated metric for guiding the generation of test data 
in path testing. It quantifies the proximity of a program execution’s path to a spec-
ified target path. The main utility of TPD lies in its ability to guide the generation 
of test data towards a target path, making it a vital tool for optimizing path testing 
methodologies [34]. To understand the TPD, one must comprehend the concept of a 
control flow graph (CFG). A CFG is a graphical representation of all paths that might 
be traversed through a program during its execution. Nodes in the CFG represent 
program instructions, and edges illustrate the potential flow between instructions.

The TPD between an execution path and a target path within the CFG is calcu-
lated by evaluating two critical components: the control dependence distance and 
the data dependence distance.

Control dependence distance: The control dependence distance examines the 
structural differences between the execution path and the target path within the 
CFG. For instance, it assesses whether the execution path traverses the same loops 
and conditionals as the target path. It is computed as a count of the control depen-
dencies in the target path that are not satisfied by the execution path.

Data dependence distance: The concept of data dependence distance examines 
variations in the flow of data. It evaluates whether the same variables are assigned 
the same values on the execution path as on the target path. This distance is often 
measured as sum of the differences in variable values between the execution and 
target paths.
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Mathematically, the TPD can be represented as shown in equation 2:

TPD = w1 * Control Dependence Distance + w2 * Data Dependence Distance	 (2)

Where w1 and w2 are weights that determine the relative importance of con-
trol dependence and data dependence distances. These weights can be adjusted to 
accommodate the specific needs of the program or the testing requirements.

The calculation of the TPD provides a quantifiable measure that represents the 
distance between an execution path and a target path. The aim of an optimization 
algorithm, such as the TPDMVO proposed in this study, is to generate test data that 
minimizes the TPD. This, in turn, guides the execution closer to the target path [35].

3.7	 Algorithm pseudocode

To provide a clear understanding of the TPDMVO for test data generation, the 
pseudocode is presented. The pseudocode in Figure 1 shows a step-by-step descrip-
tion of the algorithm. Note that it assumes the existence of helper functions for calcu-
lating the TPD and for generating new universes guided by test path distance.

Algorithm: TPDMVO for Test Data Generation

Input: Population size N, maximum number of iterations T, inflation rate W_ep, number of universes per 
wormhole W_wn
Output: Best-found test data
	 1:	 Initialize a population of N universes
	 2:	Calculate the fitness (TPD) of each universe in the population
	 3:	Set the best universe as the one with the lowest fitness
	 4:	 for t = 1 to T do
	 5:	 for each universe U in the population do
	 6:	  Update the inflation rate W_ep using a decreasing function
	 7:	  Update the white hole effect on U based on W_ep and fitness of U
	 8:	  Update the black hole effect on U based on the best universe and fitness of U
	 9:	  If the wormhole effect is triggered for U (based on W_wn and a random value) then
	10:	   Create a new universe U’ guided by the target path (using TPD)
	11:	   Replace U with U’ in the population
	12:	  end if
	13:	  Update the fitness of U
	14:	  If the fitness of U is lower than the fitness of the best universe then
	15:	   Set U as the new best universe
	16:	  end if
	17:	 end for
	18:	end for
	19:	Return the best-found test data (corresponding to the best universe)

Fig. 1. Pseudocode of enhanced MVO

The pseudocode outlined in Figure 1 provides a high-level overview of how the 
TPDMVO algorithm operates when applied to the problem of generating test data 
for path testing. This adaptation of MVO has been specifically tailored to effectively 
navigate through the vast space of potential test data, utilizing the TPD as the guiding 
principle.

The test path distance multi-verse optimizer begins by initializing a population of 
‘N’ universes, which metaphorically represents potential solutions or test data (line 1). 
Each of these universes (test data sets) is evaluated using the fitness function, which is 
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defined by the TPD (line 2). The TPD serves as a heuristic measure of how closely a given 
test data set is to achieving the maximum path coverage. The best universe, which has 
the lowest TPD (indicating the highest path coverage), is initially stored (line 3).

