
 112 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

iJIM | eISSN: 1865-7923 | Vol. 17 No. 19 (2023) |

JIM International Journal of

Interactive Mobile Technologies

Ilham, Niswar, M., Paundu, A.W. (2023). Signature Verification Based on Dex CRC and Blake2 Algorithm to Prevent Reverse Engineering Attack in Android
Application. International Journal of Interactive Mobile Technologies (iJIM), 17(19), pp. 112–122. https://doi.org/10.3991/ijim.v17i19.42575

Article submitted 2023-07-05. Revision uploaded 2023-08-04. Final acceptance 2023-08-04.

© 2023 by the authors of this article. Published under CC-BY.

Online-Journals.org

PAPER

Signature Verification Based on Dex CRC and Blake2
Algorithm to Prevent Reverse Engineering Attack
in Android Application

ABSTRACT
The rapid growth of Android applications has led to more cybercrime cases, specifically
Reverse Engineering attacks, on Android apps. One of the most common cases of reverse engi-
neering is application repackaging, where the application is downloaded via the Play Store or
the official website and then repackaged with various additions or changes. One of the ways
to avoid Application Repackaging attacks is to check the signature of an application. However,
hackers can manipulate the application by adding a hook, i.e., replacing the original function
for getting signatures with a new modified function in the application. In this research, the
development of a verification method for Android applications is carried out by utilizing Dex
CRC and the Blake2 algorithm, which will be written in C using the Java Native Interface (JNI).
The results of this study indicate that the verification method using Dex CRC and the Blake2
algorithm can effectively protect Android applications from Application Repackaging attacks
without burdening application performance.

KEYWORDS
reverse engineering, application repackaging, blake2, Android protection

1	 INTRODUCTION

Android is a Linux kernel-based operating system developed by Google, which is
widely used on smartphones and tablets today. Android smartphone sales are pre-
dicted to take around 68% of total smartphone sales. This causes the development
of Android applications very rapidly [1]. App repackaging is a reverse engineering
attack technique that is used to modify or insert various kinds of code into applica-
tions. In application development, there are always hackers who try to exploit/attack
applications developed in the form of reverse engineering, including Application
Repackaging, which is a common and severe threat in the world of Android

Ilham, Muhammad
Niswar(), Ady
Wahyudi Paundu

Department of
Informatics, Faculty of
Engineering, Universitas
Hasanuddin, Gowa, South
Sulawesi, Indonesia

niswar@unhas.ac.id

https://doi.org/10.3991/ijim.v17i19.42575

https://online-journals.org/index.php/i-jim
https://online-journals.org/index.php/i-jim
https://doi.org/10.3991/ijim.v17i19.42575
https://online-journals.org/
https://online-journals.org/
mailto:niswar@unhas.ac.id
https://doi.org/10.3991/ijim.v17i19.42575

iJIM | Vol. 17 No. 19 (2023) International Journal of Interactive Mobile Technologies (iJIM) 113

Signature Verification Based on Dex CRC and Blake2 Algorithm to Prevent Reverse Engineering Attack in Android Application

application development. Hackers can use reverse engineering tools to disassemble
an app and change, insert, modify the source code or make fake purchases [2].

Attackers can abuse the app repackaging to commit crimes such as modifying,
pirating or inserting malware and then share the application through third-party
market applications or websites [3]. According to [4], 80% of malware samples
are implemented via app repackaging. Code obfuscation, stub Dex, VMP, and MD5
Signature verification are commonly used to protect applications from reverse engi-
neering attacks, where the code is difficult for attackers to understand the Smali
code and they can be bypassed by using some debugging tools, such as DexDump,
ARM Pro, NP Manager, Ultima (used for analyzing and extracting Android applica-
tions and getting the original code and then repacking the app again) but consume
a lot of time to hack. All anti reverse methods mentioned above have vulnerabilities
including:

•	 Ad removal/addition or modification.
In some applications such as games, there are advertisements that are sometimes
annoying so that users try to disassemble the application and then delete/add/
modify the existing ad providers in AndroidManifest.xml.

