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PAPER

Performance Evaluation of Machine Learning 
Approaches in Detecting IoT-Botnet Attacks

ABSTRACT
Botnets are today recognized as one of the most advanced vulnerability threats. Botnets 
control a huge percentage of network traffic and PCs. They have the ability to remotely 
control PCs (zombie machines) by their creator (BotMaster) via Command and Control 
(C&C) framework. They are the keys to a variety of Internet attacks such as spams, DDOS, 
and spreading malwares. This study proposes a number of machine learning techniques 
for detecting botnet assaults via IoT networks to help researchers in choosing the suit-
able ML algorithm for their applications. Using the BoT-IoT dataset, six different machine 
learning methods were evaluated: REPTree, RandomTree, RandomForest, J48, metaBag-
ging, and Naive Bayes. Several measures, including accuracy, TPR, FPR, and many more, 
have been used to evaluate the algorithms’ performance. The six algorithms were evalu-
ated using three different testing situations. Scenario-1 tested the algorithms utilizing all of 
the parameters presented in the BoT-IoT dataset, scenario-2 used the IG feature reduction 
approach, and scenario-3 used extracted features from the attacker’s received packets. The 
results revealed that the assessed algorithms performed well in all three cases with slight 
differences.

KEYWORDS
Internet of Things, botnet detection, IoT botnet attack, machine learning, network security, 
cyber security

1	 INTRODUCTION

The Internet of Things (IoT) are physical devices connected with each other over 
a network; these devices are able to collect and share data with other devices [1, 2]. 
The IoT devices are low power consumption devices, which makes them suitable for 
many applications in many sectors [3]. In addition, they have the ability to be used 
for remotely monitoring, controlling, and managing equipment and systems, which 
results in enhancing efficiency and reduce costs. Smart home systems are an exam-
ple of IoT home utilization, which allows the home owners to remotely monitor and 
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operate their home appliances [4]. Another example is the wearable devices that can 
collect health and fitness information to be used later in providing users with advice 
in terms of nutrition and exercise [5]. Furthermore, healthcare and transportation 
are growing applications of the IoT. In healthcare, the IoT devices are able to monitor 
patients’ vital signs in real-time, providing the clinicians with the latest information 
about the patients for suitable care and treatment [6]. In transportation, IoT devices 
and sensors can be used to monitor and collect data about the traffic flow for better 
decision making in terms of, for example, reducing traffic jams [7]. However, as 
the field of IoT connected devices grows, concerns about privacy, security, and data 
management are emerging [8]. The way IoT devices collect and share data makes 
these devices vulnerable to many types of cyberattacks, especially in terms of pre-
serving privacy [9, 10]. Therefore, there is need for systems to protect and defend 
the IoT networks. Despite these obstacles, the potential benefits of IoT are significant, 
and the technology is expected to expand and improve over the next few years. As 
more products connect to the internet, the possible applications of IoT become lim-
itless, and it has the ability to change the way we live, work, and interact with the 
world around us [11].

One of the modern threats that the IoT faces nowadays is Bot-IoT attacks, also 
known as IoT botnet attacks. Bot-IoT attacks have become a serious threat in recent 
years as a result of the rise of internet-connected devices and the lack of effec-
tive security measures. Many types of bot-IoTIoT attacks include hackers acquir-
ing control of a large number of connected devices (called zombies) and utilizing 
them to launch coordinated attacks, sometimes by exploiting software defects in 
the devices. One of the most common uses of bot-IoTIoT attacks is DDoS attacks, 
in which a large number of devices are used to flood a target server or network 
with traffic, causing it to become overloaded and unavailable for legitimate users.  
In rare cases, bot-IoTIoT attacks have been used to carry out ransomware attacks, 
in which data on the target device is encrypted and held for ransom. Bot-IoT attacks 
may be harmful for both individuals and businesses. In addition to the financial 
consequences of cyber-attacks, such as lost revenue and system and infrastruc-
ture damage, there may be severe reputational harm [12]. For example, if a bot- 
IoTIoT assault disrupts a company’s operations, it may result in bad news and a loss 
of confidence from customers and partners. Therefore, it is vital to protect inter-
net-connected devices in order to avoid bot-IoTIoT attacks. This includes updating 
devices with the most recent security patches as well as using strong passwords 
and two-factor authentication. It is also vital to regularly monitor network traffic 
and device behavior for signs of bot-IoTIoT activity, such as unusual spikes in traffic  
or unexpected changes in device behavior. A number of industry-wide efforts 
are also underway to fight the bot-IoTIoT threat. Several internet service provid-
ers, for example, are striving to restrict bot-IoT traffic, and industry-wide security 
rules for IoT devices are being created. The bot-IoT threat poses a significant haz-
ard to the growing number of internet-connected devices. However, with proper 
security measures and proactive monitoring, these risks may be reduced, and the 
safety and security of these devices and the networks to which they connect can 
be assured [13].

