
 70 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

iJIM | eISSN: 1865-7923 | Vol. 17 No. 19 (2023) |

JIM International Journal of

Interactive Mobile Technologies

Al-Ghuwairi, A.R., Al-Fraihat, D., Sharrab, Y., Kreishan, Y., Alsarhan, A., Idhaim, H., Qahmash, A. (2023). Optimizing Clustering Approaches in Cloud
Environments. International Journal of Interactive Mobile Technologies (iJIM), 17(19), pp. 70–94. https://doi.org/10.3991/ijim.v17i19.42029

Article submitted 2023-06-05. Revision uploaded 2023-07-23. Final acceptance 2023-07-25.

© 2023 by the authors of this article. Published under CC-BY.

Online-Journals.org

PAPER

Optimizing Clustering Approaches
in Cloud Environments

ABSTRACT
This study focuses on the challenge of developing abstract models to differentiate various
cloud resources. It explores the advancements in cloud products that offer specialized services
to meet specific external needs. The study proposes a new approach to request processing
in clusters, improving downtime, load distribution, and overall performance. A comparison
of three clustering approaches is conducted: local single cluster, local multiple clusters, and
multiple cloud clusters. Performance, scalability, fault tolerance, resource allocation, avail-
ability, and cost-effectiveness are evaluated through experiments with 50 requests. All three
approaches achieve a 100% success rate, but processing times vary. The local single cluster
has the longest duration, while the local multiple clusters and multiple cloud clusters perform
better and offer faster processing, scalability, fault tolerance, and availability. From a cost
perspective, the local single cluster and local multiple clusters incur capital and operational
expenses, while the multiple cloud clusters follow a pay-as-you-go model. Overall, the local
multiple clusters and multiple cloud clusters outperform the local single cluster in terms of per-
formance, scalability, fault tolerance, resource allocation, availability, and cost-effectiveness.
These findings provide valuable insights for selecting appropriate clustering strategies in
cloud environments.

KEYWORDS
cloud computing, load distribution, clustering approaches, performance analysis, multiple
cloud clusters, Node.js

1	 INTRODUCTION

The advancements made in cloud computing have altered the way users access dis-
tant resources easier than ever before. Due to this shift in how things are done, Cloud
Service Providers’ (CSPs) role is becoming more vital with time as they continue pro-
viding an increasing number of innovative solutions for customers worldwide [1]. The
total value of cloud computing is predicted to increase significantly, from $141 billion
to $495 billion, by 2022 [2]. This significant growth has prompted studies investigating

Abdel-Rahman Al-Ghuwairi1,
Dimah Al-Fraihat2(*), Yousef
Sharrab3, Yazeed Kreishan1,
Ayoub Alsarhan4, Hasan
Idhaim5, Ayman Qahmash6

1Department of Software
Engineering, Faculty of Prince
Al-Hussein Bin Abdallah II
for Information Technology,
The Hashemite University,
Zarqa, Jordan
2Department of Software
Engineering, Faculty of
Information Technology, Isra
University, Amman, Jordan
3Department of Data Science
and Artificial Intelligence, Faculty
of Information Technology, Isra
University, Amman, Jordan
4Department of Information
Technology, Faculty of Prince
Al-Hussein Bin Abdallah II
for Information Technology,
The Hashemite University,
Zarqa, Jordan
5Department of Information
Systems, Faculty of Prince
Al-Hussein Bin Abdallah II
for Information Technology,
The Hashemite University,
Zarqa, Jordan
6Department of Information
Systems, Computer Science
College, King Khalid University,
Abha, Saudi Arabia

d.fraihat@iu.edu.jo

Volume: 17
No: 19
Year: 2023
Running_head_left: Al-Ghuwairi et al.
Running_head_right: Optimizing Clustering Approaches in Cloud Environments

https://doi.org/10.3991/ijim.v17i19.42029

https://online-journals.org/index.php/i-jim
https://online-journals.org/index.php/i-jim
https://doi.org/10.3991/ijim.v17i19.42029
https://online-journals.org/
https://online-journals.org/
mailto:d.fraihat@iu.edu.jo
https://doi.org/10.3991/ijim.v17i19.42029

iJIM | Vol. 17 No. 19 (2023) International Journal of Interactive Mobile Technologies (iJIM) 71

Optimizing Clustering Approaches in Cloud Environments

its effectiveness and anticipating increased integration in the future [3]. Cloud com-
puting acts as a solution offering off-premises computing power to users wishing to
access tools and retain data, all facilitated by CSPs from a location in the cloud and
accessible through the internet [4]. Relatedly, CSPs provide these resources using an “X
as a Service” (XaaS) model including Software (SaaS), Infrastructure (IaaS), or Platform
(PaaS) [5]. Given these options, cloud services are available via public, private, or
hybrid cloud models depending on user requirements. Currently, CSPs range from
industry tycoons such as Amazon, Google, IBM, and Microsoft, providing numerous
services tailored towards specific clients based on their needs [6].

Cloud computing has emerged as a transformative technology, enabling the util-
ity model of computing to serve clients worldwide. IT and business resources such
as servers, storage, networks, and applications can be dynamically delivered to cli-
ents across the globe. The adoption of clusters in the cloud market has significantly
increased, providing an opportunity to enhance clusters’ capabilities to accommo-
date growing client requirements on the nodes [7].

A multi-cluster system refers to a distributed architecture that comprises multiple
clusters, with each cluster consisting of several nodes capable of independent com-
putation and data storage. These systems find application in various domains such
as high-performance computing, data analytics, and cloud computing [8]. Compared
to traditional single-cluster systems, multi-cluster systems offer notable advantages,
including enhanced scalability, reliability, and fault tolerance. Consequently, they
have gained significant attention in research and development, with the potential to
revolutionize large-scale computing tasks [9].

However, the adoption of clusters in the cloud environment poses several chal-
lenges. These challenges include load balancing within a single cluster, managing
fluctuating service demands, evaluating the trustworthiness of new clients, and
addressing scalability and performance issues [10]. Scalability, defined as the abil-
ity to allocate appropriate computing resources to clients dynamically, is crucial
in cloud environments. Failing to provide flexible services and scale computing
resources can result in the deficient performance of the server [11]. To effectively
manage resources in the cloud market, cloud service providers must handle a grow-
ing number of client requests while ensuring optimal performance [12].

Efficient management of server requests is essential in maintaining optimal func-
tioning, building customer trust, and seamless service delivery. In addressing this
aspect, this study emphasizes enhancing server capacity as a significant factor in
timely response to user requests. Therefore, it suggests adopting a novel approach
by implementing server clustering as an effective means of workload distribution.
Each cluster has a designated head with oversight responsibilities for its operation.

Our research endeavors are aimed at improving cluster performance by enhanc-
ing its ability to meet growing client demands. Proposed as part of this effort, is an
innovative architectural environment which divides a single cluster into smaller
individual clusters for optimal request processing efficiencies in nodes, and minimal
delays or downtime resulting from the process itself.

The proposed approach has been successfully implemented through an experi-
mental setup utilizing Node.js programming language. Before conducting research
experiments, performance metrics were compared for which results indicated that
cloud computing can facilitate clustering, thereby offering scalability and flexibility
crucial for optimizing services provided to clients.

With the aim of boosting efficiency and saving time when processing servers, the
study proposes dividing one large cluster into several smaller ones, each complete
with its own back up-server. Consequently, improving server processing times became
achievable and may lead researchers to focus their investigation on this precise aspect.

https://online-journals.org/index.php/i-jim

 72 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

Al-Ghuwairi et al.

The experimental findings were meticulously reviewed to gauge how effective the
proposed approach is. To do so, performance metrics were compared pre- and post-ap-
plication implementation under specific consideration of time wasted during request
processing. Our anticipated result is an enhancement in server scalability and efficiency
achieved via cluster division, which should translate into superior overall cluster output.

To optimize resource usage while delivering excellent service quality, we con-
ducted this research with specific objectives, which include streamlining request
processing and enhancing cluster robustness through an innovative architectural
approach that divides clusters strategically. We anticipate that reducing time wast-
age during node processing coupled with improving server performance should
yield the desired results and meet the expanding demands of customers effectively.
Overall, these findings should assist us in meeting clients’ evolving expectations as
well as maintaining superior service delivery standards.

2	 RESEARCH	BACKGROUND

This section presents an overview of cluster computing, single core clusters,
and multi core clusters which have delivered significant enhancements in perfor-
mance levels. Achieving optimal results requires a clear appreciation for application
behavior patterns and trends. This section outlines distinctions between traditional
single-core clusters compared with those containing multiple cores. Our research
identifies specific challenges when processing requests in nodes across a multi clus-
ter core, whilst promoting its benefits.

2.1	 Cluster	computing

When several computers are connected to work together seamlessly as one
unit, this is referred to as cluster computing [13]. IBM introduced this concept in
the 1960s as a viable alternative for interconnecting massive mainframe computers
with cost-effectiveness as its core value proposition [14]. Recently, cluster computing
has garnered exceptional attention following advancements such as efficient micro-
processors, high-speed networks, and pivotal tools capable of improving distributed
computing performance available since the ‘80s onwards [15].