•	 Cloning.
When hackers want to duplicate the same application on a Smartphone, this can
be done by changing the application package.

•	 Cheating game.
Game cheats can be inserted into the application with Reverse Engineering.

To address these vulnerabilities and enhance security measures, we propose a
novel signature verification technique for applications. It involves calculating the
CRC of the Dex file and encrypting it using the Blake2 algorithm to generate a hash
signature [24], which is then used for integrity checks. Even the slightest change in
the application will result in a different hash value. Our signature method is inde-
pendent of the default Android signature, making it difficult for third-party tools to
detect or manipulate the signature value. As a result, any repackaged application
can be detected and appropriate actions can be taken.

2	 RELATED	WORK

There are many studies about the method of preventing reverse engineering
in Android applications. [5] discussed obfuscation techniques to deceive and delay
hacker time to reverse engineer, [6] also introduced obfuscation techniques by adding
useless code and encrypting strings on dex, then [7] discussed an advanced technique,
namely control flow obfuscation where the obfuscation process is made more compli-
cated and more effective, and [8] combined obfuscation and native code to make the
code more difficult to reverse. In the same year, [9][10][11][12][13][23] also improved
the obfuscation technique by using similarity analysis to detect repackaged apps. [14]
used an obfuscation technique in the Kotlin programming language, which is a new
language in Android application development, and in 2019, [15] used an obfuscated
logic bomb which will be triggered when the application has been modified.

Another technique is Stub Dex which was discussed by [16]. This technique
moves classes.dex to another place in the APK then makes Stub Dex the first to be
called when running the application and dynamically loads resources/classes.dex
which will run. He also added a rooted/debugging environment and evasion attack.

https://online-journals.org/index.php/i-jim

 114 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

Ilham et al.

Furthermore, there is a virtualization technique introduced by [17][18][19]
where this technique secures the code by extracting the ARM instruction key and
then mapping the instruction into virtual instructions which are then encoded into
the SO file. [20] added mapped key protection to the virtualization process to make it
difficult to restore so that the code is very difficult to crack. [2] implemented this vir-
tualization method at the binary level making it more difficult to crack and extend-
ing the hacking time.

In addition, [1] used the Robust Feature Signature technique where this tech-
nique detects malware or applications that have been repackaged using a data-
base of around 1260 application samples and studies the META.INF and classes.
dex of each application then calculate the value of its similarity. Furthermore, [21]
used the tree structure of the AndroidManifest.xml file to detect cloned Android
applications.

The author in [22] compared the original signature of existing applications on the
Android market with the signatures of third-party applications and then calculated
the similarity values of the two signatures.

3	 PROPOSED	METHOD

Default Android signature verification using MD5 can be easily obtained from
third-party tools and then entered into the hook function which makes the applica-
tion signature appear as if it has not changed. An example of the default Android
signature hook is shown in Figure 1.

Fig. 1. Code snippet of hooking get signature function to bypass signature verification

Figure 1 shows that the default Android signature that has been obtained using
third-party tools will be saved on the hook source code

String data = “5F745C3E85992E6A87B38A5EE329A62C”

and then force getSignature function to return the original signature every
time the application is opened using the hook function, so that it appears that the

https://online-journals.org/index.php/i-jim

iJIM | Vol. 17 No. 19 (2023) International Journal of Interactive Mobile Technologies (iJIM) 115

Signature Verification Based on Dex CRC and Blake2 Algorithm to Prevent Reverse Engineering Attack in Android Application

application has not changed. An overview of the MD5 verification bypass using
hooking method (Figure 1) can be seen in Figure 2.

Fig. 2. MD5 verification bypass flow using hook

Hackers use third-party apps or manually bypass signature hook such as
“libHookMD5”. This hook will manipulate the getSignature function to always return
the original md5 signature.

