
 46 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 18 No. 17 (2024)

iJIM | eISSN: 1865-7923 | Vol. 18 No. 17 (2024) |

JIM International Journal of

Interactive Mobile Technologies

Hebabaze, S.E., El Ghmary, M., El Bouabidi, H., Maftah, S., Amnai, M. (2024). From Micro-benchmarks to Machine Learning: Unveiling the Efficiency
and Scalability of Hadoop and Spark. International Journal of Interactive Mobile Technologies (iJIM), 18(17), pp. 46–60. https://doi.org/10.3991/ijim.v18i17.
44555

Article submitted 2023-09-08. Revision uploaded 2024-06-24. Final acceptance 2024-06-29.

© 2024 by the authors of this article. Published under CC-BY.

Online-Journals.org

PAPER

From Micro-benchmarks to Machine Learning: Unveiling
the Efficiency and Scalability of Hadoop and Spark

ABSTRACT
With the exponential growth of data, the demand for efficient and scalable data processing
solutions has become paramount. Hadoop and Spark, pivotal components of the open-source
Big Data landscape, have been put to the test in this study. We conducted a comprehensive per-
formance analysis of Hadoop and Spark in virtualized environments, evaluating their prowess
across a suite of benchmarks. The benchmarks encompassed a spectrum of workloads,
from micro-benchmarks such as Sort, WordCount, and TeraSort to web search tasks such as
PageRank and machine learning endeavors including Naive Bayes and K-means. The central
focus was to gauge their performance, efficiency, and resource utilization. The findings of this
study underscore the benefits of Spark’s in-memory processing, demonstrating its superiority
over Hadoop in various scenarios. Spark excels in machine learning and web search appli-
cations, particularly when handling smaller inputs. Its efficient memory management and
support for multiple iterations make it a strong choice. In resource-constrained environments
or when dealing with large input files and limited memory, Hadoop may still hold an edge. The
design and implementation of data processing solutions in virtualized environments should
carefully consider the specific demands of each framework. This study not only presents a per-
formance comparison of Hadoop and Spark across different benchmarks but also emphasizes
the vital implications for designing and deploying data processing solutions in virtualized
settings. It serves as a cornerstone for informed decision-making, paving the way for opti-
mized algorithms and techniques in the dynamic landscape of big data processing.

KEYWORDS
big data, Hadoop, Apache Spark, MapReduce, HiBench benchmark, machine learning,
memory resource limitations, data workloads

1	 INTRODUCTION

Nowadays, traditional data management systems can’t process the data’s com-
plexity because of its size, structure, and limited processing time [1]. Massive and

Salah Eddine Hebabaze1(),
Mohamed El Ghmary2,
Hamid El Bouabidi1, Sara
Maftah1, Mohamed Amnai1

1Ibn Tofaïl University,
Kenitra, Morocco

2Sidi Mohamed Ben Abdellah
University, Fez, Morocco

Salaheddine.Hebabaze@
uit.ac.ma

https://doi.org/10.3991/ijim.v18i17.44555

https://online-journals.org/index.php/i-jim
https://online-journals.org/index.php/i-jim
https://doi.org/10.3991/ijim.v18i17.44555
https://doi.org/10.3991/ijim.v18i17.44555
https://online-journals.org/
https://online-journals.org/
mailto:Salaheddine.Hebabaze@uit.ac.ma
mailto:Salaheddine.Hebabaze@uit.ac.ma
https://doi.org/10.3991/ijim.v18i17.44555

iJIM | Vol. 18 No. 17 (2024) International Journal of Interactive Mobile Technologies (iJIM) 47

From Micro-benchmarks to Machine Learning: Unveiling the Efficiency and Scalability of Hadoop and Spark

complex data, known as “Big Data,” requires new approaches such as Hadoop and
Spark. Hadoop is batch-oriented, while Spark is in-memory and real-time, mak-
ing it faster and more versatile [2]. This paper compares Hadoop and Spark, two
popular data processing frameworks, highlighting their strengths and weaknesses.
It emphasizes the importance of selecting the right framework for specific tasks.
The paper also contributes to the ongoing discussion among professionals and
organizations about improving web-based mobile learning in educational contexts
by providing insights into learner behavior, identifying patterns, and predicting
outcomes [3] [4].