Machine learning is one of the most recent methods for detecting and mitigat-
ing cyberattacks including bot-IoT threats [14]. Its algorithms are trained and tested 
using well-known benchmarks (datasets). Furthermore, it can identify new sorts of 
bot-IoT assaults in real-time scenarios [15]. Although machine learning is a potent 
tool for detecting bot-IoT threats, training and validation utilizing related and well-
known datasets is critical to the effectiveness of its algorithms. 
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The structure of the paper is organized as follows. Section 2 illustrates the litera-
ture review. Section 3 presents an overview of the methodology. Section 4 discusses 
the experiments and results discussion. Section 5 concludes our work.

2	 LITERATURE	REVIEW

This section will explore some of the latest machine learning techniques used to 
detect bot-IoT and malwares in IoT environment. 

The authors of [16] proposed a hybrid intelligent deep learning approach to 
secure industrial IoT infrastructure against different types of bit attacks. They have 
evaluated the proposed approach using N-BaIoT dataset. Authors of [17] proposed a 
machine learning based model to detect botnet based DDoS attacks in the IoT envi-
ronment. Different machine learning algorithms were used to build the proposed 
model such as KNN, MLP ANN. The BoT-IoT dataset was used to train and test the 
proposed model. A packet based botnet detection system using machine learning is 
proposed by [18]. Seven features were extracted from network packet and used to 
train and test the dataset. The authors of [19] proposed a machine learning model 
combined with hybrid feature selection method to detect IoT botnets. The most infor-
mative features were selected to be used by machine learning models in the training 
and testing stages. A machine learning algorithm based on multilayer framework 
is proposed by [20] to detect botnet attacks. Filter module and classification module 
were used for the detection purpose of C&C botnet server. In addition, a behavior 
based analysis was used to analyze the captured packet’s header. The behavioral 
features of the captured packets during a period of time were used by the proposed 
deep learning model by [21] to detect botnet attacks. The proposed model is able 
to classify the detected botnets into categories. Another deep learning algorithm 
is proposed by [22] to detect botnet attacks in the IoT environment. The proposed 
algorithm is able to handle imbalanced data using Synthetic Minority Oversampling 
Technique (SMOTE). The bot-IoT dataset is used by the authors to train and test the 
proposed algorithm. A two-level deep learning framework is proposed by [23] to 
detect botnet attacks in IoT networks of smart cities. The framework is able to distin-
guish the botnet behavior from the legitimate behavior at the application layer of the 
DNS services. A graph features-based machine learning model is proposed by [24]  
to detect botnet attacks over networks. CTU-13 and IoT-23 datasets were used to eval-
uate the proposed model. The model showed the ability to detect the families of the 
botnets in addition to the ability of facing the zero-day attacks. After testing differ-
ent machine learning algorithms, authors decided to use ExtraTrees classifier with 
Pearson’s correlation features subset in their proposed model. The authors of [25]  
put forward an adaptive online learning strategy to detect IoT botnet attacks in 
real-time. In addition, authors utilized online ensemble learning alongside the 
proposed adaptive strategy. A real IoT traffic dataset is used to train and test the  
proposed model. 