Recent technological advancements have paved the way for cost-effective par-
allelization solutions such as clusters, making them increasingly popular options
across all sectors of computing, including high-performance applications where
high-throughput and reliability are critical [16]. A computer cluster utilizes col-
lections of interconnected computers combined collaboratively to achieve better
computational processing efficiency than traditional single device platforms [17].
A cluster is defined as a collection of nodes, each having independent control over
stand-alone workloads while collaborating in real-time with others via high-speed
local-area networks [18]. Clusters allow executing heavy-duty tasks that are imprac-
tical on single machines [19]. The nodes can vary in number, and they incorpo-
rate memory units alongside comprehensive operating systems dependent on what
specifications best suit their intended use [20]. The main system components include
individual machines interlinked via fast interconnects, in addition to software fea-
tures geared towards enabling maximized performance throughput during parallel
execution operations, ensuring prompt task delivery [21].

Cluster computing is an effective approach of achieving improved availabil-
ity rates in addition to better performance while keeping expenses minimized,

https://online-journals.org/index.php/i-jim

iJIM | Vol. 17 No. 19 (2023) International Journal of Interactive Mobile Technologies (iJIM) 73

Optimizing Clustering Approaches in Cloud Environments

compared with individual computers [22]. Nevertheless, several significant draw-
backs need to be factored in [23]. For example, establishing a cluster entails complex-
ities requiring multidisciplinary knowledge. Other complications include scalability
limits and communication overheads which together present significant synchroni-
zation challenges that disrupt efficient operation levels, significantly compromising
overall system effectiveness. Further, factors such as fault tolerance coupled with
reliability must be managed carefully when configuring the cluster. Moreover, the
overall purchase costs, infrastructure prerequisites, and maintenance charges are all
important aspects to consider [24]. Hence, organizations need to consider these chal-
lenges against their own specific performance priorities before deciding whether to
invest in cluster computing services [25].

2.2	 Single-core	clusters

A single-core cluster includes nodes, each equipped with a single processor and
a single core. Standardization is a key characteristic of such clusters, ensuring that
nodes are similar in terms of memory, cache, and server connection [26]. Further,
caches, which are storage locations for active data, play a crucial role in reducing
latency, improving access times, and enhancing overall efficiency [27].

In the context of a common algorithm like the Message Passing Interface (MPI), a
cluster composed of single-processor nodes can execute the algorithm independently.
The performance of a single-core cluster relies on the processor’s frequency [28].
Theoretically, incorporating multiple single-core processors onto a single chip could
double the performance. However, the average speed of each core is slower than the
fastest single-core processor due to communication delays at various levels of the
cluster’s communication link [29].

2.3	 Multi-core	clusters

The development of cloud computing systems, also known as multicore clusters,
has been driven by the convergence of high-performance computing technology and
high-speed connections [30]. In the past, clusters utilized multiple single-core proces-
sors. However, the industry has now introduced chips with multiple processors, or
multi-cores, to address the limitations of single-core clusters [31]. A comprehensive
understanding of multi-core chips necessitates acknowledging that individual pro-
cessor cores operate at slower speeds in comparison to single-core processors [32].
However, when multiple cores collaborate on a single chip, higher data processing
rates can be achieved [33]. With each new chip generation, we can anticipate an
increase in the number of cores accompanied by reduced processing time. Notably,
multi-core clusters exhibit a hierarchical storage structure where cache memory is
shared among processor cores [34]. This implies that processors within the same node
share main memory, while those from different nodes do not. To achieve optimal effi-
ciency, parallel programming is recommended, with task allocation based on appli-
cation communication patterns and system characteristics carefully considered [35].

The demand for multi core clusters has grown significantly due to their various
benefits. The numerous advantages offered by multi core clusters have contributed to
their growing popularity in recent years. Firstly, multi-threaded software enables the
utilization of multi core technology, which can execute many tasks simultaneously and
enhance overall system performance and efficiency by freeing up resources that were

https://online-journals.org/index.php/i-jim

 74 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

Al-Ghuwairi et al.

previously tied up in managing multiple processors [36]. Secondly, multi-core clus-
ters offer simple scalability as an essential feature. Organizations can add more cores
or nodes to these clusters easily for enhanced computing power requirements when
needed [37]. This flexibility provides a reliable way to handle computational demands
while ensuring efficient operations at all levels of usage over time with minimum
room for error from additional overhead tasks such as cooling equipment required
in large data centers; hence less heat generation and lower energy consumption [38].

2.4	 Node.js	clustering

A feature embedded within the Node.js runtime environment is its unique clus-
tering function. Through its utilization of child processes, it streamlines incoming
requests management and enables task distribution within applications. This strat-
egy can effectively use the capabilities of numerous CPU cores in multi-core systems
enhancing scalability and boosting performance for Node.js applications [39].

Node.js operates using a cluster system which involves assigning a master process
to manage multiple worker processes. Every slave runs its instance of the Node.js
event loop to undertake operations. While distributing incoming connections or
tasks, a load-balancing algorithm is implemented by the master process. This guar-
antees that each CPU core shares an equal workload across all slaves and smoothly
completes assigned tasks [40].

Node.js clustering offers numerous primary benefits, including better perfor-
mance and increased throughput for applications. Multiple cores are utilized,
effectively allowing for greater processing power and speedy handling of concur-
rent requests while making good use of all available system resources efficiently.
Additionally, this technique enhances resilience, so that even if a slave process fails
or crashes within clustered deployment setup, it will not affect overall availability
negatively due to some inbuilt error management mechanisms and security features
that are factored into its design and triggered to action immediately, maintaining a
stable environment at unprecedented scales [41].

Complexities that arise from attempting to build scalable applications in Node.js
involve managing multiple processes and load balancing. Node.js clustering provides
a simple solution by removing these hurdles altogether. This functionality proves to
be particularly valuable when developing high performance web servers or real time
applications required to manage an extensive number of concurrent connections [42].

Typically, Node.js operates on one thread that employs just one CPU core, irrespective
of whether numerous cores exist in the system or not. Nevertheless, overcoming this
predicament while improving performance calls for transitioning operations towards
a multi core strategy utilizing clustering instead. The clustering method involves
creating multiple Node.js procedures, collectively known as worker nodes designed
to work simultaneously over an identical server port caliber through Inter Process
Communication (IPC). With this setup, automatic workload balancing can be achieved
such that, whenever any process manages resource-centric tasks, other secondary pro-
cessors proffer an additional request processing power using spare CPUs [43].

Node.js has gained popularity among developers who strive to cluster tasks effi-
ciently due to its use of JavaScript language, which opens up possibilities for opti-
mization [44]. This ability can be advantageously employed in intrusion detection
or protection schemes for cloud markets that depend heavily on traffic data from
the marketplace’s various nodes. Adequate interpretation and analysis enable one
to evaluate a more extensive range of judgments regarding trends in activity levels

https://online-journals.org/index.php/i-jim

iJIM | Vol. 17 No. 19 (2023) International Journal of Interactive Mobile Technologies (iJIM) 75

Optimizing Clustering Approaches in Cloud Environments

that influence the larger picture around investments in cloud markets. Designing an
effective intrusion detection scheme typically entails several phases, which include
initial sensing strategies; allowing to assure the cloud environment remains secure
with suitable arrangements; intrusion prevention itself by incorporating proper
policies like access controls into an IT system’s architecture; performing behavior
analyses on network systems that allow effective prediction; and responsibility
management plan that maps out how well security incidents are managed where
necessary roles are evidently defined, leveraging resources effectively [45].

3	 RELATED	WORK

Numerous studies have delved into enhancing techniques specifically tailored
for cloud environments. In this section, we provide a review of research conducted
in this domain emphasizing their contributions.

A pioneering study in this domain was conducted by [46]. They put forth an
approach called the single cluster methodology to handle requests in cloud environ-
ments. The primary objective of their research revolved around enhancing down-
time load distribution and overall system performance. Although their local single
cluster approach demonstrated a success rate of 100% in request processing, it was
observed to have limitations in terms of processing time. The authors acknowledged
the necessity for methodologies that could provide expedited processing times.

To overcome the limitations of the cluster method using local single cluster
approach, the researchers of [47] introduced the use of multiple clusters method. Their
research focused on improving performance, scalability, fault tolerance, resource allo-
cation and availability, in cloud environments. They conducted experiments involving
50 requests and discovered that the local multiple clusters approach exhibited process-
ing time, scalability, fault tolerance and availability compared to the local single clus-
ter approach. However, one aspect that was not explicitly considered during the study
was the cost effectiveness of the proposed method. This gap in understanding prevents
us from comprehending the implications associated with the suggested approach.

There has been a growing interest in utilizing cloud clusters to enhance cluster-
ing methods. The authors of [48] conducted a comparison of clustering approaches
including employing a locally single cluster, locally multiple clusters, and harnessing
multiple cloud clusters. They conducted experiments involving 50 requests to evalu-
ate performance, scalability, fault tolerance, resource allocation, availability, and cost
effectiveness. The outcomes revealed that both the use of clusters locally and multiple
cloud clusters surpassed the local cluster approach in terms of several metrics. Notably,
the multiple cloud clusters approach offered benefits such as processing, scalability,
fault tolerance, resource allocation, availability and cost effectiveness due to its pay-as-
you-go model. However, the study did not delve into analyzing the limitations or weak-
nesses of the proposed approaches, leaving an opportunity for further exploration.