Therefore, we proposed a novel signature verification technique using Dex CRC
and Blake2 Algorithm. This technique is written in C using the Java Native Interface
(JNI) so that the source code is better preserved from decompilation and can run the
blake2 algorithm effectively. This technique works by taking the CRC from classes.dex
and then encrypting it using the Blake2 algorithm to get a secure signature hash,
then this hash will be verified every time the application runs. If the application
undergoes the slightest change, such as changing the application name, changing
the package, changing the string, editing the XML layout, or editing the class.dex,
the hash signature will change and will still be detectable even though a signature
verification bypass has been carried out from several third-party tools. The Dex CRC
signature verification architecture can be seen in Figure 3.

Fig. 3. Dex CRC and Blake2 Signature verification architecture

The developed signature verification method can be resistant to signature bypass
attacks because it does not use the default Android signature using MD5. Unlike the
method we propose, the signature is obtained from the application classes.dex and
then encrypted using Blake2 with a secret key so that the hash signature cannot be
obtained by even third-party tools. Hackers may find it impossible or very difficult
to get Dex CRC signature to be hooked, see Figure 4.

https://online-journals.org/index.php/i-jim

 116 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

Ilham et al.

Fig. 4. Dex CRC and Blake2 signature verification cannot hooked/bypassed

Pseudocode 1: Dump/Log the Original Signature
1 dumpOrigHash()
2 crc_orig_hash = null
3 Crc = getCRC()
4 crc_hash = blake2(crc, “key”)
5 log(crc_hash)
6 End

First, we run the application and generate Dex CRC and Blake2 signature using
Android log and we save it into the source code as the original signature

Pseudocode 2: Check Signature Function
1 CheckSignature()
2 crc_orig_hash = “ABCD” // this is the hash obtained in step 1
3 crc = getCRC()
4 crc_hash = blake2(crc, “key”)
5 if (crc_hash != crc_orig_hash)
6 //do some stuff
7 Exit()
8 Endif
9 End

After the original signature is obtained and added to the source code, now it will
run every time the app is opened and compare the current running Android appli-
cation signature with the saved original signature to make sure that the application
is repackaged or not. If the application is detected as repackaged then the applica-
tion will force close.

4	 PERFORMANCE	EVALUATION

We have evaluated the performance of our proposed signature verification based
on Dex CRC and Blake2 algorithm to mitigate reverse engineering attacks on applica-
tions. The evaluation was carried out by performing some modification/repackaging
on Android applications and performing signature bypass using third-party tools
to test the robustness of the proposed signature verification. In addition, we also
evaluate application performance at startup by comparing CPU, memory usage, and
load time in the original application and the application that has been added by the
proposed method. To carry out this evaluation, we use a private application because

https://online-journals.org/index.php/i-jim

iJIM | Vol. 17 No. 19 (2023) International Journal of Interactive Mobile Technologies (iJIM) 117

Signature Verification Based on Dex CRC and Blake2 Algorithm to Prevent Reverse Engineering Attack in Android Application

the code must be added to the source code so that the evaluation is carried out on
the application we have made.

In this evaluation, we used the Xiaomi 11T Pro smartphone device with Android
version 13 as shown in Table 1. We used Android Studio to evaluate RAM and CPU
and used the MT Manager and NP Manager tools to bypass signature verification
where these two tools in total have 4 of the most frequent signature bypass methods
used by hackers.

Table 1. Smartphone specification

Brand / Type Xiaomi 11T Pro

Android Version 13

RAM 12 GB

CPU Snapdragon 888

As can be seen in Table 2, we made several modifications to the application and
the Dex CRC and Blake2 signature has changed, which indicates that the application
is no longer original or has changes.

Table 2. Application modification attack test

 No Attack Type Original Signature Signature after Modifying

1 Changing Application
Name

D260C66BDD686065825251732B1A... 964A182212F15628812925AC8B…

2 Changing some xml D260C66BDD686065825251732B1A... 964A182212F15628812925AC8B…

3 Modify classes.dex D260C66BDD686065825251732B1A... D1ED8A27415CAF8767F23D7D…

(a) original Smali code (b) modified Smali code

Fig. 5. Smali code

 (a) original java code (b) java code after Smali modification

Fig. 6. Java code

https://online-journals.org/index.php/i-jim

 118 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

Ilham et al.