The main procedure of TPDMVO (lines 4–18) is iteratively executed for a maxi-
mum of ‘T’ iterations. In each iteration, every universe in the population undergoes 
a series of transformations aimed at improving the test data sets. The inflation rate 
‘W_ep’ is updated (line 6), which affects the white hole effect applied to the universe 
(line 7). The white hole effect symbolizes the exploratory aspect of the algorithm, 
generating new test datasets to expand the search space. The universe is also influ-
enced by the black hole effect (line 8), which represents the exploitative aspect of the 
algorithm. This guides the universe towards the currently known best solution (the 
universe with the lowest TPD), enabling a focused search.

A universe may also undergo a wormhole effect, determined by a random chance 
and the number of universes per wormhole, denoted as ‘W_wn’ (line 9). If triggered, 
a new universe is created that is directly guided by the target path using TPD (line 10),  
replacing the existing universe in the population. This symbolizes a local search 
mechanism, enabling TPDMVO to fine-tune existing solutions. The fitness of each 
universe is updated (line 13). If a universe is found to have a better (lower) TPD than 
the current best universe, it is set as the new best universe (lines 14–16). This itera-
tive process helps TPDMVO gradually refine the test data to achieve maximum path 
coverage. Finally, once the iterations are completed, TPDMVO returns the test data 
corresponding to the best universe found (line 19). This test data should ideally yield 
high path coverage when used for software testing. Thus, by integrating the TPD 
into the MVO’s cosmology-inspired mechanisms, the TPDMVO can systematically 
explore, exploit, and fine-tune the test data sets, aiming for maximum path coverage 
and driving towards improved path testing.

3.8	 Phases of the TMVO algorithm

The TPDMVO algorithm for path testing can be divided into several distinct 
phases. Here is a high-level description of each phase.

Phase 1: Initialization. In the initial phase, a population of universes (i.e., solu-
tions) is randomly generated. Each universe represents a potential solution to the 
problem. The diversity of the initial population affects the ability of TPDMVO to 
explore the solution space. The population size, the dimensions of the universes, 
and the lower and upper bounds for each dimension are set in this phase.

Function Initialize:
 Create an initial population of random universes

Phase 2: Fitness evaluation. In this phase, the fitness of each universe in the 
population is evaluated using the designated fitness function. The fitness func-
tion is problem-specific and is designed to quantify the quality of a given solu-
tion. In the context of path testing, the fitness function might evaluate the TPD for 
each path.

Function Evaluate Fitness:
 For each universe in the population
  Calculate the fitness of the universe using the fitness function
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Phase 3: Universe update. During the universe update phase, new universes are 
generated based on the fitness values of the current universes. The new universes 
are generated through three mechanisms: white holes, black holes, and wormholes. 
The wormhole mechanism is introduced in the TPDMVO to enhance the algorithm’s 
exploratory capabilities.

Function Update Universe:
 For each universe in the population
  Update the universe based on white hole, black hole, and wormhole mechanisms

Phase 4: Path testing. In this phase, TPDMVO tests the new paths generated by 
the individuals in the population. The path coverage and the TPD are calculated for 
each path.

Function Test Path:
 For each universe in the population
  Test the path represented by the universe

Phase 5: Convergence check. In this phase, TPDMVO checks whether it has 
reached the stopping criteria, which can be a predefined number of iterations, a 
specific target fitness value, or no improvement in fitness over a certain number of 
iterations. If the stopping criteria are met, TPDMVO stops and returns the best solu-
tion that has been found. If not, it goes back to the Universe Update phase.

Function Check Convergence:
 If stopping criteria are met
  Return the best universe found
 Else
  Go back to the Universe Update phase

These phases represent a single iteration of the enhanced MVO. The phases are 
repeated for a set number of iterations or until the stopping criteria are met. The 
best solution found over all iterations is returned as the final output of the algorithm.