2	 RELATED	WORKS

Samadi et al. [5] compared the performance of Spark and Hadoop on virtual
machines and found that Spark performs better across all workloads using fewer CPU
resources. Vettriselvi et al. [6] compare the performance of Spark and Hadoop. Their
empirical results indicate that Spark execution time and throughput are better than
Hadoop. Lagwankar et al. [7] investigated Hadoop and Spark micro-benchmarks for
clustering applications. They found that the behavior of these micro-benchmarks
is affected by the size, pattern, type, and source of the input datasets. Hedjazi et al.
[8] compared real-time processing frameworks to batch-processing Hadoop frame-
works when working on a large-scale classification project. The authors emphasized
that although Hadoop is not an ideal solution when low latency is necessary, Apache
Spark performs well in iterative processing. Jinbae Lee et al. [9] showed that using
Hadoop and Spark schemes enhanced the precision of resource provisioning and
job scheduling in large-scale data processing. Based on a wordcount job, Amritpal
Singh et al. [10] concluded that Spark is the best choice for stream processing while
Hadoop is better for batch processing. Safa et al. [11] found that Spark outperformed
Hadoop in terms of several important performance characteristics, including pro-
cessing time, CPU usage, latency, execution time, job performance, and scalability
for non-real-time data. Based on their experimental analysis, Ketu et al. [12] con-
cluded that Hadoop, an on-disk computation-based model, performs worse than
Spark, an in-memory computation-based model. Tkdogan et al. [13] found that Spark
is approximately five times faster in the training phase, and Hadoop consistently
exhibits better classification accuracy, especially with larger input workloads. The
authors of [14] suggest that the performance of Hadoop and Spark is influenced by
the nature of the tasks. Spark generally outperforms Hadoop due to its in-memory
processing, but choosing the right framework depends on specific healthcare appli-
cations and data characteristics. Future study should focus on scalability, energy
efficiency, cloud benchmarking, and adaptability to changing workloads for a com-
prehensive understanding of their performance in evolving big data analytics land-
scapes. In this paper, we compared Hadoop and Spark performance by running six
benchmarks to evaluate execution time, speedup, peak and average memory, and
CPU usage on both platforms.

3	 MAIN	CONCEPTS

This section elaborates on the fundamental concepts central to this study, offering
a more comprehensive understanding of big data, the architectural disparities
between Hadoop and Spark, and the methodologies employed in related study.

https://online-journals.org/index.php/i-jim

 48 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 18 No. 17 (2024)

Hebabaze et al.

3.1	 5	V’s	concept	in	big	data

The challenges that have evolved in the big data environment can be classified as
“5V”s [15]. The five Vs must include velocity, volume, and variety, with the addition
of veracity and value. Volume [16] means that the data is too large to be handled or
stored on a single device. Velocity [15] comes from the need to process massive data
quickly and accurately. In the world of big data, tackling real-time processing, such
as swiftly handling rapidly expanding data, is a constant challenge often linked with
stream-based processing. This is particularly evident in scenarios such as managing
a live Twitter data stream, where the need for processing data in real-time becomes
crucial [17]. Variety [18] corresponds to the fact that the data can come from various
and varied sources, which are heterogeneous and will not all respect the same data
format. Veracity [19] is the fact of being able to evaluate whether a piece of data is
correct or not to eliminate the data that seems incorrect or inconsistent. Value is the
result of extracting new knowledge and new data from existing data.

3.2	 Hadoop

Hadoop is one of the big data systems built on the shared-nothing principle
in cloud computing [12]. Hadoop is a framework and a set of tools designed to
help with the storage and processing of extremely large amounts of data. Indeed,
Hadoop [20] is made up of many interconnected parts working together, some of
which are mandatory and others are optional. HDFS, or Hadoop distributed file
system, stores several copies of data blocks across the nodes for improved reliability,
faster calculations, and high availability. Data is fetched by MapReduce for fur-
ther processing [21]. MapReduce is a method of processing data. It involves two
functions, map and reduce [22]. The first process data by mapping input values to
key-value pairs. Then, reduce combines values with the same keys into a single value.
YARN: The Yet Another Resource Negotiator is a cluster resource manager [7] that
performs both JobTracker and Application-Master functions in separate engines. It is
a core feature of Hadoop 2, which increases the size and functionality of any cluster.
YARN helps support non-MapReduce applications running on the same cluster as
MapReduce programs.