Figure 5 (a) and (b) shows the original Smali code and modified Smali code,
respectively [25]. The hacker modified the conditional statement as shown in
Figure 5 (b). Figure 6 (a) and (b) shows the original java code and java code after
Smali modification.

Fig. 7. Signature verification result after changing application name, xml and modifying dex file

Figure 7 shows our method detects and displays a log of signature verification
results after changing the app name, XML layout, and modifying dex. In Table 3, the
signature verification bypass test was carried out using four signature kill/bypass
tools including NP Kill Sign., NP Kill Sign. V2, SF Kill Sign., and Modex 3 Kill Sign.,
where we can see the results that none of the four bypass signatures can manipulate
the proposed CRC signature so that the application can still be detected as an appli-
cation that is not original or has been modified/repackaged.

Table 3. Signature verification kill/bypass test

No Attack Type Original Signature Signature after Modifying

1 NP Sign Killer D260C66BDD686065825251732B1A... DF2825FDC4A03EB45E3F11B9 …

2 SF Sign Killer D260C66BDD686065825251732B1A... D7A94A1F436F46AE3D3159AA…

3 Modex 3 Sign Killer D260C66BDD686065825251732B1A... 6C36AAA597EE268C49D57CE4…

4 NP Sign Killer v2 D260C66BDD686065825251732B1A… FAB93CDB2653643CE4F74E5D…

Fig. 8. Signature verification result for signature killer in Table 3

Figure 8 shows that certain logs were deleted by the signature kill tools, but the
current signature verification based on Dex CRC and Blake2 remains intact and can-
not be bypassed. Furthermore, Table 4 demonstrates that our proposed method has
no significant impact on CPU usage, as the highest CPU usage observed in applica-
tions using MD5 verification is 29%, while applications using Dex CRC and Blake2
signature verification show a slightly lower CPU usage of 27%. The memory usage of
the application where the highest RAM usage is 173 MB for applications using MD5
signature verification and 184 MB for applications using Dex CRC and Blake2 signa-
ture verification and the average difference between the two methods in RAM usage
is only 3.2 MB. In terms of loading time, MD5 signature and our method (combina-
tion of Dex CRC and Blake2) take 5 seconds and 5.57 seconds to open MainActivity of
the application, respectively.

https://online-journals.org/index.php/i-jim

iJIM | Vol. 17 No. 19 (2023) International Journal of Interactive Mobile Technologies (iJIM) 119

Signature Verification Based on Dex CRC and Blake2 Algorithm to Prevent Reverse Engineering Attack in Android Application

Table 4. Performance test table

Attempt
Memory Usage (MB) CPU Usage (%) Loading Time (Second)

Dex CRC MD5 Dex CRC MD5 Dex CRC MD5

1 168,00 160,00 26 26 4,96 4,71

2 162,00 166,70 26 26 4,54 4,47

3 166,50 161,20 26 25 4,55 4,55

4 162,90 164,30 25 25 4,83 4,84

5 163,00 160,00 25 25 5,00 4,49

6 170,50 162,00 27 26 4,68 4,37

7 167,00 164,00 26 29 4,38 4,25

8 184,20 173,00 18 17 5,57 5,40

9 167,00 162,00 26 24 4,61 5,41

10 168,00 167,40 25 26 5,11 5,19

11 166,30 159,00 25 26 5,00 4,48

12 164,20 159,70 25 25 4,92 4,93

13 162,00 167,00 26 25 4,68 4,75

14 169,50 171,20 26 25 4,67 5,21

15 170,00 165,40 25 26 5,06 5,06

16 170,10 166,50 26 25 5,08 5,08

17 168,60 166,90 26 26 5,00 4,51

18 160,00 161,40 26 24 5,00 4,56

19 170,80 161,20 26 26 4,72 5,07

20 163,70 161,00 25 26 5,54 4,79

Max 184,20 173,00 27 29 5,57 5,41

Min 160,00 159,00 18 17 4,38 4,25

Average 167,22 164,00 25 25 4,89 4,81

We also compare the other method with our proposed method in Table 5.