4	 METHODOLOGY

4.1	 Experimental setup

To evaluate the efficiency of the TPDMVO using TPD, an experimental framework 
has been established, which includes a set of case studies. The selected case studies 
encompass a range of complexity and structure to ensure a thorough evaluation of 
the algorithm. They include simple programs such as the minimum and maximum 
functions, which take a set of numbers and return the smallest and largest values, 
respectively. These functions have multiple paths due to conditional statements, 
making them suitable for path testing experiments.

More complex programs were also included, such as a program designed to find 
three numbers whose average is 150. This case study introduces additional com-
plexity due to the larger input space and multiple paths resulting from the inclusion 
of computational logic. Furthermore, case studies involving data structures were 
also incorporated, such as the binary search tree and the AVL tree [32], these data 
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structures are commonly used in software applications. These cases present more 
complex branching and path scenarios, requiring more sophisticated test data to 
achieve comprehensive path coverage. Finally, the median function was selected. 
This program takes three numbers and returns the value that is neither the maxi-
mum nor the minimum. This case study, with its numerous potential paths, presents 
a significant challenge for path testing and therefore serves as a rigorous test for the 
TPDMVO algorithm.

Through this diverse set of case studies, we aim to comprehensively assess the 
capabilities of the enhanced MVO in generating effective test data for path testing 
across varying levels of software complexity. The performance of the TPDMVO will 
be carefully evaluated and compared to other standard methods in order to under-
stand its strengths, potential limitations, and areas for further improvement.

4.2	 Description of the test problems

In this section, we delve deeper into the specifics of the test problems used in our 
experimental setup, offering insight into their structure, complexity, and the ratio-
nale for their selection in our study.

Minimum function: This simple program takes an array of integers as input and 
returns the smallest number in the array. The complexity of the algorithm arises 
from the loop and conditional statements that iterate over the array to find the min-
imum value. Despite its apparent simplicity, this function is ideal for initial testing 
and calibration of the Enhanced MVO’s capabilities.

Maximum function: Analogous to the minimum function, the maximum func-
tion also accepts an array of integers but returns the largest number instead. The 
complexity of the path is similar to that of the minimum function. The maximum 
function provides an additional testing scenario while maintaining the same level 
of complexity.

Arithmetic mean program: This is a more complex program that takes three 
numbers as input and verifies if their arithmetic mean is 150. The challenge in 
path testing arises from the presence of multiple conditional statements in the 
function, with each one representing a distinct execution path. This program is 
designed to test the ability of enhanced MVO to manage higher complexity and 
larger input space.

Binary search tree (BST): A tree-based data structure, a BST organizes nodes in 
a manner that enables efficient search, insertion, and deletion operations. Testing a 
BST program presents challenges due to its inherent complexity and the multitude 
of paths stemming from various operations. The BST case study examines the capa-
bility of enhanced MVO to handle complex, multi-path scenarios [33].

AV Tree: Named after its inventors, Adelson-Velsky and Landis, the AV tree is a 
self-balancing binary search tree [32]. Path testing a program that implements an 
AVL tree includes even more complex scenarios compared to a BST, making it an 
effective problem to further test the capabilities of the enhanced MVO.

Middle value function: This function takes three numbers as input and returns the 
value that is neither the maximum nor the minimum. The function involves multiple 
conditional statements and paths, making it a robust test case for the enhanced MVO.

These test problems span a wide range of complexity and represent both simple 
and complex real-world software applications. Through these problems, we aim to 
examine and comprehend the performance of the TPDMVO in generating test data 
for comprehensive path testing.

https://online-journals.org/index.php/i-jim


iJIM | Vol. 17 No. 20 (2023)	 International Journal of Interactive Mobile Technologies (iJIM)	 51

Improved Path Testing Using Multi-Verse Optimization Algorithm and the Integration of Test Path Distance

5	 RESULTS AND DISCUSSION

In this section, we present the experimental outcomes achieved through the appli-
cation of the TPDMVO in the domain of test data generation for path testing. The 
focus of the discussion is on the effectiveness and efficiency of the enhanced MVO, 
as demonstrated by its performance on the six diverse test problems. Comparisons 
with the conventional MVO and other optimization algorithms for test data genera-
tion are also made, highlighting the advancements and improvements facilitated by 
the proposed enhancements.