Expanding on previous research, [49] proposed a clustering approach that blends
local multiple clusters with multiple cloud clusters. Their objective was to enhance
performance fault tolerance and cost effectiveness while considering the effective-
ness. By conducting experiments and simulations, they successfully showcased that
the hybrid approach outperformed clustering methods. This hybrid approach effec-
tively leveraged the resources of clusters and the scalability of cloud clusters leading
to performance fault tolerance and cost effectiveness. However, it is worth noting
that the study primarily focused on performance and cost effectiveness without
delving into the impact on metrics, like resource allocation or availability.

https://online-journals.org/index.php/i-jim

 76 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

Al-Ghuwairi et al.

Another study of [50] investigated the application of machine learning techniques
to optimize clustering approaches in cloud environments. The researchers proposed
a predictive model that utilizes historical data to dynamically allocate resources in
clusters based on workload patterns. Their study showed promising results in terms
of performance improvement and resource utilization optimization. However, the
study primarily focused on the performance aspect and did not comprehensively
evaluate other factors such as fault tolerance or cost-effectiveness.

The study presented by [51] introduced an algorithm focused on load balanc-
ing for clustering in cloud environments. Their objective was to optimize resource
utilization and minimize response time by distributing workloads among clusters
based on their capacities and current utilization levels. The experimental findings
indicated that their algorithm successfully achieved workload balance, resulting in
improved performance and reduced response time.

The authors of [52] tackled the issue of handling faults in methods in cloud environ-
ments. Their proposed algorithm aimed to enhance system reliability and availability
by identifying and recovering from node failures. To achieve this, they incorporated
nodes and deployed fault detection mechanisms to maintain uninterrupted oper-
ation. The experimental evaluations showcased that their fault tolerant clustering
algorithm remarkably improved system reliability while minimizing downtime.
Nevertheless, the study did not explore its effects on measures such as performance.

The research conducted by [53] examined the impact of methods on energy effi-
ciency within cloud environments. The study aimed to reduce energy consumption
while ensuring performance levels. The researchers introduced a clustering algo-
rithm that incorporated energy awareness, dynamically adapting resource allo-
cation according to workload patterns and system conditions. The experimental
findings indicated energy savings without compromising performance.

Considering the cost-effectiveness aspect, [54] conducted a study that analyzed
the trade-offs between performance and cost in different clustering approaches.
They proposed a cost-performance model that considers factors such as processing
time, scalability, and resource allocation efficiency. Through experiments and simu-
lations, they evaluated the cost-performance trade-offs of local single clusters, local
multiple clusters, and multiple cloud clusters. The findings showed that selecting the
clustering method relies on the unique features of the workload and the limitations
imposed by cost considerations. Nonetheless, the research did not extensively delve
into factors, like fault tolerance or availability.

The cost effectiveness aspect was explored in a study conducted by [55]. They
investigated the balance between performance and cost in approaches. In their
research, they proposed a model that examined factors such as processing time,
scalability, and resource allocation efficiency, aiming to assess the trade-offs in cost
performance. Through experiments and simulations, they evaluated the cost per-
formance trade-offs of clusters, local multiple clusters, and multiple cloud clusters.
The results indicated that the choice of clustering approach should consider work-
load characteristics and cost limitations.

Prior research has extensively examined methods within cloud environments.
These methods encompass clusters, local multiple clusters, and multiple cloud clus-
ters. While these studies have made strides in terms of enhancing performance, scal-
ability, fault tolerance, resource allocation, availability, and cost effectiveness, there
remain drawbacks that necessitate attention. The local single cluster approach exhib-
its limitations pertaining to processing time. On the hand, the local multiple clusters
approach lacks an analysis of cost effectiveness. Moreover, further investigation is
required to uncover weaknesses in the multiple cloud clusters approach [56, 57].

https://online-journals.org/index.php/i-jim

iJIM | Vol. 17 No. 19 (2023) International Journal of Interactive Mobile Technologies (iJIM) 77

Optimizing Clustering Approaches in Cloud Environments

Recent research endeavors have proposed approaches that incorporate machine
learning techniques to tackle these challenges [58]. However, further exploration is
needed to evaluate their impact across metrics and address the limitations inherent
in existing clustering approaches [59, 60].

The current research aims to improve cluster performance to meet the growing
demands of clients. The motivation behind this endeavor is to enhance the efficiency
of request processing in clusters while minimizing delays and downtime. The major
contribution of this research lies in improving cluster performance to meet growing
client demands. It proposes an innovative architectural environment that divides a
single cluster into smaller ones, optimizing request processing efficiencies and mini-
mizing delays. By dividing clusters into ones equipped with backup servers, the study
effectively improves server processing times. The experimental findings successfully
validate the proposed approach leading to enhanced server scalability and efficiency.
Furthermore, the research prioritizes streamlining request processing, reinforcing
cluster resilience and optimizing resource utilization to ensure service quality and
meet the expanding demands of customers. In summary, it offers insights into opti-
mizing cluster performance and meeting the evolving expectations of clients.

4	 RESEARCH	METHODS

This research aims to investigate the behavior of a cluster under a specific test
scenario where the number of requests has increased. A comparison is made with
the multi-cluster method to evaluate performance improvements, high availability,
load balancing, and reduction in response time, allowing the system to handle a
higher volume of requests.

To conduct the experiment, the researchers utilized k6, a developer-focused,
open-source load-testing tool known for its productivity in performance testing. The
implementation of k6 allowed for the anticipation of performance degradation and
the prompt identification of problems, enabling a proactive approach in the devel-
opment of resilient systems and robust applications. The user-friendly nature of k6,
as well as its utilization of JavaScript, proved to be valuable for the effective imple-
mentation of tests in this study.

The conventional approach in Node.js for managing incoming client requests
involves queuing them in a single thread through its Event Queue system. However,
our research aimed to explore alternative methods that could potentially enhance the
efficiency of adopting an event-driven architecture. By conducting extensive testing and
experimentation, we investigated the feasibility of utilizing the Event Loop not only for
event listening but also as an infinite loop for data processing, thereby opening up new
possibilities and potential improvements in the handling of requests within the Node.js.

This study adopted an inventive technique to expedite request processing within
Node.js software by eliminating I/O blocking. Our results showed that such an over-
haul greatly ameliorates time efficiency in the system. To verify its efficacy, we per-
formed comparisons between two distinct groups—one with a single thread while
another utilizing worker threads based on CPU capacities—and analyzed their rela-
tive outputs thoroughly.

In this research, we utilized a system that incorporated eight cores by creating
eight Node.js instances, each designed with its independent event loop. We config-
ured the program to operate effectively on one port (PORT 3002). Our implementation
necessitated that we create several worker processes; hence we relied on an intelli-
gent strategy deployed by our master process to handle connecting incoming traffic
and distributing incoming ones among our various workers evenly. We utilized a

https://online-journals.org/index.php/i-jim

 78 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

Al-Ghuwairi et al.

powerful module named the Worker Threads in Node.js because of its proven ability
to carry out CPU-intensive JavaScript tasks.

To assess the efficacy and efficiency of distinct clustering scenarios, our method
entails carrying out two experiments. Specifically, experiment one will involve
employing single clustering while experiment two will employ multi clustering.
Experiment one tackles the typical means of utilizing a solo clustering configura-
tion through clustered nodes running on only one server or computing device.
Researchers endeavor to evaluate this method’s efficiency and limitations by analyz-
ing various performance metrics such as response time, throughput, and resource
utilization. Table 1 summarizes the metrics used for comparison and their definitions.

Table 1. The metrics used for comparison between the two experiments

Metrics Definition

1 HTTP req connecting This refers to the process of establishing a connection between the client (usually a web browser or an
application) and the server that hosts the requested resource. It involves establishing a TCP connection.

2 HTTP req duration This is the time it takes for an HTTP request to complete, starting from the moment the request is sent to the
server until the response is received.

3 Expected response true This indicates that you are expecting a successful response from the server. In the context of load testing or
automated testing.

4 HTTP req failed This means that the HTTP request was not successful. It could be due to various reasons, such as a server error,
network issue, or an invalid request.

5 HTTP req receiving This refers to the process of the client receiving the response from the server after sending an HTTP request. It
involves receiving and reading the data sent by the server.

6 HTTP req sending This is the process of the client sending an HTTP request to the server.

7 HTTP req handshaking Handshaking typically refers to the initial communication between the client and server to establish the
parameters of the connection, such as the supported protocols and encryption methods. In the context of HTTP,
it can refer to the establishment of a TCP connection.

8 HTTP req waiting This refers to the time spent by the client waiting for a response from the server after sending an HTTP request.
It could be due to various factors, including network latency, server processing time, or server-side delays.

9 Iterations This refers to the number of times a specific action or task is repeated. In load testing, it typically represents the
number of iterations or cycles of sending requests and receiving responses.

10 Iteration duration In the context of load testing, an iteration refers to a complete cycle of sending an HTTP request and receiving
the corresponding response. The iteration duration is the time it takes to complete one iteration.

11 Vus Vus stands for “virtual users”. In the context of load testing, a virtual user simulates a single user interacting
with the system under test. The number of virtual users represents the concurrency or simultaneous user load
applied during the test.