3.3	 Apache	Spark

Apache Spark is a fast data processing engine designed specifically for managing
massive amounts of distributed data on a large scale [23]. The program’s main
advantages are its speed, lazy mode, and versatility [24]. Spark is a software program
that effectively solves big data problems. It’s one of the most used programs thanks
to its support for multiple parallel operations and scaling [25]. Spark provides the
same fault tolerance and scalability as MapReduce by supporting apps that retrieve
working datasets over several operations [26]. When Apache Spark operates only in
memory, activities can be completed up to 100 times faster than Hadoop MapReduce.
Combining disks and memory can speed up the process by 10 times. Spark is
designed to work well with RDD (resilient distributed dataset) [27]. RDD: Spark
stores information about shards to reconstruct lost fragments in case of a loss. This
makes Spark more resilient, as opposed to other programming languages that would
have to revert to a previous checkpoint. At each iteration, Spark workers reuse data

https://online-journals.org/index.php/i-jim

iJIM | Vol. 18 No. 17 (2024) International Journal of Interactive Mobile Technologies (iJIM) 49

From Micro-benchmarks to Machine Learning: Unveiling the Efficiency and Scalability of Hadoop and Spark

read from HDFS or other file systems. This avoids using up system resources by
duplicating the data for a checkpoint. Reorganizing data on a read-only disk helps
speed up processing. RDD partitions can’t be modified [28]. To compare Hadoop and
Spark, the authors in [13] used a custom benchmarking study for binary classifica-
tion tasks. The study used diverse LibSVM datasets and generated sequential files for
Hadoop. Execution time, accuracy, and scalability were evaluated.

4	 HIBENCH	BENCHMARK	AND	ANALYSIS

4.1	 Methodology

The benchmarking methodology employed in this study involved a systematic and
reproducible evaluation approach for each benchmark category. For the “WordCount”
benchmark, the WordCount benchmark was executed across three distinct input sizes
(37 KB, 314 MB, and 3.1 GB), generating datasets automatically using the HiBench
benchmark suite. A similar systematic approach was adopted for the “Sort” bench-
mark, focusing on input sizes ranging from 3 MB to 3.3 GB. The “PageRank” and
“K-means” benchmarks followed comparable methodologies, utilizing datasets gener-
ated by the HiBench suite with varying input sizes. For the “Naive Bayes” benchmark,
the deployment involved a pseudo-distributed environment with standardized sys-
tem configurations, emphasizing consistency and control in the testing environment.
In our comparison, we used virtual machines, which provide many advantages over
physical machines. They’re easy to maintain and can be quickly deployed. We installed
Spark and Hadoop with a 6 GB and 60 GB hard disk. We used Linux Ubuntu 18 as an
operating system, and we placed a single workstation in this experiment. However,
each daemon ran in its own Java virtual machine using the HDFS file system.

The cluster deployment setup parameters are:

•	 Spark and Hadoop are installed in pseudo-distributed mode
•	 Spark Version: 2.4.5
•	 Hadoop Version:2.8.4
•	 Hibench Version The bigdata micro-benchmark suite v7
•	 Spark configurations:

– Executor Number: 2
– Executor cores: 4
– Executor Memory: 2 GB
– Driver Memory: 1 GB

4.2	 Benchmarks

Table 1. Benchmark categories

Category Benchmarks

Micro-Benchmark Sort

WordCount

TeraSort

Web Search PageRank

Machine Learning Naive Bayes

K-means

https://online-journals.org/index.php/i-jim

 50 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 18 No. 17 (2024)

Hebabaze et al.

Table 1 categorizes the benchmarks needed to assess Hadoop and Spark perfor-
mance. HiBench contains workloads and generates all the input files.

Micro-benchmark: We used three benchmarks: Sort, WordCount, and TeraSort.
Sort is I/O-bound and involves sorting a data source. WordCount is CPU-bound and
extracts a small subset of data from a larger source. TeraSort is CPU-bound in Map and
I/O-bound in Reduce and involves sorting a larger data source generated by Teragen.
Web search: This test measures the performance of the cluster for page ranking
tasks. A preparatory phase generates the graph of the data to be processed via the
PageRank algorithm. Then, the processing is carried out by a series of MapReduce
jobs. This test is a CPU-bound type. Machine learning: Naive Bayes classification
performs random classification on a set of data. It involves two MapReduce jobs
and is I/O-bound with high CPU usage. The K-means algorithm classifies a dataset
and visualizes its representation. It is compute-bound during iteration and I/O-
bound during clustering.