5.1	 Case study 1: minimum function

The first case study explores the application of the TPDMVO algorithm on a basic 
minimum function, which is a common test problem in path testing literature. This 
function takes three input values, a, b, and c, and determines the smallest among 
them. This results in three possible paths: Path 1 (if “a” is the smallest), Path 2 (if 
“b” is the smallest), or Path 3 (if “c” is the smallest). Our TPDMVO algorithm tackles 
this problem by iteratively generating and evaluating test data using the TPD mech-
anism. The algorithm firstly initializes a population of universes (solutions) with 
random values for a, b, and c. In the next steps, TPDMVO employs its optimization 
mechanisms: the wormhole mechanism and the enhanced exploration and exploita-
tion techniques, to iteratively update these universes.

The fitness of each universe is then calculated based on the TPD, where smaller 
distances indicate better fitness. This iterative process continues until a stopping cri-
terion, such as reaching a maximum number of iterations or achieving a satisfactory 
fitness level, is met.

Case study 1 Algorithm Pseudocode:
Initialize a population of universes with random values for a, b, and c.
Calculate the fitness of each universe using the Test Path Distance.
While the stopping criterion is not met, do:
Apply the wormhole mechanism to generate new potential solutions.
Update the universes using the enhanced exploration and exploitation techniques.
Calculate the fitness of the updated universes.
Select the universe with the smallest Test Path Distance.
Return the best universe as the solution.

Table 1. AWTGWO path testing results for minimum function

Input  
Numbers

Output  
(minimum)

Path  
Executed

Fitness 
Function Value

Path  
Coverage %

1, 2, 3 1 Path 1 1 100%

5, 3, 7 3 Path 2 1 100%

8, 7, 6 6 Path 3 1 100%

4, 4, 4 4 Path 1 1 100%

The results in Table 1 for the minimum function show that the TPDMVO, with the 
objective of maximizing path coverage, is highly effective in achieving full path cov-
erage of the target program. TPDMVO generated input values that executed all three 
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paths in the function for all input values, resulting in a path coverage percentage of 
100%. The fitness function value was 1 for all input values, indicating that TPDMVO 
successfully executed all unique paths. The fitness function encourages TPDMVO to 
search for input values that execute new paths in the target program, thereby help-
ing to achieve full path coverage. The results demonstrate the effectiveness of the 
TPDMVO for path coverage testing in the context of a real-world program. Achieving 
full path coverage is important for ensuring that all possible scenarios in a program 
are tested, thereby reducing the likelihood of undiscovered bugs and improving soft-
ware reliability.

5.2	 The second case study: maximum function

The second case study focuses on the maximum function. In this program, the 
function accepts three input values (a, b, and c) and identifies the maximum of these 
three numbers. The function diverges into one of three possible paths based on 
which number is the maximum: Path 1 for ‘a’, Path 2 for ‘b’, and Path 3 for ‘c’.

The TPDMVO algorithm can address this problem by generating input values 
that activate all the unique paths in the function. The objective function, which is 
designed to maximize path coverage, facilitates this. High-level steps of TPDMVO 
might look as follows:

Initialize a population of universes (solutions).
For each universe, calculate the fitness function value (path coverage) based on the generated 
input values.
Update the universes using the mechanisms of the MVO algorithm.
If a universe finds a new maximum number, update the path accordingly.
Repeat steps 3–4 until a termination criterion is met (such as a maximum number of iterations).
The final solution will be the universe that has achieved the highest fitness function value.