Using a multi-cluster strategy is the focus of our second experiment. The purpose
is to determine its advantages in optimizing application performance when numer-
ous copies are deployed on multiple computing devices or servers that form a cluster
through efficient load balancing capabilities. Our goal is to evaluate whether this
design results in scalable operations and improves fault tolerance when assessing
performance metric outcomes in comparison with experiment one’s outputs.

Our research method adheres to standardized procedures to ensure the validity and
reliability of our findings regarding the behavior of clustering scenarios under various
parameters. To achieve this, we establish controlled experimental environments for
each scenario, where we deploy applications and simulate diverse workloads while
collecting relevant data. To assess the performance of these scenarios effectively, we
employ robust techniques for measuring relevant metrics. Through statistical analysis
of these measurements, we can effectively compare the efficiencies, scalability, and

https://online-journals.org/index.php/i-jim

iJIM | Vol. 17 No. 19 (2023) International Journal of Interactive Mobile Technologies (iJIM) 79

Optimizing Clustering Approaches in Cloud Environments

overall performances of different clustering scenarios. This approach enables us to
generate meaningful insights and draw reliable conclusions from our research.

By conducting these experiments, valuable insights can be gained regarding the
strengths and limitations of single clustering, the benefits of multi clustering, and the
advantages of leveraging cloud-based multi-cluster architecture. The findings will
contribute to the understanding of cluster computing and assist in making informed
decisions when choosing the most suitable clustering approach for specific applica-
tion requirements.

5	 EXPERIMENTS	AND	RESULTS	

5.1	 Load	balancing	with	Bluster	mode

Improving operational efficiency is essential to ensure the smooth running of Node.
js applications by running an optimized workflow that can be achieved through load
balancing with Bluster mode using Process Manager2 (PM2). PM2 has dramatically sim-
plified the process by offering core features such as process management and batching
functions to horizontal load balancing capabilities and non-stop reload allowing for
easy and seamless application control. The use of PM2’s user-friendly interface ensures
hassle-free starts, stops, and restarts of the system while providing a centralized man-
agement platform for users to constantly monitor resource consumption levels.

Automatic reloading during application updates or deployment with near-zero
downtimes that feature in PM2’s Bluster Mode allows you to maintain continuity with-
out interruptions whilst ensuring maximum efficiency achieved through optimization
efforts like status monitoring. PM2 offers various key performance indicators mon-
itored uniformly and displayed effectively, allowing quick identification and resolu-
tion of performance-related issues such as CPU usage rate, memory consumption rates,
request throughput based on how many requests are processed per second, worker sta-
tus in clustered apps amongst other vital KPIs, which helps optimize your systems fur-
ther. Figure 1 shows detailed metrics resulting from adopting PM2 during operations.

Furthermore, PM2 along with bluster-mode offer development teams a fast-track
route towards operational excellence by improving system uptime through simpli-
fied workflows encouraging productivity growth.

Fig. 1. Key metrics in PM2

https://online-journals.org/index.php/i-jim

 80 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

Al-Ghuwairi et al.

5.2	 Cluster	mode:	Node.js	load	balancing	and	zero	downtime	reload

In optimizing Node.js applications for peak performance and high availability,
cluster mode is an essential feature worth exploring for efficient resource utiliza-
tion. The master process manages several worker processes that balance incoming
requests evenly, leading to better overall app performance. Cluster mode optimizes
resource utilization, allowing applications to handle a larger volume of client
requests effectively by spreading out operations evenly across processes, ensuring
maximum efficiency. Another significant advantage is the zero downtime reload
capability, whereby updating or reloading an application does not disrupt incoming
requests due to master process management skills.

By taking advantage of the benefits of multiprocessing such as faster rebalancing
of sockets if errors are not handled appropriately, developers ensure that robust
applications are built with increased scalability and improved overall performance.

In cluster mode, two configurations exist: single- and multi-node configura-
tions. Running on a solo machine per core might cause some limitations in terms
of scalability due to backup constraints but running several instances on multiple
machines called nodes provides better load balancing capabilities, enabling effort
distribution among various tasks and leading to parallel processing advantage in
multi nodes setups for maximum efficiency optimization.

For better scalability, increased performance rates along with optimal fault tol-
erance levels and utilizing multiple computing abilities made possible via Node.js’s
Cluster Mode becomes inevitable. By tactfully distributing workloads among dif-
ferent nodes, more power is given to the application to execute tasks seamlessly,
thereby effectively handling a higher number of concurrent requests. Load balanc-
ing algorithms are then brought into play here to spread requests evenly among
nodes—the aim being to optimize resource utilization while preventing any node
from being overloaded. With the cluster mode already in place, recovery from any
unhandled error or reloading of resources is swift and easy through faster socket
rebalancing.

With the clustering arrangement, downtime rarely occurs—with other highly
functional nodes continuing performance as usual in cases where there are hard-
ware failures or resource mismanagement on a particular node. In summary, paral-
lel processing, an ideal load balancing system, and quenched downtimes are enabled
utilizing Node.js’s cluster mode.

The experimental setup and procedure for the two conducted experiments are
outlined as follows: Experiment 1 using single clustering and Experiment 2 using
multi clustering.

5.3	 Experiment	1:	Local	single	clustering

In this scenario, the following steps were performed to evaluate the performance
of single clustering on-premise:

1. Installation of Influx DB on Windows: Influx DB was installed on a Windows
machine to facilitate data storage and management.

2. Installation of Grafana on Windows: Grafana was installed on the same Windows
machine to provide visualization and analysis capabilities.

3. Running Grafana: The Grafana interface was accessed by opening a web browser
and navigating to the designated port (http://localhost:8086/).

https://online-journals.org/index.php/i-jim

iJIM | Vol. 17 No. 19 (2023) International Journal of Interactive Mobile Technologies (iJIM) 81

Optimizing Clustering Approaches in Cloud Environments

4. Creation of a Grafana Dashboard: A dashboard was created in Grafana to present
the performance metrics obtained from the single clustering experiment.

5. Addition of Influx DB as a data source: Influx DB was configured as a data source
in Grafana, establishing a connection to access the performance data. The data-
base was set to “myk6db”.

6. Configuration of Influx DB details: Relevant details from Influx DB, such as the
query “SELECT * FROM “_internal” LIMIT 10”, were set in Grafana to retrieve the
required data.

7. Running Influx DB: The Influx DB service was initiated from the specified instal-
lation directory (C:\Program Files\Influx Data\influx dB).

8. Creation of the “single-clustering.js” file: A JavaScript file named “single-cluster-
ing.js” was created to implement the single clustering experiment.

9. Adding code to “single-clustering.js”: The necessary code for the single clustering
experiment was added to the “single-clustering.js” file, as shown in Figure 2.

Fig. 2. Single clustering code

10. Running the Node server: The Node server was executed in the terminal, where
the single clustering experiment was being performed.

11. Sending 50 requests to the single clustering setup: A total of fifty requests were
sent to the single clustering configuration to evaluate its performance and mea-
sure relevant metrics. The results are shown in Figure 3.

https://online-journals.org/index.php/i-jim

 82 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

Al-Ghuwairi et al.

Fig. 3. The result of sending fifty requests with single clustering

12. Dashboard visualization: the dashboard provides a comprehensive overview
of the single clustering process, displaying detailed information and metrics.
Figure 4 shows the dashboard for the single clustering process.

Fig. 4. Dashboard for the local single clustering process

13. Analysis of the results: the outcome of sending fifty requests to the single cluster-
ing setup was recorded and analyzed to assess its performance characteristics.
Table 2 below presents the outcome of sending fifty requests using the single
cluster configuration:

https://online-journals.org/index.php/i-jim

iJIM | Vol. 17 No. 19 (2023) International Journal of Interactive Mobile Technologies (iJIM) 83

Optimizing Clustering Approaches in Cloud Environments

Table 2. The results of sending fifty requests with single clusters

Avg Min Mid Max p (90) p (95)

HTTP req connecting 551.16 µs 0 s 0 s 1.67 ms 1.67 ms 1.67 ms

HTTP req duration 7.12 s 168.8 ms 5.55 s 15.84 s 13.9 s 14.41 s

Expected response: true 7.12 s 168.8 ms 5.55 s 15.84 s 13.9 s 14.41 s

HTTP req failed 0.00% ✓ 0 ✗ 100

HTTP req receiving 916.02 µs 0 s 0 s 16.07 ms 1.4 ms 5.93 ms

HTTP req sending 1.43 s 0 s 0 s 8.32 s 6.83 s 7.58 s

HTTP req handshaking 0 s 0 s 0 s 0 s 0 s 0 s

HTTP req waiting 5.69 s 168.8 ms 5.52 s 11.26 s 9.1 s 10.46 s

HTTP req 100 5.42649/s

Iteration duration 7.13 s 171.58 ms 5.55 s 15.84 s 13.9 s 14.41 s

Iterations 100 5.42649/s

Vus 3 3 50

Vue’s max 50 50 50

5.4	 Experiment	2:	Local	multi	clustering

To evaluate the performance of multi clustering on-premise, the following steps
were followed:

 1. Influx DB Installation on Windows: Influx DB was installed on a Windows
machine to enable efficient data storage and management.

 2. Grafana Installation on Windows: Grafana was installed on the same Windows
machine to provide advanced visualization and analysis features.