Table 5. Method comparison

Type of Attack
Method

Code
Obfuscation Stub Dex Virtualization Robust Default Signature

Verification
Proposed
Method

Decompile App Yes Yes Yes Yes Yes Yes

Directly edit decompiled app Yes No No Yes Yes Yes

Recompile/repackage app Yes Yes Yes Yes Yes Yes

Recompiled app can running without signature
verification bypass

Yes Yes Yes Yes No No

Recompiled app can running after signature
verification bypass

Yes Yes Yes Yes Yes No

https://online-journals.org/index.php/i-jim

 120 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

Ilham et al.

The evaluation shows that reversed/repackaging application using Dex CRC and
Blake2 algorithm cannot be run even though hackers add the signature verification
bypass as shown in Figure 4. Our proposed method has a minimal impact on appli-
cation performance because of small changes to the app, unlike the obfuscate and
virtualization methods requiring many changes to the code. Hence, the size of the
application becomes large, which will affect the performance.

5	 CONCLUSIONS	&	FUTURE	DIRECTIONS

This paper presents a novel approach called Signature Verification Based on
Dex CRC and Blake2 algorithm for ensuring the integrity of Android applications.
By leveraging Dex CRC and Blake2, this method enhances the security of applica-
tions against reverse engineering attacks where the repackaged application cannot
run even if it has a signature verification bypass. To the best of our knowledge,
Dex CRC and the Blake2 algorithm are the first techniques employed to bolster the
resilience of Android applications, addressing the vulnerabilities found in existing
methods. The performance evaluation demonstrates that the proposed method
effectively mitigates signature verification bypass techniques commonly used by
attackers. It provides robust protection even against minor modifications, such as
changes to application names or packages. Furthermore, the performance evalua-
tion indicates that the use of Dex CRC verification has a minimal impact on applica-
tion performance.

Our proposed method focused on preventing an application from running after
being repackaged/reversed so that the changes made by hackers will be useless.
However, hackers could still read the information contained in decompiled appli-
cations, especially in the java classes. To cover this issue, a combination of several
methods is required so that the anti-reverse method can be improved.

6	 REFERENCES

 [1] P. Faruki, V. Ganmoor, M. Gaur, and A. Bharmal, “DroidLytics: Robust feature signature
for repackaged android apps on official and third party android markets,” 2013 2nd
International Conference on Advanced Computing, Networking and Security. Mangalore:
IEEE, 2013. https://doi.org/10.1109/ADCONS.2013.48

 [2] Z. He, G. Ye, L. Yuan, Z. Tang, X. Wang, J. Ren, and X. Wang, “Exploiting binary-level code
virtualization to protect android application against app repackaging,” IEEE Access,
pp. 115062–115074, 2019. https://doi.org/10.1109/ACCESS.2019.2921417

 [3] G. Jeon, M. Choi, S. Lee, J. H. Yi, and H. Cho, “Automated multi-layered bytecode genera-
tion for preventing sensitive information leaks from android application,” IEEE Access,
pp. 119578–119590, 2021. https://doi.org/10.1109/ACCESS.2021.3107601

 [4] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and evolution,”
2012 IEEE Symposium on Security and Privacy, 2012. https://doi.org/10.1109/SP.2012.16

 [5] S. Ghosh, S. R. Tandan, and K. Lahre, “Shielding android application against reverse engi-
neering,” International Journal of Engineering Research & Technology, vol. 2, no. 6, 2013.

 [6] A. Kovacheva, “Efficient code obfuscation for android,” in Proceedings of Advances in
Information Technology: 6th International Conference. Bangkok, Thailand, 2013. https://
doi.org/10.1007/978-3-319-03783-7_10