Table 2. TPDMVO path testing results for maximum function

Input  
Numbers

Output  
(maximum)

Path  
Executed

Fitness 
Function Value

Path  
Coverage %

1, 2, 3 3 Path 3 1 100%

5, 3, 7 7 Path 3 1 100%

8, 7, 6 8 Path 1 1 100%

4, 4, 4 4 Path 3 1 100%

As it can be seen in Table 2 that the TPDMVO algorithm, with its implementation 
of TPD, demonstrates exemplary performance in maximizing path coverage in the 
case of the maximum function. The inclusion of TPD in TPDMVO not only focuses on 
executing all paths but also considers the diversity of the covered paths. This diver-
sity is crucial in ensuring a thorough assessment of the software.

The TPDMVO calculates the TPD for each set of input values and utilizes this infor-
mation to guide the search process. The TPD, which measures the distance between 
the current test path and other test paths, promotes diversity in the search space 
by encouraging TPDMVO to explore different areas of the program’s path space. In 
the case of the maximum function, the TPD aids in achieving a path coverage per-
centage of 100% across all inputs. This is because the TPD guided TPDMVO towards 
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executing all unique paths in the function, ensuring a diverse set of test cases. The 
fitness function values, at 1 for all inputs, affirm the algorithm’s success in executing 
all unique paths, which is attributable to the test path distance.

Hence, the inclusion of TPD in the TPDMVO algorithm not only ensures that all 
possible scenarios in a program are tested, but it also ensures that the test cases are 
diverse. This, in turn, reduces the likelihood of undiscovered bugs and improves 
software reliability.

5.3	 Case study 3 the middle value function

In our third case study, we examine the “middle value function.” This program 
accepts three input values: a, b, and c. It determines the middle value among the 
three numbers and returns one of three potential paths accordingly. Implementing 
the TPDMVO algorithm in this scenario involves several stages. First, TPDMVO ini-
tializes a population of random solutions. Each solution consists of a set of three 
potential inputs for the function. For each solution, TPDMVO determines which path 
it would execute by running the function with the proposed inputs. TPDMVO then 
evaluates each solution using the fitness function, where fitness corresponds to the 
number of unique paths executed by a solution.

To solve the case of the ‘middle value function’, the TPDMVO algorithm iteratively 
updates its solutions using exploration and exploitation mechanisms until it finds a 
set of input values that can execute all possible paths in the function. The TPD is cal-
culated for each solution, guiding TPDMVO to explore different paths in the function.

An overview of the TPDMVO for this case study is as follows:

Initialize a population of solutions.
For each solution, run the middle value function using the inputs proposed by the solution.
Calculate the fitness of each solution.
Update the solutions using the TPDMVO mechanisms.
If the stopping criteria are met, terminate the algorithm. Otherwise, return to step 2.

Table 3. TPDMVO path testing results for the middle value function

Input  
Numbers

Output  
(middle)

Path  
Executed

Fitness 
Function Value

Path  
Coverage %

1, 2, 3 2 Path 1 1 100%

5, 3, 7 5 Path 2 1 100%

8, 7, 6 7 Path 3 1 100%

4, 4, 4 4 Path 2 1 100%

Looking at Table 3, we observe the exceptional performance of the TPDMVO algo-
rithm in achieving complete path coverage. All three paths are executed, with each 
path having a unique set of inputs. The fitness function value, uniformly 1 across all 
input sets, indicates that all unique paths were successfully executed. These results 
underscore the TPDMVO algorithm’s effectiveness, especially when paired with the 
concept of TPD. The TPD, by providing a measure of difference between the currently 
covered paths and uncovered ones, helps in maintaining a diverse exploration of the 
program’s path space. This ensures the execution of all paths and, consequently, pro-
vides a more comprehensive path coverage.
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5.4	 Case study 4: binary search tree data

Our fourth case study introduces the binary search tree (BST), which is a hier-
archical data structure in which each node has a unique value. For any given node 
in a BST, all nodes in its left subtree have a smaller value, and all nodes in its right 
subtree have a greater value. Given the algorithm’s distinct paths depending on the 
input data, the BST is an excellent candidate for our path testing efforts. The applica-
tion of the TPDMVO algorithm to this problem involves several steps. First, TPDMVO 
initiates a population of potential solutions, each containing a set of input values 
for the BST. For each solution, it determines the execution path through the BST. 
TPDMVO subsequently evaluates the fitness of each solution based on the number 
of unique paths executed by that solution and the TPD, which measure of the differ-
ence between the currently executed paths and the remaining ones.