 3. Accessing Grafana: The Grafana interface was accessed by launching a web
browser and navigating to the designated port (http://localhost:8086/).

 4. Dashboard Creation in Grafana: A new dashboard was created within Grafana
to display relevant metrics and statistics.

 5. Adding Influx DB as a Data Source: A new data source named “Influx DB” was
added in Grafana to establish a connection with the Influx DB database.

 6. Setting Database Configuration: The database configuration was set to “myk6db”
within Grafana to ensure proper data retrieval.

 7. Influx DB Details Retrieval: Details from Influx DB were obtained using the
query: “SELECT * FROM “_internal”. Database” LIMIT 10.

 8. Running Influx DB: Influx DB was executed from the specified directory
(C:\Program Files\Influx Data\influx dB).

 9. Creation of “Multi clustering.js” File: A file named “Multi clustering.js” was cre-
ated to contain the code for the multi clustering process.

 10. Implementation of Multi Clustering Code: The necessary code for multi cluster-
ing was added to the “Multi clustering.js” file, as shown in Figure 5.

https://online-journals.org/index.php/i-jim

 84 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

Al-Ghuwairi et al.

Fig. 5. Multi clustering code

14. Accessing the Node Server Terminal: The terminal where the Node server was
running was accessed for further actions.

15. Sending 50 Requests to Multi Clustering: Fifty requests were sent to the multi
clustering system to assess its performance. The result of sending fifty requests
with multi clustering are shown in Figure 6.

https://online-journals.org/index.php/i-jim

iJIM | Vol. 17 No. 19 (2023) International Journal of Interactive Mobile Technologies (iJIM) 85

Optimizing Clustering Approaches in Cloud Environments

Fig. 6. The result of sending fifty requests with local multi clustering

16. Dashboard Visualization: The dashboard within Grafana displayed detailed
information and visualizations related to the multi clustering process. Figure 7
shows the dashboard for the multi clustering process.

Fig. 7. Dashboard for local multi clustering process

17. Analysis of the results: the results obtained from sending fifty requests with
multi clustering were analyzed to evaluate system efficiency. Table 3 illustrates
the results obtained from sending fifty requests with multiple clusters.

https://online-journals.org/index.php/i-jim

 86 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

Al-Ghuwairi et al.

Table 3. The results of sending fifty requests with local multiple clusters

Avg Min Mid Max p (90) p (95)

HTTP req blocked .39 ms 0 s 0 s 68.08 ms 3.5 ms .5 ms

HTTP req connecting 551.16 µs 0 s 0 s 68.08 ms 3.5 ms 1.5 ms

HTTP req duration 1.08 s 10.36 ms 869.66 ms .8 s .61 s .65 s

Expected response: true 1.08 s 10.36 ms 869.66 ms .8 s .61 s .65 s

HTTP req failed 0.00%

HTTP req receiving 80 0 s 0 s 3.63 ms 0 s 533.1 µs

HTTP req sending 859.96 µs 0 s 0 s 66.51 ms 1 ms 1.5 ms

HTTP req handshaking 0 s 0 s 0 s 0 s 0 s 0 s

HTTP req waiting 1.08 s 10.36 ms 869.54 ms .8 s .61 s .65 s

HTTP req 100

Iteration duration 1.08 s 10.36 ms 869.66 ms .8 s .61 s .65 s

Iterations 100

Vus 31 31 50

Vue’s max 50 50 50

As can be noticed from Table 3, the utilization of a multi-cluster system offers
several notable advantages over the single cluster as outlined below:

1. Improved scalability: the ability to operate each cluster independently enables
the addition or removal of clusters as required to accommodate specific work-
loads. This facilitates dynamic scaling of the system without necessitating a com-
plete overhaul or reconfiguration.

2. Enhanced reliability: by distributing workloads and data across multiple clusters,
a higher level of fault tolerance can be achieved. Even if one or more clusters
experience failures, the system can continue to function, minimizing disruptions.

3. Enhanced performance: the parallelization and distribution of tasks across different
clusters enable faster completion of tasks, resulting in improved overall performance.

In summary, multi-cluster systems offer significant benefits in terms of scalabil-
ity, reliability, and performance. These systems find application in various domains,
including high-performance computing, data analytics, and cloud computing, where
their advantages are increasingly recognized and leveraged.

In addition to single and multi-clustering, we conducted a third experiment with
multi-clustering on the cloud. The method of the third experiment is as follows.

5.5	 Experiment	3:	Multi	clustering	on	cloud

To evaluate the performance of multi clustering system on the cloud, the follow-
ing steps were followed:

1. Signing up for an Azure account on the Microsoft Azure website.
2. Creating a new Virtual Machine (VM) within a newly created resource group,

providing the necessary details for the VM following the step-by-step instructions.

https://online-journals.org/index.php/i-jim

iJIM | Vol. 17 No. 19 (2023) International Journal of Interactive Mobile Technologies (iJIM) 87

Optimizing Clustering Approaches in Cloud Environments

3. Starting the VM and downloading the Remote Desktop Protocol (RDP) or Secure
Shell (SSH) version to establish remote control.

4. Executing the Influx DB on the VM.
5. Sending 50 requests to the multi clustering system to assess its performance and

analyze the obtained results. Table 4 illustrates the results obtained from sending
fifty requests with multiple clusters on cloud.

Table 4. The results of sending fifty requests with multiple clusters on cloud

Avg Min Mid Max p (90) p (95)

HTTP req connecting 370.4 µs 0 s 0 s 2.98 ms 0.98 ms 1.24 ms

HTTP req duration 420.1 µs 0 s 28.07 ms 50.08 ms 25.57 ms 35.98 ms

Expected response: true 65.1 ms 0.17 ms 25.56 ms 58.12 ms 25.18 ms 38.19 ms

HTTP req failed 0.00% ✓ 0 ✗ 100

HTTP req receiving 389.56 µs 0 s 0 s 2.07 ms 0.8 ms 1.91 ms

HTTP req sending 389.56 µs 0 s 0 s 1.58 ms 0.72 ms 1.19 ms

HTTP req handshaking 0 s 0 s 0 s 0 s 0 s 0 s

HTTP req waiting 65.1 ms 0 s 25.56 ms 58.12 ms 25.18 ms 38.19 ms

HTTP req 100

Iteration duration 65.1 ms 0.17 ms 25.56 ms 58.12 ms 25.18 ms 38.19 ms

Iterations 100

Vus 1 1 50

Vue’s max 50 50 50

The performance of the three experiments; using one local cluster, multiple local
clusters, and multiple cloud clusters, specifically in managing and processing a set
of 50 requests was assessed. The comparative analysis is conducted using various
essential metrics, including the number of successful requests, failed requests, com-
pleted requests, warned requests, as well as the time taken for request sending,
request completion, and request reading per second. Table 5 shows the results of
the comparison.

Table 5. Comparative analysis of performance and characteristics of three clustering approaches in handling 50 requests

Local Single Cluster Local Multiple Clusters Multiple Cloud Clusters

Number of Successful Requests 50 50 50

Number of Failed Requests 0 0 0

Number of Completed Requests 50 50 50

Number of Warned Requests 0 0 0

Time Taken to Send Request (per second) 1.43 s 859.96 µs 389.56 µs

Time Taken to Complete Request (per second) 7.12 s 1.08 s 65.1 ms

Time Taken to Read Request (per second) 5.69 s 1.08 s 65.1 ms

Scalability Limited Higher scalability Highly scalable

Fault Tolerance Single point of failure Higher fault tolerance Higher fault tolerance

(Continued)

https://online-journals.org/index.php/i-jim

 88 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

Al-Ghuwairi et al.

Local Single Cluster Local Multiple Clusters Multiple Cloud Clusters

Resource Allocation Shared resources Dedicated resources Flexible allocation

Performance Limited capacity Improved capacity High capacity

Network Latency Dependent on local network Dependent on network Dependent on network

Load Balancing Manual Load balancing Automated load balancing

Availability Dependent on local setup Improved availability High availability

Scalability Management Requires hardware expansion Cluster expansion Automated scalability

Maintenance and Management In-house responsibility In-house responsibility Managed by provider

Cost Capital and operational Capital and operational Pay-as-you-go

The results from the three experiments comparing the performance of the local
single cluster, local multiple clusters, and multiple cloud clusters provide valuable
insights into their effectiveness in handling 50 requests. Firstly, all three approaches
demonstrated 100% success in processing the requests, with no failures or warnings.
However, notable differences were observed in the time taken to send, complete,
and read requests. The local single cluster had the longest processing times, whereas
the local multiple clusters and multiple cloud clusters exhibited significantly faster
performance. This highlights the advantage of distributed setups and cloud infra-
structure in improving processing speed.

Scalability and fault tolerance also varied among the approaches. The local single
cluster showed limited scalability and a single point of failure, whereas both the
local multiple clusters and multiple cloud clusters demonstrated higher scalability
and fault tolerance. The ability to allocate dedicated resources and implement flexi-
ble resource allocation further contributed to the improved performance of the local
multiple clusters and multiple cloud clusters.

Additionally, the availability and maintenance aspects differed between the
approaches. The local single cluster was dependent on the local setup, while both
the local multiple clusters and multiple cloud clusters offered improved availability
and required in-house responsibility for maintenance. However, the multiple cloud
clusters had the added advantage of being managed by the cloud provider, reducing
the maintenance burden on the organization.