2.1	 The	general	approach	of	Bot-IoT	detection

Figure 1 illustrates the general scheme of the bot-IoT detection process explain-
ing the steps that will be followed in general to evaluate the machine learning 
algorithms. Hence, in the real environment, the first step is to capture the IoT 
network traffic. The next step is to extract the features (parameters) from the 
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captured packets to be used later (i.e., by the classifier) in the detection process. 
Therefore, it’s vital to capture packets of the IoT network traffic as much as possi-
ble to increase the collected information ratio which, as a result, will affect final 
detection results.

Captured IoT Sensors & Devices
Network Traffic

(e.g. Temperature, Humidity, Light sensors, AC,
Refrigerator, etc. )

Features Extraction
(Based on selected features)

Botnet Attack Detection
(using the proposed approach)

Attack Benign

Trigger an Alert Do Nothing

Fig. 1. General scheme of the IoT botnet detection approach

3	 METHODOLOGY

3.1	 Datasets

As it’s difficult to setup a testbed to generate a realistic IoT traffic and simulate bot 
traffic, we chose to use a well-known benchmark dataset used by literature to evalu-
ate different machine learning approaches [26]. Many researchers used the bot-IoT 
dataset to evaluate their proposed models. Therefore, we selected bot-IoT dataset for 
the evaluation purpose. The boT-IoT [27] dataset was developed in the Cyber Range 
Lab of the Australian Center for Cyber Security (ACCS) using the tshark tool. The col-
lected traffic includes a mix of normal and abnormal (bot) traffic. Ostinato tool and 
Node-red were used to produce the simulated network traffic. The dataset contains 
four different types of attacks, namely DDoS, DoS, Scan (probe), and Information 
theft. The original dataset size is 17 GB. However 5% of the dataset is available 
for the evaluation of Machine Learning models [28], where reducing the number 
of used features in both training and testing ML models will reduce the amount 
of needed resources and, as a result, reduce the needed computing power [29].  
Furthermore, to make it easier for the researchers and to achieve a good accuracy 
results of the training models, the dataset authors extracted a 5% of the original 
dataset with a total size of 1.07 GB and made it publicly available in CSV file format 
for academic research purposes [30].

https://online-journals.org/index.php/i-jim
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Table 1. Features included in the bot-IoT dataset

Feature No. Feature Name Feature Description

1 pkSeqID Row Identifier

2 proto Protocol Name

3 saddr Source IP address

4 sport Source port number

5 daddr Destination IP Address

6 dport Destination port number

7 seq sequence number

8 stddev Standard deviation of aggregated records

9 N_IN_Conn_P_SrcIP Number of inbound connections per source IP

10 min Minimum duration of aggregated records

11 state_number Numerical representation of feature state

12 mean Average duration of aggregated records

13 N_IN_Conn_P_DstIP Number of inbound connections per destination IP

14 drate Destination-to-source packets per second

15 srate Source-to-destination packets per second

16 max Maximum duration of aggregated records

Table 1 shows the features (attributes) included in the bot-IoT dataset. The number  
of used features will differ based on the three scenarios, which will be discussed 
later in this paper.

3.2	 Data	preprocessing

To conduct the experiment, we analyzed and prepared the dataset to be suit-
able for the machine learning training and testing processes. Therefore, unneces-
sary features (i.e., attack subcategory) were taken out of the dataset and the nominal 
and string features have been converted to numerical values to suit the used clas-
sifiers (i.e. TCP-0, UDP-1, etc.) [31]. The 10-fold cross validation is used to evaluate 
the machine learning algorithms. Figure 2 illustrates the proposed framework to 
analyze the bot-IoT detection using different machine learning algorithms.

Data Preprocessing
& Normalization

10-Fold Cross
Validation

ML Algorithm

Features SelectionPackets Capturing

Network Model

Prediction & Evaluation

Fig. 2. The Proposed framework for bot-IoT attack detection analysis
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4	 EXPERIMENTS	AND	RESULTS	DISCUSSION

Three scenarios have been used to evaluate six machine learning algorithms. 
The first scenario will be conducted using all dataset parameters, and in the second 
scenario, Information Gain algorithm is used to select the most significant param-
eters of the dataset. However, in the third scenario, the experiment will rely on 
source packet parameters. The six machine learning algorithms, namely REPTree, 
RandomTree, RandomForest, J48, metaBagging, and Naive Bayes, have been tested 
and evaluated using bot-IoT dataset. In addition, the confusion matrix is used to 
compare their performance.