4.3	 Performance	measurement

In assessing the benchmarks, various performance metrics were systematically
captured and analyzed. For the “WordCount” benchmark, the evaluation encom-
passed key indicators: execution time, CPU utilization, memory usage, and speedup.
This analysis offered valuable insights into the efficiency of both Spark and Hadoop,
highlighting their adeptness in managing diverse data scales. Similarly, the “Sort”
benchmark underwent scrutiny through the monitoring of execution times, coupled
with a detailed examination of memory and CPU usage patterns. In the case of the
“PageRank” benchmark, a thorough assessment involved tracking execution times
across three iterations, with a specific focus on memory and CPU usage under dif-
ferent input sizes. The performance examination of the “K-means” benchmark
highlighted efficiency and scalability, demonstrating Spark’s significant speedup
advantage. Lastly, the analysis of the “Naive Bayes” workload centered on key
metrics: execution time, speedup, memory usage, and CPU usage, offering a holistic
comprehension of the efficiency and scalability of both Spark and Hadoop in tasks
demanding significant memory resources.

4.4	 Results	and	analysis

WordCount benchmark

Table 2. Workload execution time and speedup of Spark over Hadoop

Input Size 37 KB 314 MB 3.1 GB

Execution Time (s)
Hadoop 99.02 177.71 823.33

Spark 50.09 65.31 182.44

Speedup 2.0 2.7 4.5

Table 2 illustrates the speedup difference between Spark and Hadoop when
working with the same datasets and demonstrates the improvement in runtime per-
formance when a WordCount program runs on Spark compared to one running
on Hadoop.

https://online-journals.org/index.php/i-jim

iJIM | Vol. 18 No. 17 (2024) International Journal of Interactive Mobile Technologies (iJIM) 51

From Micro-benchmarks to Machine Learning: Unveiling the Efficiency and Scalability of Hadoop and Spark

42
36

59

42

80

6163
57

86
80 76 74

MAX AVG MAX AVG MAX AVG

37 KB 314 MB 3.1 GB

Hadoop

Spark

Fig. 1. Percentage of memory usage

As illustrated in Figure 1, Hadoop and Spark memory usage increases as their
input size increases. But when it comes to the percentage of memory usage, Hadoop
outperforms Spark. In terms of CPU usage, Spark has outstanding performance in
CPU resource saving, and consumes up to 5 times less than Hadoop, as shown in
Figure 2, since Hadoop counts on the hard disk while Spark stores the key-value
pairs in memory.

41

20

50

30

49

35

19

10 12 13
9 6

MAX AVG MAX AVG MAX AVG

37 KB 314 GB 3.1 GB

Hadoop

Spark

Fig. 2. Percentage of CPU usage

Performance factors and interpretation: The performance difference
between Hadoop and Spark in the WordCount benchmark is mainly due to the size
of the input data and the characteristics of the tasks. Spark is more efficient than
Hadoop for larger datasets, achieving up to 4.5 times faster speedups. This is because
Spark can store key-value pairs in memory, which reduces the need for disk access
and improves CPU utilization.

Sort benchmark

Table 3. Workload execution time and speedup of Spark over Hadoop

Input Size (MB) 3 328 3285

Execution Time (s)
Hadoop 129 271 2206

Spark 54 119 694

Speedup 2.4 2.3 3.2

Table 3 shows that Spark outperforms Hadoop when processing data of various
sizes. The sizes of the inputs vary from 3 MB to 3.3 GB. The maximum acceleration
is 3.2 times.

https://online-journals.org/index.php/i-jim

 52 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 18 No. 17 (2024)

Hebabaze et al.

23 19

70

54

80

60

42

23

60

42

100

74

MAX AVG MAX AVG MAX AVG

3 MB 328 MB 3285 MB

Hadoop

Spark

Fig. 3. Percentage of memory usage

39

9

49

10

70

60

19

7

21

9

50

20

MAX AVG MAX AVG MAX AVG

3 MB 328 MB 3285 MB

Hadoop

Spark

Fig. 4. Percentage of CPU usage

Figures 3 and 4, show memory and CPU usage for Hadoop and Spark. To imple-
ment Sort Workloads, Spark requires more memory resources but costs less CPU
resources than Hadoop. Hadoop has an extremely high maximum CPU utilization,
up to three times higher than Spark.