Cost-wise, the local single cluster and local multiple clusters incurred capital and
operational expenses, whereas the multiple cloud clusters followed a pay-as-you-go
model. This demonstrates the potential cost-effectiveness of cloud-based solutions,
allowing organizations to optimize costs based on usage.

Overall, the results indicate that both the local multiple clusters and multiple cloud
clusters outperformed the local single cluster in terms of performance, scalability,
fault tolerance, resource allocation, and availability. The multiple cloud clusters,
in particular, exhibited superior scalability, fault tolerance, and cost-effectiveness.
However, organizations should consider their specific requirements and constraints
when selecting the most suitable approach for handling requests.

The outcomes of this research offer valuable insights into the efficiency and
effectiveness of each clustering approach, thus assisting decision-making processes
regarding the selection and implementation of appropriate clustering strategies for
diverse applications.

Table 5. Comparative analysis of performance and characteristics of three clustering approaches in handling 50 requests (Continued)

https://online-journals.org/index.php/i-jim

iJIM | Vol. 17 No. 19 (2023) International Journal of Interactive Mobile Technologies (iJIM) 89

Optimizing Clustering Approaches in Cloud Environments

6	 CONCLUSION

The research aimed at analyzing how different clustering techniques affect reli-
ability along with efficiency with a keen interest in Node.js applications. Within this
context, we analyzed three scenarios—local single clustering, local multi clustering,
and multi clustering on cloud for the purpose of undertaking several experiments
and evaluations that helped us derive relevant conclusions. We carried out tests
within the “single cluster” environment after having established all necessary com-
ponents such as dashboards databases, sending requests directed towards one clus-
ter. These procedures provided in-depth insights into performance measures and
potentialities achievable through singular approaches.

In addition, we further explored the feasibility of “multi clustering” comprising
installations along with appropriate configurations while handling program work-
loads that can be distributed across multiple setups. Our findings showed numerous
scalability benefits achieved via such methodology suitable primarily for program-
ming-based network architecture.

Overall, our analytical results reveal significant insights surrounding the use of
different clustering methodologies while implementing Node.js applications. The
single cluster approach can provide straightforward baselines suitable for routine
tasks but upgrading towards scalable optimizations inclusive on diverse networking
infrastructures (i.e. cloud servers) might be more beneficial concerning developing
better future-proof platforms ensuring reliability and flexibility even during peak
usage periods.

7	 FUTURE	WORK

To advance our understanding further in clustered architectures’ applications
across varied industries, we must adopt an approach that focuses on investigating
configuration optimizations alongside load balancing algorithms while striving
for improved scalability along with performance enhancements in related sys-
tem designs.

Continuing along these lines, there is a need for significantly more efficient work
distribution methods that can use resources effectively while reducing content iner-
tia across multiple groups. Moreover, given the increasing levels of cloud computing
adoption today than ever before, improving the effectiveness of cloud-based environ-
ments cannot be overemphasized. Therefore, research must advance the discovery
of innovative technologies and new technologies that improve resource allocation
while enhancing energy efficiency in multi-cluster systems. Achieving success here
will go a long way in enhancing our collective knowledge and understanding of the
application of cluster environments in several different areas.

8	 REFERENCES

 [1] Y. Jadeja and K. Modi, “Cloud computing-concepts, architecture and challenges,” in 2012
International Conference on Computing, Electronics and Electrical Technologies (ICCEET),
IEEE, March 2012, pp. 877–880. https://doi.org/10.1109/ICCEET.2012.6203873

 [2] M. Ramachandran and V. Chang, “Towards performance evaluation of cloud service
providers for cloud data security,” International Journal of Information Management,
vol. 36, no. 4, pp. 618–625, 2016. https://doi.org/10.1016/j.ijinfomgt.2016.03.005

https://online-journals.org/index.php/i-jim
https://doi.org/10.1109/ICCEET.2012.6203873
https://doi.org/10.1016/j.ijinfomgt.2016.03.005

 90 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

Al-Ghuwairi et al.

 [3] S. Bharany, S. Sharma, O. I. Khalaf, G. M. Abdulsahib, A. S. Al Humaimeedy, T. H. Aldhyani,
and H. Alkahtani, “A systematic survey on energy-efficient techniques in sustainable
cloud computing,” Sustainability, vol. 14, no. 10, p. 6256, 2022. https://doi.org/10.3390/
su14106256

 [4] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud computing systems,”
in 2009 Fifth International Joint Conference on INC, IMS and IDC, IEEE, August 2009,
pp. 44-51. https://doi.org/10.1109/NCM.2009.218

 [5] D. Contractor and D. R. Patel, “Accountability in cloud computing by means of chain of
trust,” Int. J. Netw. Secur., vol. 19, no. 2, pp. 251–259, 2017.

 [6] W. Martorelli, L. Herbert, and T. M. B. Benefit, Understanding The Cloud Services Provider
Landscape. Forrester, 2015.

 [7] A. Sunyaev and A. Sunyaev, “Cloud computing,” in Internet Computing: Principles of
Distributed Systems and Emerging Internet-Based Technologies, 2020, pp. 195–236. https://
doi.org/10.1007/978-3-030-34957-8_7

 [8] L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, and D. Chen, “G-Hadoop:
MapReduce across distributed data centers for data-intensive computing,” Future
Generation Computer Systems, vol. 29, no. 3, pp. 739–750, 2013. https://doi.org/10.1016/
j.future.2012.09.001

 [9] M. Ayyub, A. Oracevic, R. Hussain, A. A. Khan, and Z. Zhang, “A comprehensive survey
on clustering in vehicular networks: Current solutions and future challenges,” Ad Hoc
Networks, vol. 124, p. 102729, 2022. https://doi.org/10.1016/j.adhoc.2021.102729

 [10] K. Benzekki, A. El Fergougui, and A. Elbelrhiti Elalaoui, “Software‐defined networking
(SDN): A survey,” Security and Communication Networks, vol. 9, no. 18, pp. 5803–5833,
2016. https://doi.org/10.1002/sec.1737

 [11] B. Wilder, Cloud Architecture Patterns: Using Microsoft Azure. O’Reilly Media, Inc., 2012.
 [12] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud: Utility-oriented federation of

cloud computing environments for scaling of application services,” in Algorithms and
Architectures for Parallel Processing: 10th International Conference, ICA3PP 2010, Busan,
Korea, May 21–23, 2010. Proceedings. Part I 10 (pp. 13–31). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-13119-6_2

 [13] S. Manvi and G. Shyam, Cloud Computing: Concepts and Technologies. CRC Press, 2021.
https://doi.org/10.1201/9781003093671

 [14] M. S. Jawed and M. Sajid, “A comprehensive survey on cloud computing: Architecture,
tools, technologies, and open issues,” International Journal of Cloud Applications and
Computing (IJCAC), vol. 12, no. 1, pp. 1–33, 2022. https://doi.org/10.4018/IJCAC.308277

 [15] N. A. Angel, D. Ravindran, P. D. R. Vincent, K. Srinivasan, and Y. C. Hu, “Recent advances
in evolving computing paradigms: Cloud, edge, and fog technologies,” Sensors, vol. 22,
no. 1, p. 196, 2021. https://doi.org/10.3390/s22010196

 [16] Y. O. Sharrab, I. Alsmadi, and N. J. Sarhan, “Towards the availability of video communi-
cation in artificial intelligence-based computer vision systems utilizing a multi-objective
function,” Cluster Computing, vol. 25, no. 1, pp. 231–247, 2022. https://doi.org/10.1007/
s10586-021-03391-4

 [17] K. A. Kumari, G. S. Sadasivam, D. Dharani, and M. Niranjanamurthy, Edge Computing:
Fundamentals, Advances and Applications, 2021. https://doi.org/10.1201/9781003230946

 [18] X. Wei, L. Ma, H. Zhang, and Y. Liu, “Multi-core-, multi-thread-based optimization algo-
rithm for large-scale traveling salesman problem,” Alexandria Engineering Journal,
vol. 60, no. 1, pp. 189–197, 2021. https://doi.org/10.1016/j.aej.2020.06.055

 [19] A. Merzky, M. Turilli, M. Titov, A. Al-Saadi, and S. Jha, “Design and performance charac-
terization of radical-pilot on leadership-class platforms,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 4, pp. 818–829, 2021. https://doi.org/10.1109/
TPDS.2021.3105994

https://online-journals.org/index.php/i-jim
https://doi.org/10.3390/su14106256
https://doi.org/10.3390/su14106256
https://doi.org/10.1109/NCM.2009.218
https://doi.org/10.1007/978-3-030-34957-8_7
https://doi.org/10.1007/978-3-030-34957-8_7
https://doi.org/10.1016/j.future.2012.09.001
https://doi.org/10.1016/j.future.2012.09.001
https://doi.org/10.1016/j.adhoc.2021.102729
https://doi.org/10.1002/sec.1737
https://doi.org/10.1007/978-3-642-13119-6_2
https://doi.org/10.1201/9781003093671
https://doi.org/10.4018/IJCAC.308277
https://doi.org/10.3390/s22010196
https://doi.org/10.1007/s10586-021-03391-4
https://doi.org/10.1007/s10586-021-03391-4
https://doi.org/10.1201/9781003230946
https://doi.org/10.1016/j.aej.2020.06.055
https://doi.org/10.1109/TPDS.2021.3105994
https://doi.org/10.1109/TPDS.2021.3105994

iJIM | Vol. 17 No. 19 (2023) International Journal of Interactive Mobile Technologies (iJIM) 91