4.1	 Scenario	#1:	Experiment	with	all	available	parameters

In this section, the experiment will be conducted based on the extracted param-
eters (all parameters introduced by boT-IoT dataset) from the connection packets 
between attacker and the targets using six machine learning techniques. As shown 
in Figure 3, the results of the six classifiers are convergent with slight differences. 
For instance, Naive Bayes showed the least accuracy and TP rate ratios while the 
other five classifiers showed 100% of accuracy and TP rate. Whereas in terms of ROC 
Area, the RandomForest and Naive Bayes classifiers showed the best performance 
with ratio of 100%. Besides, with 0.2732%, Naive Bayes showed the poorest results 
in terms of correct instances classification.

Fig. 3. Testing results using all dataset parameters

4.2	 Scenario	#2:	Experiment	with	parameters	reduction	using	information	
gain	algorithm

Equation 1 describes the Information Gain algorithm, which is used to evaluate 
and reduce the number of used parameters. Table 2 illustrates the results of using 

https://online-journals.org/index.php/i-jim
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IG algorithm for the purpose of parameters reduction. Nine parameters with ranks 
greater than 0.0005 have been selected to be used in the classifiers testing phase.

 InfoGain(Class, Attribute) = H(Class) – H(Class | Attribute) (1)

Where:
H: represents the Entropy
Class: whether legitimate, suspicious or phishing websites
Attribute: denotes the features

Table 2. Selected features using IG algorithm

P# P-Name

1 pkSeqID

5 daddr

6 dport

10 state_number

11 N_IN_Conn_P_DstIP

13 srate

8 N_IN_Conn_P_SrcIP

3 saddr

7 seq

Figure 4 shows the results of classifiers testing using the nine parameters selected 
using IG algorithm. On the first hand, the classifiers showed very good results on com-
paring with each other. On the other hand, Naive Bayes classifier showed the least 
performance compared to the other five classifiers in term of Accuracy, TP Rate, Recall, 
F-Measure, MCC, CCI, and ICI, with ratios 0.997%, 0.997%, 0.997%, 0.999%, 0.209%, 
99.7261%, and 0.2739%, respectively. Here it showed a superior performance in 
terms of FP Rate, Precision, ROC area with ratios of 0.003%, 100%, 100%, respectively.

Fig. 4. Testing results using IG parameters reduction algorithm

https://online-journals.org/index.php/i-jim
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4.3	 Scenario	#3:	Experiment	with	source	packets	parameters

In this section, the experiment will be conducted based on the extracted param-
eters from the attacker source packets using six machine learning techniques. 
proto, saddr, sport, N_IN_Conn_P_SrcIP, srate are the five parameters that will be 
extracted from the attacker source packets to be used to detect the botnet attacks 
in the bot-IoT dataset. As illustrated in Figure 5, RandomTree classifier showed the 
best performance among the other five classifiers with following results; 100%, 
100%, 0.23%, 100%, 100%, 100%, 0.791%, 0.838%, 99.9949%, 0.0051%, respec-
tively. On the other hand, Naive Bayes classifier showed the least performance 
in terms of FP Rate, MCC, CCI, ICI with ratios of 0.776, 0.195, 99.9764, 0.0236, 
respectively.

Fig. 5. Testing results using attacker source packets parameters

5	 CONCLUSION

In this study, we investigated and examined six machine learning techniques 
for detecting Botnet attacks in the IoT context. The algorithms that have been tried 
include REPTree, RandomTree, RandomForest, J48, metaBagging, and Naive Bayes. 
The six machine learning methods are evaluated using the boT-IoT benchmark 
dataset, which is a well-known benchmark dataset. The results showed that the 
RandomForest Classifier outperformed the other examined classifiers in scenario 
number one. When compared to the other examined classifiers, the RandomTree 
classifier produced the best results in scenarios 2 and 3. Therefore, it’s recom-
mended to use the RandomTree classifier in the IoT environment to detect botnet 
activities. In the future, additional datasets will be explored to evaluate machine 
learning techniques. In addition, new machine learning classifiers will be tested in 
future research.
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