 [7] Y. Peng, G. Su, B. Tian, M. Sun, and Q. Li, “Control flow obfuscation based protection
method for android applications,” China Communications, vol. 14, no. 11, pp. 247–259,
2017. https://doi.org/10.1109/CC.2017.8233664

https://online-journals.org/index.php/i-jim
https://doi.org/10.1109/ADCONS.2013.48
https://doi.org/10.1109/ACCESS.2019.2921417
https://doi.org/10.1109/ACCESS.2021.3107601
https://doi.org/10.1109/SP.2012.16
https://doi.org/10.1007/978-3-319-03783-7_10
https://doi.org/10.1007/978-3-319-03783-7_10
https://doi.org/10.1109/CC.2017.8233664

iJIM | Vol. 17 No. 19 (2023) International Journal of Interactive Mobile Technologies (iJIM) 121

Signature Verification Based on Dex CRC and Blake2 Algorithm to Prevent Reverse Engineering Attack in Android Application

 [8] Kyeonghwan Lim, An “Anti-reverse engineering technique using native code and
obfuscator-LLVM for android applications,” in Proceedings of the International
Conference on Research in Adaptive and Convergent Systems—RACS, 2017. https://doi.
org/10.1145/3129676.3129708

 [9] C. Yuan, S. Wei, C. Zhou, and J. Guo, “Scalable and obfuscation-resilient android app
repackaging detection based on behavior birthmark,” 2017 24th Asia-Pacific Software
Engineering Conference, 2017. https://doi.org/10.1109/APSEC.2017.54

 [10] S. Yue, W. Feng, J. Ma, Y. Jiang, X. Tao, C. Xu, and J. Lu, “RepDroid: An automated tool for
android application repackaging detection,” IEEE International Conference on Program
Comprehension, 2017. https://doi.org/10.1109/ICPC.2017.16

 [11] P. Liu, W. Wang, X. Luo, H. Wang, and C. Liu, “NSDroid: Efficient multi-classification
of android malware using neighborhood signature in local function call graphs,”
International Journal of Information Security, pp. 59–71, 2021. https://doi.org/10.1007/
s10207-020-00489-5

 [12] J. Zheng, K. Gong, S. Wang, Y. Wang, and M. Lei, “Repackaged apps detection based on
similarity evaluation,” 2016 8th International Conference on Wireless Communications &
Signal Processing (WCSP), 2016. https://doi.org/10.1109/WCSP.2016.7752544

 [13] W. Hu, J. Tao, X. Ma, W. Zhou, S. Zhao, and T. Han, “MIGDroid: Detecting APP-repackaging
android malware via method invocation graph,” 2014 23rd International Conference
on Computer Communication and Networks (ICCCN), 2014. https://doi.org/10.1109/
ICCCN.2014.6911805

 [14] Y. Shah, J. Shah, and K. Kansara, “Code obfuscating a kotlin-based app with proguard,”
2018 Second International Conference on Advances in Electronics, Computers and
Communications (ICAECC), 2018. https://doi.org/10.1109/ICAECC.2018.8479507

 [15] Q. Zeng, L. Luo, Z. Du, Z. Li, C.-T. Huang, and C. Farkas, “Resilient user-side android
application repackaging and tampering detection using cryptographically obfuscated
logic bombs,” IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 6,
pp. 2582–2600, 2021. https://doi.org/10.1109/TDSC.2019.2957787

 [16] Y. J. Kyeonghwan Lim, S.-j. Cho, M. Park, and S. Han, “An android application protec-
tion scheme against dynamic reverse engineering attacks,” J. Wirel. Mob. Networks
Ubiquitous Comput. Dependable Appl., pp. 40–52, 2016.

 [17] W. Zhou, Z. Wang, Y. Zhou, and X. Jiang, “DIVILAR: Diversifying intermediate language
for anti-repackaging on android platform,” in Proceedings of the 4th ACM Conference On
Data and Application Security and Privacy, 2014. https://doi.org/10.1145/2557547.2557558

 [18] J. Geochang, M. Choi, S. Lee, J. H. Yi, and H. Cho, “Automated multi-layered bytecode
generation for preventing sensitive information leaks from android applications,” IEEE
Access, vol. 9, 2021. https://doi.org/10.1109/ACCESS.2021.3107601

 [19] J. Kim, N. Go, and Y. Park, “A code concealment method using java reflection and dynamic
loading in android,” Journal of The Korea Institute of Information Security & Cryptology,
vol. 25, no. 1, pp. 17–30, 2015. https://doi.org/10.13089/JKIISC.2015.25.1.17