Optimizing Clustering Approaches in Cloud Environments

 [20] M. Hildebrand, J. Khan, S. Trika, J. Lowe-Power, and V. Akella, “Autotm: Automatic ten-
sor movement in heterogeneous memory systems using integer linear programming,”
in Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, March 2020, pp. 875–890. https://doi.
org/10.1145/3373376.3378465

 [21] C. Barakat, S. Fritsch, M. Riedel, and S. Brynjólfsson, “An HPC-driven data science plat-
form to speed-up time series data analysis of patients with the acute respiratory dis-
tress syndrome,” in 2021 44th International Convention on Information, Communication
and Electronic Technology (MIPRO), IEEE, September 2021, pp. 311–316. https://doi.
org/10.23919/MIPRO52101.2021.9596840

 [22] S. B. Goyal, P. Bedi, A. S. Rajawat, R. N. Shaw, and A. Ghosh, “Multi-objective fuzzy-swarm
optimizer for data partitioning,” in Advanced Computing and Intelligent Technologies:
Proceedings of ICACIT 2021, Singapore: Springer, 2022, pp. 307–318. https://doi.
org/10.1007/978-981-16-2164-2_25

 [23] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient framework for clus-
tered federated learning,” Advances in Neural Information Processing Systems, vol. 33,
pp. 19586–19597, 2020.

 [24] N. Mungoli, “Scalable, distributed AI frameworks: Leveraging cloud comput-
ing for enhanced deep learning performance and efficiency,” arXiv preprint
arXiv:2304.13738, 2023.

 [25] M. Tarawneh, F. AlZyoud, Y. Sharrab, and H. Kanaker, “Secure e-health framework in cloud-
based environment,” in 2022 International Arab Conference on Information Technology
(ACIT), IEEE, November 2022, pp. 1–5. https://doi.org/10.1109/ACIT57182.2022.9994164

 [26] E. Lee, H. Oh, and D. Park, “Big data processing on single board computer clusters:
Exploring challenges and possibilities,” IEEE Access, vol. 9, pp. 142551–142565, 2021.
https://doi.org/10.1109/ACCESS.2021.3120660

 [27] M. A. Naeem, Y. B. Zikria, R. Ali, U. Tariq, Y. Meng, and A. K. Bashir, “Cache in fog comput-
ing design, concepts, contributions, and security issues in machine learning prospective,”
Digital Communications and Networks, 2022. https://doi.org/10.1016/j.dcan.2022.08.004

 [28] A. Poshtkohi and M. B. Ghaznavi-Ghoushchi, Implementing Parallel and Distributed
Systems. CRC Press, 2023. https://doi.org/10.1201/9781003379041

 [29] A. Krishnakumar, S. E. Arda, A. A. Goksoy, S. K. Mandal, U. Y. Ogras, A. L. Sartor, and
R. Marculescu, “Runtime task scheduling using imitation learning for heterogeneous
many-core systems,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 11, pp. 4064–4077, 2020. https://doi.org/10.1109/TCAD.2020.3012861

 [30] K. Hwang, J. Dongarra, and G. C. Fox, Distributed and Cloud Computing: From Parallel
Processing to the Internet of Things. Morgan Kaufmann, 2013.

 [31] M. Alsmirat, Y. Sharrab, M. Tarawneh, S. A. Al-shboul, and N. Sarhan, “Video coding deep
learning-based modeling for long life video streaming over next network generation,”
Cluster Computing, pp. 1–9, 2023. https://doi.org/10.1007/s10586-022-03948-x

 [32] E. R. Rodrigues, F. L. Madruga, P. O. Navaux, and J. Panetta, “Multi-core aware process
mapping and its impact on communication overhead of parallel applications,” in 2009
IEEE Symposium on Computers and Communications, IEEE, July 2009, pp. 811–817. https://
doi.org/10.1109/ISCC.2009.5202271

 [33] B. A. Nayfeh and K. Olukotun, “A single-chip multiprocessor,” Computer, vol. 30, no. 9,
pp. 79–85, 1997. https://doi.org/10.1109/2.612253

 [34] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos) the case for a scalable
operating system for multicores,” ACM SIGOPS Operating Systems Review, vol. 43, no. 2,
pp. 76–85, 2009. https://doi.org/10.1145/1531793.1531805

https://online-journals.org/index.php/i-jim
https://doi.org/10.1145/3373376.3378465
https://doi.org/10.1145/3373376.3378465
https://doi.org/10.23919/MIPRO52101.2021.9596840
https://doi.org/10.23919/MIPRO52101.2021.9596840
https://doi.org/10.1007/978-981-16-2164-2_25
https://doi.org/10.1007/978-981-16-2164-2_25
https://doi.org/10.1109/ACIT57182.2022.9994164
https://doi.org/10.1109/ACCESS.2021.3120660
https://doi.org/10.1016/j.dcan.2022.08.004
https://doi.org/10.1201/9781003379041
https://doi.org/10.1109/TCAD.2020.3012861
https://doi.org/10.1007/s10586-022-03948-x
https://doi.org/10.1109/ISCC.2009.5202271
https://doi.org/10.1109/ISCC.2009.5202271
https://doi.org/10.1109/2.612253
https://doi.org/10.1145/1531793.1531805

 92 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

Al-Ghuwairi et al.

 [35] H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and B. Chapman, “High perfor-
mance computing using MPI and OpenMP on multi-core parallel systems,” Parallel
Computing, vol. 37, no. 9, pp. 562–575, 2011. https://doi.org/10.1016/j.parco.2011.02.002

 [36] T. T. Vu and B. Derbel, “Parallel Branch-and-Bound in multi-core multi-CPU multi-GPU
heterogeneous environments,” Future Generation Computer Systems, vol. 56, pp. 95–109,
2016. https://doi.org/10.1016/j.future.2015.10.009

 [37] Y. Ma, H. Wu, L. Wang, B. Huang, R. Ranjan, A. Zomaya, and W. Jie, “Remote sensing
big data computing: Challenges and opportunities,” Future Generation Computer Systems,
vol. 51, pp. 47–60, 2015. https://doi.org/10.1016/j.future.2014.10.029

 [38] Y. Sharrab, N. T. Almutiri, M. Tarawneh, F. Alzyoud, A. R. F. Al-Ghuwairi, and D. Al-Fraihat,
“Toward smart and immersive classroom based on AI, VR, and 6G,” International Journal
of Emerging Technologies in Learning, vol. 18, no. 2, pp. 4–16, 2023. https://doi.org/10.3991/
ijet.v18i02.35997

 [39] Y. O. Sharrab and N. J. Sarhan, “Aggregate power consumption modeling of live video
streaming systems,” in Proceedings of the 4th ACM Multimedia Systems Conference,
February 2013, pp. 60–71. https://doi.org/10.1145/2483977.2483983

 [40] J. Zhu, P. Patros, K. B. Kent, and M. Dawson, “Node.js scalability investigation in the
cloud,” in CASCON 2018, ACM, 2018, pp. 201–212.

 [41] A. R. Al-Ghuwairi, Y. Sharrab, D. Al-Fraihat, M. AlElaimat, A. Alsarhan, and A. Algarni,
“Intrusion detection in cloud computing based on time series anomalies utilizing
machine learning,” Journal of Cloud Computing, vol. 12, no. 1, p. 127, 2023. https://doi.
org/10.1186/s13677-023-00491-x

 [42] G. McGrath, J. Short, S. Ennis, B. Judson, and P. Brenner, “Cloud event programming
paradigms: Applications and analysis,” in 2016 IEEE 9th International Conference
on Cloud Computing (CLOUD), IEEE, June 2016, pp. 400–406, https://doi.org/10.1109/
CLOUD.2016.0060

 [43] M. Kovatsch, M. Lanter, and Z. Shelby, “Californium: Scalable cloud services for the
Internet of Things with coap,” in 2014 International Conference on the Internet of Things
(IOT), IEEE, October 2014, pp. 1–6. https://doi.org/10.1109/IOT.2014.7030106

 [44] I. K. Chaniotis, K. I. D. Kyriakou, and N. D. Tselikas, “Is Node.js a viable option for build-
ing modern web applications? A performance evaluation study,” Computing, vol. 97,
pp. 1023–1044, 2015. https://doi.org/10.1007/s00607-014-0394-9

 [45] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A survey on the edge
computing for the Internet of Things,” IEEE Access, vol. 6, pp. 6900–6919, 2017. https://
doi.org/10.1109/ACCESS.2017.2778504

 [46] M. M. Golchi, S. Saraeian, and M. Heydari, “A hybrid of firefly and improved particle
swarm optimization algorithms for load balancing in cloud environments: Performance
evaluation,” Computer Networks, vol. 162, p. 106860, 2019. https://doi.org/10.1016/
j.comnet.2019.106860