Performance Factors and Interpretation: A closer look at Table 3 reveals
that Spark consistently outperforms Hadoop across varying data sizes, indicating
its adaptability to different workloads. Spark’s sustained superiority in sort work-
loads highlights its efficiency in data sorting and manipulation. System configura-
tion analysis shows that Spark demands more memory but efficiently utilizes CPU
resources, contrasting with Hadoop’s high CPU utilization, suggesting inefficiencies
in its resource management.

TeraSort benchmark

93 27

3.4

267
119

2.2

1715

813

2.1

0

2

4

6

8

10

0

500

1000

1500

Sp
ee

du
p

Hadoop Spark Speedup

3.1 MB 306 MB 3 GB

Fig. 5. Execution time comparison for TeraSort in seconds

https://online-journals.org/index.php/i-jim

iJIM | Vol. 18 No. 17 (2024) International Journal of Interactive Mobile Technologies (iJIM) 53

From Micro-benchmarks to Machine Learning: Unveiling the Efficiency and Scalability of Hadoop and Spark

Figure 5 shows a comparison of runtime performance for TeraSort running
on Hadoop and Spark, illustrating the speedup of Spark over Hadoop on the same
datasets. Input sets vary from three million to 3000 million records in size, with each
record being 100 bytes. When the input is tiny, Spark and Hadoop perform equally
well. When the input is greater than three million records, Spark outperforms
Hadoop. At a large input size, the difference is more visible.

40
30

80

60

82

60

44
35

70
57

80

64

MAX AVG MAX AVG MAX AVG

3 MB 328 MB 3285 MB

Hadoop

Spark

Fig. 6. Percentage of memory usage

Figures 6 and 7 present the memory and CPU usage, respectively. The memory usage
is comparable for both frameworks, indicating efficient resource utilization. However,
Figure 7 illustrates that Spark consumes fewer CPU resources, particularly evident at a
data size of 3 GB, where Hadoop’s maximum CPU usage is six times higher than Spark.

63

12

34

9

66

2017
8

15
7

11 8

MAX AVG MAX AVG MAX AVG

3 MB 328 MB 3285 MB

Hadoop

Spark

Fig. 7. Percentage of CPU usage

Performance factors and interpretation: Spark consistently outperforms
Hadoop across data sizes and workloads in the TeraSort benchmark, demonstrating
its efficiency in handling diverse datasets. Spark’s superior performance benefits from
its efficient CPU utilization, while Hadoop’s high CPU usage suggests inefficiencies.
Spark’s ability to achieve competitive performance with lower CPU utilization reaf-
firms its prowess in handling diverse workloads compared to Hadoop.

PageRank benchmark

Table 4. Speedup of Spark over Hadoop

Input Size 10.6 KB 1.73 MB 1.1 GB

Number of Pages 5E + 01 5E + 03 5E + 06

Execution Time (s)
Hadoop (s) 200 600 5988

Spark (s) 40 70 4232

Speedup 5.0 8.6 1.4

https://online-journals.org/index.php/i-jim

 54 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 18 No. 17 (2024)

Hebabaze et al.

Table 4 shows a comparison of runtime performance for PageRank running on
Hadoop and Spark. Table 4 summarizes the acceleration of Spark over Hadoop on
the same datasets. Input datasets range from 50 pages to five million pages, and
input sizes range from 10.6 KB to 1.1 GB.

41

25

61

30

85 80

50
40

76

60

96
90

MAX AVE MAX AVE MAX AVE

50 5000 5000000

Hadoop

Spark

Fig. 8. Percentage of memory usage

The workload is evaluated through three iterations. Spark outperforms Hadoop
by up to 8.6 times when the input size is between 50 and 5000 pages, whereas the
input size increases and Hadoop’s execution time approaches Spark’s time. PageRank
works with iterations that require more memory resources. As shown in Figure 8,
Spark consumes up to twice as much RAM as Hadoop. Whenever the input data size
is too large, Spark becomes limited by memory for newly generated RDDs and must
initiate its replacement policy, affecting Spark’s performance and increasing CPU
use, as seen in Figure 9. Hadoop’s CPU utilization is about the same regardless of the
input size. Compared to Hadoop, Spark saves CPU resources with minimal inputs.

51

13

54

14

60

17

28

10

24

12

70

42

MAX AVE MAX AVE MAX AVE

50 5000 5000000

Hadoop

Spark

Fig. 9. Percentage of CPU usage

Performance factors and interpretation: Spark outperforms Hadoop for smaller
datasets, with the gap narrowing as the size of the data increases. Spark’s higher mem-
ory consumption is evident in PageRank tasks, while Hadoop maintains consistent CPU
utilization. Data scale and task type influence the performance of Spark and Hadoop.