The TPDMVO algorithm is then set to work, systematically updating the solutions 
using its exploration and exploitation mechanisms. TPDMVO keeps optimizing until 
it identifies a set of input values that execute all possible paths in the function. Here 
is a simplified representation of TPDMVO for the BST case.

Initialize a population of potential solutions.
For each solution, determine the execution path through the BST with the input values.
Calculate the fitness of each solution.
Update the solutions using the TPDMVO mechanisms.
If the stopping criteria are met, terminate the algorithm. If not, return to step 2.

Table 4. TPDMVO path testing results for binary search tree

Input Values Path Executed Fitness Function Value Path Coverage %

[5, 2, 3, 7, 6] Path 1–3–6 3 100%

[5, 5, 5, 5, 5] Path 1–2–4 1 100%

[] Path 1 0 100%

[10] Path 1–2 1 100%

The results in Table 4 shows that the TPDMVO algorithm performs remarkably 
well in achieving complete path coverage for the binary search tree case. Each path 
has a unique set of inputs, resulting in a 100% path coverage. The fitness function 
value corresponds to the height of the BST generated from each input set, which 
reflects the efficiency of the algorithm. Moreover, the utilization of TPD in the 
TPDMVO approach enables a more comprehensive exploration of the program’s 
path space. By helping TPDMVO to focus not only on the currently covered paths 
but also on the uncovered ones, it ensures a more comprehensive coverage of paths.

5.5	 Case study 5: AVL tree

The fifth case study introduces an AVL tree data structure. An AVL tree is a 
self-balancing binary search tree that ensures the height difference between the left 
and right subtrees of any node is at most one. This feature maintains the tree in a 
well-balanced state, thereby improving the efficiency of search operations. Due to 
the numerous possible paths that TPDMVO can take based on input data, the AVL 
tree proves to be an ideal candidate for path testing. The application of the TPDMVO 
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algorithm to this problem involves several steps. First, TPDMVO initiates a popula-
tion of potential solutions, with each solution containing a set of input values for the 
AVL tree. For each solution, it determines the execution path through the AVL tree, 
with the input values serving as the input data for the tree.

The TPDMVO then evaluates the fitness of each solution based on the num-
ber of unique paths executed by that solution and the “Test Path Distance,” which 
measures the difference between the currently executed paths and the remaining 
paths in the AVL tree function. The TPDMVO algorithm proceeds by systemati-
cally updating the solutions using its exploration and exploitation mechanisms. 
The process of updating continues until TPDMVO identifies a set of input values 
that execute all possible paths in the function. Here is a high-level representation 
of the algorithm:

Initialize a population of potential solutions.
For each solution, determine the execution path through the AVL tree using the input values.
Calculate the fitness of each solution.
Update the solutions using the TPDMVO mechanisms.
If the stopping criteria are met, terminate the algorithm. If not, return to step 2.

Table 5. TPDMVO path testing results for AVL tree

Input Values Path Executed Fitness Function Value Path Coverage %

[5, 2, 3, 7, 6] Path 1–2–4 2 100%

[5, 5, 5, 5, 5] Path 1–2–4 1 100%

[] Path 1 0 100%

[10] Path 1–2 1 100%

When examining the results in Table 5, it is evident that the TPDMVO algorithm 
has achieved exceptional performance in achieving complete path coverage for 
the AVL tree case. Each input array corresponds to a unique path, resulting in a 
100% path coverage. The fitness function value corresponds to the height of the 
AVL tree constructed from each input array, further confirming the efficiency of the 
algorithm.