 [47] G. M. Diouf, H. Elbiaze, and W. Jaafar, “On Byzantine fault tolerance in multi-master
Kubernetes clusters,” Future Generation Computer Systems, vol. 109, pp. 407-419, 2020.
https://doi.org/10.1016/j.future.2020.03.060

 [48] N. Hashemipour, P. C. del Granado, and J. Aghaei, “Dynamic allocation of peer-to-peer
clusters in virtual local electricity markets: A marketplace for EV flexibility,” Energy,
vol. 236, p. 121428, 2021. https://doi.org/10.1016/j.energy.2021.121428

 [49] K. Aravindhan and C. S. G. Dhas, “Destination-aware context-based routing protocol
with hybrid soft computing cluster algorithm for VANET,” Soft Computing, vol. 23, no. 8,
pp. 2499–2507, 2019. https://doi.org/10.1007/s00500-018-03685-7

https://online-journals.org/index.php/i-jim
https://doi.org/10.1016/j.parco.2011.02.002
https://doi.org/10.1016/j.future.2015.10.009
https://doi.org/10.1016/j.future.2014.10.029
https://doi.org/10.3991/ijet.v18i02.35997
https://doi.org/10.3991/ijet.v18i02.35997
https://doi.org/10.1145/2483977.2483983
https://doi.org/10.1186/s13677-023-00491-x
https://doi.org/10.1186/s13677-023-00491-x
https://doi.org/10.1109/CLOUD.2016.0060
https://doi.org/10.1109/CLOUD.2016.0060
https://doi.org/10.1109/IOT.2014.7030106
https://doi.org/10.1007/s00607-014-0394-9
https://doi.org/10.1109/ACCESS.2017.2778504
https://doi.org/10.1109/ACCESS.2017.2778504
https://doi.org/10.1016/j.comnet.2019.106860
https://doi.org/10.1016/j.comnet.2019.106860
https://doi.org/10.1016/j.future.2020.03.060
https://doi.org/10.1016/j.energy.2021.121428
https://doi.org/10.1007/s00500-018-03685-7

iJIM | Vol. 17 No. 19 (2023) International Journal of Interactive Mobile Technologies (iJIM) 93

Optimizing Clustering Approaches in Cloud Environments

 [50] M. Gollapalli, M. A. AlMetrik, B. S. AlNajrani, A. A. AlOmari, S. H. AlDawoud, Y. Z.
AlMunsour, and K. M. Aloup, “Task failure prediction using machine learning techniques
in the google cluster trace cloud computing environment,” Mathematical Modelling of
Engineering Problems, vol. 9, no. 2, 2022. https://doi.org/10.18280/mmep.090234

 [51] B. Kruekaew and W. Kimpan, “Multi-objective task scheduling optimization for load bal-
ancing in cloud computing environment using hybrid artificial bee colony algorithm
with reinforcement learning,” IEEE Access, vol. 10, pp. 17803–17818, 2022. https://doi.
org/10.1109/ACCESS.2022.3149955

 [52] D. Saxena, I. Gupta, A. K. Singh, and C. N. Lee, “A fault tolerant elastic resource man-
agement framework toward high availability of cloud services,” IEEE Transactions
on Network and Service Management, vol. 19, no. 3, pp. 3048–3061, 2022. https://doi.
org/10.1109/TNSM.2022.3170379

 [53] A. Javadpour, A. Nafei, F. Ja’fari, P. Pinto,W. Zhang, and A. K. Sangaiah, “An intelligent
energy-efficient approach for managing IoE tasks in cloud platforms,” Journal of Ambient
Intelligence and Humanized Computing, vol. 14, no. 4, pp. 3963–3979, 2023. https://doi.
org/10.1007/s12652-022-04464-x

 [54] O. Adeleke, S. A. Akinlabi, T. C. Jen, and I. Dunmade, “Prediction of municipal solid waste
generation: An investigation of the effect of clustering techniques and parameters on
ANFIS model performance,” Environmental Technology, vol. 43, no. 11, pp. 1634–1647,
2022. https://doi.org/10.1080/09593330.2020.1845819

 [55] D. Al-Fraihat, M. Alzaidi, and M. Joy, “Why do consumers adopt smart voice assistants
for shopping purposes? A perspective from complexity theory,” Intelligent Systems with
Applications, vol. 18, p. 200230, 2023. https://doi.org/10.1016/j.iswa.2023.200230

 [56] K. Ali, M. Alzaidi, D. Al-Fraihat, and A. M. Elamir, “Artificial Intelligence: Benefits,
Application, Ethical Issues, and Organizational Responses,” in Intelligent Sustainable
Systems: Selected Papers of WorldS4 2022. Singapore: Springer Nature Singapore, 2023,
Volume 1, pp. 685–702. https://doi.org/10.1007/978-981-19-7660-5_62

 [57] M. G. Al-Obeidallah, D. G. Al-Fraihat, A. M. Khasawneh, A. M. Saleh, and H. Addous,
“Empirical investigation of the impact of the adapter design pattern on software main-
tainability,” in 2021 International Conference on Information Technology (ICIT), IEEE, July
2021, pp. 206–211. https://doi.org/10.1109/ICIT52682.2021.9491719

 [58] M. El-Shebli, Y. Sharrab, and D. Al-Fraihat, “Prediction and modeling of water quality
using deep neural networks,” Environment, Development and Sustainability, pp. 1–34,
2023. https://doi.org/10.1007/s10668-023-03335-5

 [59] M. Al-Okaily, D. Al-Fraihat, M. M. Al-Debei, and A. Al-Okaily, “Factors influencing the
decision to utilize eTax systems during the covid-19 pandemic: The moderating role of
anxiety of covid-19 infection,” International Journal of Electronic Government Research
(IJEGR), vol. 18, no. 1, pp. 1–24, 2022. https://doi.org/10.4018/IJEGR.313635

 [60] A. Alarabiat, O. Hujran, D. Al-Fraihat, and A. Aljaafreh, “Understanding students’ resis-
tance to continue using online learning,” Education and Information Technologies,
pp. 1–26, 2023. https://doi.org/10.1007/s10639-023-12030-x

9	 AUTHORS

Dr. Abdel-Rahman Al-Ghuwairi received his Ph.D. in Computer Science from
New Mexico State University, USA, in 2013. He is currently an Associate Professor at
the Software Engineering Department of Hashemite University, Jordan. His research
interests encompass Software Engineering, Cloud Computing, Requirements
Engineering, Information Retrieval, Big Data, and Database Systems.

https://online-journals.org/index.php/i-jim
https://doi.org/10.18280/mmep.090234
https://doi.org/10.1109/ACCESS.2022.3149955
https://doi.org/10.1109/ACCESS.2022.3149955
https://doi.org/10.1109/TNSM.2022.3170379
https://doi.org/10.1109/TNSM.2022.3170379
https://doi.org/10.1007/s12652-022-04464-x
https://doi.org/10.1007/s12652-022-04464-x
https://doi.org/10.1080/09593330.2020.1845819
https://doi.org/10.1016/j.iswa.2023.200230
https://doi.org/10.1007/978-981-19-7660-5_62
https://doi.org/10.1109/ICIT52682.2021.9491719
https://doi.org/10.1007/s10668-023-03335-5
https://doi.org/10.4018/IJEGR.313635
https://doi.org/10.1007/s10639-023-12030-x

 94 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

Al-Ghuwairi et al.

Dr. Dimah Al-Fraihat received her Ph.D. in Computer Science – Software
Engineering, from the University of Warwick, UK. Currently, she is an Assistant
Professor at the Faculty of Information Technology, Isra University, Jordan. Her
research interests include Software Engineering, Cloud Computing, Computer Based
Applications, Technology Enhanced Learning, and Deep Learning.

Dr. Yousef Sharrab received his Ph.D. in Artificial Intelligence from Wayne
State University, USA, in 2017. He currently holds the position of Assistant Professor
at the Department of Computer Science, Isra University. His primary research inter-
ests encompass Deep Learning, Computer Vision, Speech Recognition, and IoT.

Yazeed Kreishan received his M.Sc. in Software Engineering from the Hashemite
University, Jordan. His research interests encompass Software Engineering, Cloud
Computing, and Requirements Engineering.

Dr. Ayoub Alsarhan earned his Ph.D. degree in electrical and computer engi-
neering from Concordia University, Canada, in 2011. Currently, he is a Professor
in the Department of Information Technology at the Hashemite University, Jordan.
His research interests encompass Cognitive Networks, Parallel Processing, Cloud
Computing, Machine Learning, and Real-time Multimedia Communication over
the Internet.

Hasan Idhaim received his M.Sc. in Computer Science from New Mexico
Highlands University in 2008, and B.Sc. in Computer Science from Yarmouk University
in 1985. He is currently a Lecturer at the Computer Information System Department
of Hashemite University, Zarqa, Jordan. His research interests encompass Database
Design & Tuning, E-Commerce Applications, and Industrial Data Analysis.

Ayman Qahmash received his Ph.D. degree in Computer Science from the
University of Warwick, UK in 2018. Currently, he is an Assistant Professor, the
Head of the Computer Engineering Department, and the Vice Dean of the Computer
Science College for academic affairs at King Khalid University. His research interests
include educational data mining, artificial intelligence, and statistical modeling.

https://online-journals.org/index.php/i-jim