 [20] Z. Tang, M. Li, G. Ye, S. CHao, M. Chen, Z. Gong, and Z. Wang, “VMGuards: A novel virtual
machine based code protection system with VM security as the first class design con-
cern,” Applied Science, vol. 8, no. 5, p. 771, 2018. https://doi.org/10.3390/app8050771

 [21] B. Kim, K. Lim, S.-J. Cho, and M. Park, “RomaDroid: A robust and efficient technique
for detecting android app clones using a tree structure and components of each app’s
manifest file,” IEEE Access, vol. 7, pp. 72182–72196, 2019. https://doi.org/10.1109/
ACCESS.2019.2920314

 [22] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smartphone applications
in third-party Android marketplaces,” in Proceedings of the second ACM conference on
Data and Application Security and Privacy, 2012. https://doi.org/10.1145/2133601.2133640

https://online-journals.org/index.php/i-jim
https://doi.org/10.1145/3129676.3129708
https://doi.org/10.1145/3129676.3129708
https://doi.org/10.1109/APSEC.2017.54
https://doi.org/10.1109/ICPC.2017.16
https://doi.org/10.1007/s10207-020-00489-5
https://doi.org/10.1007/s10207-020-00489-5
https://doi.org/10.1109/WCSP.2016.7752544
https://doi.org/10.1109/ICCCN.2014.6911805
https://doi.org/10.1109/ICCCN.2014.6911805
https://doi.org/10.1109/ICAECC.2018.8479507
https://doi.org/10.1109/TDSC.2019.2957787
https://doi.org/10.1145/2557547.2557558
https://doi.org/10.1109/ACCESS.2021.3107601
https://doi.org/10.13089/JKIISC.2015.25.1.17
https://doi.org/10.3390/app8050771
https://doi.org/10.1109/ACCESS.2019.2920314
https://doi.org/10.1109/ACCESS.2019.2920314
https://doi.org/10.1145/2133601.2133640

 122 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 17 No. 19 (2023)

Ilham et al.

 [23] O. O. Cyril, T. Elmissaoui, M. C. Okoronkwo, I. Uchechi, M. Chikodili, H. Ugwuishiwu, and
O. B. Onyebuchi, “Signature based network intrusion detection system using feature
selection on android,” International Journal of Advanced Computer Science and Application,
vol. 11, no. 6, pp. 551–558, 2020. https://doi.org/10.14569/IJACSA.2020.0110667

 [24] H. EL Makhtoum and Y. Bentaleb, “Comparative study of Keccak and Blake2 hash func-
tions,” in Networking, Intelligent Systems and Security. Smart Innovation, Systems and
Technologies, M. Ben Ahmed, HN. L. Teodorescu, T. Mazri, P. Subashini, A. A. Boudhir
(Eds.). Springer, Singapore, 2022, vol. 237. https://doi.org/10.1007/978-981-16-3637-0_24

 [25] S. Sotiriadis, O. Omosebi, A. Ayapbergenova, and N. P. Saparkhojayev, “Evaluating the Java
Native Interface (JNI): Data types and strings,” International Journal of Distributed System
and Technologies, vol. 9, no. 2, p. 12, 2018. https://doi.org/10.4018/IJDST.2018040103

7	 AUTHORS

Ilham, Department of Informatics, Faculty of Engineering, Universitas
Hasanuddin, Gowa, South Sulawesi, Indonesia.

Muhammad Niswar, Department of Informatics, Faculty of Engineering,
Universitas Hasanuddin, Gowa, South Sulawesi, Indonesia.

Ady Wahyudi Paundu, Department of Informatics, Faculty of Engineering,
Universitas Hasanuddin, Gowa, South Sulawesi, Indonesia.

https://online-journals.org/index.php/i-jim
https://doi.org/10.14569/IJACSA.2020.0110667
https://doi.org/10.1007/978-981-16-3637-0_24
https://doi.org/10.4018/IJDST.2018040103