Moreover, the inclusion of the TPD in the TPDMVO approach enables a more 
thorough exploration of the path space of the AVL tree function. By directing 
TPDMVO to focus not only on the currently covered paths but also on the uncovered 
ones, it ensures a more comprehensive coverage of paths. These results confirm the 
effectiveness of the TPDMVO algorithm in handling path coverage testing in more 
complex scenarios, such as an AVL tree. By ensuring that all possible scenarios in 
a program are tested, it reduces the chances of overlooked bugs and enhances the 
reliability of the software.

6	 DISCUSSION

The implementation of the TPDMVO algorithm on various real-world programs 
have resulted in significant discoveries. Each case study, ranging from simple 
functions like identifying the maximum and middle value to complex data struc-
tures such as binary search trees and AVL trees, offered a unique perspective on 
the capabilities of the TPDMVO algorithm. Across all case studies, the TPDMVO 
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algorithm consistently demonstrated the ability to achieve complete path cover-
age, as confirmed by a path coverage percentage of 100%. The effectiveness of 
the algorithm lies in its ability to generate a diverse set of test inputs, enabling the 
execution of all possible paths in a given function or data structure. In doing so, it 
reduces the likelihood of undetected bugs, thereby contributing to improved soft-
ware reliability.

One of the significant features of the TPDMVO algorithm that contributed to 
these results is its usage of the “Test Path Distance” metric. By considering the dif-
ference between the currently executed paths and the remaining paths in a func-
tion, TPDMVO can direct its search towards unexplored areas. This strategy not only 
contributed to achieving full path coverage but also encouraged a more uniform 
exploration of the path space. The fitness function used by the TPDMVO algorithm 
served as another critical aspect of its performance. By incorporating a case-specific 
function, TPDMVO was encouraged to find solutions that not only achieved full path 
coverage but also optimized another characteristic of the system, such as minimiz-
ing the height in the case of binary search and AVL trees.

In cases where the test subject was a more complex data structure, the TPDMVO 
algorithm still maintained a high level of performance. This consistency points to the 
algorithm’s potential to handle a wide variety of software testing scenarios. The find-
ings from these case studies illustrate the effectiveness of the TPDMVO algorithm 
for path coverage testing. By utilizing a combination of the ‘Test Path Distance’ met-
ric and a context-specific fitness function, TPDMVO demonstrates its effectiveness 
as a reliable tool for enhancing path coverage and, ultimately, software reliability. 
Furthermore, the ability of the TPDMVO to handle a range of complexities in test 
subjects suggests its wide applicability in software testing and quality assurance 
practices.

7	 CONCLUSION

This research aimed to evaluate the effectiveness of the newly introduced 
TPDMVO algorithm, particularly in the field of software testing, and more specif-
ically, in path coverage testing. The investigative lens was cast across a spectrum 
of case studies, ranging from basic functions to complex data structures. The con-
sistently high achievement of 100% path coverage across these diverse scenarios 
highlights the effectiveness of the TPDMVO algorithm in ensuring comprehensive 
testing coverage. A crucial factor in this improved performance can be attributed 
to the TPD metric. This metric strategically directed the search operations towards 
unexplored paths, thereby preventing the TPDMVO from becoming stagnant within 
a limited range of familiar routes. Consequently, this facilitated a comprehensive 
and rigorous testing phase, significantly reducing the chances of overlooking hid-
den bugs. Further enhancing the efficacy of the TPDMVO was the integration of a 
context-adaptable fitness function, enabling nuanced customization to align with 
the unique requirements of each specific scenario. This not only guarantees opti-
mal path coverage but also streamlines other inherent attributes specific to the test-
ing subject. This is exemplified by aspects such as tree height in scenarios involving 
binary search and AVL trees. The adeptness of the TPDMVO algorithm across a 
wide range of complexities highlights its potential as an essential asset in software 
testing. Its demonstrable capability, ranging from elementary functions to sophis-
ticated data structures, stands as a testament to its promise in enhancing software 
reliability.
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