K-means benchmark

Table 5. Workload execution time and speedup of Spark over Hadoop

Input Size (MB) 1.33 603 4096

Execution Time (s)
Hadoop 467 881 3462

Spark 71 127 956

Speedup 6.6 6.9 3.6

https://online-journals.org/index.php/i-jim

iJIM | Vol. 18 No. 17 (2024) International Journal of Interactive Mobile Technologies (iJIM) 55

From Micro-benchmarks to Machine Learning: Unveiling the Efficiency and Scalability of Hadoop and Spark

Table 5 highlights Spark’s performance advantage over Hadoop on the same
data sets. Furthermore, compare the execution time performance of K-means.
The input size is between 1 MB and 4 GB. We ran the K-means algorithm with three
clusters. The results presented in the table clearly show that Spark has a speedup
of up to 6.9 times better than Hadoop. However, the benefit is limited by memory.
Acceleration decreases when input is greater than 603 MB at equal speedup 3.6 times
when input size is 4 GB.

42

22

58

38

83

59

38

20

56

23

100

80

MAX AVG MAX AVG MAX AVG

1.3 MB 603 MB 4 GB

Hadoop

Spark

Fig. 10. Percentage of memory usage

70

20

70

23

70

25
30

10

40

12

40

15

MAX AVG MAX AVG MAX AVG

1.3 MB 603 MB 4 GB

Hadoop

Spark

Fig. 11. Percentage of CPU usage

As shown in Figure 10, the maximum memory use for Spark is 100% with
a 4 GB input. Spark cannot produce any more RDDs at this time, but it saves
more CPU resources than Hadoop, as shown in Figure 11, particularly with tiny
input. Its maximum CPU usage is only half that of Hadoop, with inputs of 1.3 MB
and 603 MB.

Performance factors and interpretation: The performance gap between
Hadoop and Spark is influenced by key factors. Spark is faster with smaller data-
sets, but this advantage decreases as data scales up, reaching 3.6 times speedup
at 4 GB. Spark’s in-memory storage benefits are evident in the efficiency of the
K-means algorithm compared to Hadoop’s disk-based approach. System config-
uration, including executor parameters, also impacts performance, emphasizing
the relationship between data characteristics, algorithm requirements, and sys-
tem setups.

https://online-journals.org/index.php/i-jim

 56 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 18 No. 17 (2024)

Hebabaze et al.

Naive Bayes benchmark

Table 6. Workload execution time and speedup of Spark over Hadoop

Input Size (MB) 88.50 106.23 358.37

Pages Numbers 25000 30000 500000

Class Numbers 10.00 100.00 100.00

Execution Time (s)
Hadoop 789.00 1506.00 4660.00

Spark 98.00 102.00 146.00

Speedup 8.1 14.8 31.9

Table 6 summarizes the speedup of Spark over Hadoop on the same datasets. In
addition, compare the execution time performance of Naive Bayes. Input sizes range
from 88.5 to 359 MB. Spark is intended for jobs that require multiple iterations using
the same dataset to improve a parameter’s performance by assuming it has better
results than Hadoop on Naive Bayes, which is a machine learning benchmark.
Table 6 shows that Spark has a significant advantage in performing Naive Bayes
workloads, with a speedup up to 31 times more than Hadoop, particularly with large
data sizes.

42

21

50

30

56

3436

20

39

23

60

38

MAX AVG MAX AVG MAX AVG

88.5 MO 106.23 MO 358.37 MO

Hadoop

Spark

Fig. 12. Percentage of memory usage

60

14

5

28

10

AVG MAX AVG

358.37 MB

44

10

40

9

18

7

20

MAX AVG MAX

88.5 MB 106.23 MB

Hadoop

Spark

Fig. 13. Percentage of CPU usage

Figure 12 indicates that Hadoop slightly exceeds Spark in memory utilization for
the Naive Bayes benchmark with a large input dataset. Yet, in terms of CPU usage,
Figure 13 shows that Spark outperforms Hadoop.

https://online-journals.org/index.php/i-jim

iJIM | Vol. 18 No. 17 (2024) International Journal of Interactive Mobile Technologies (iJIM) 57

From Micro-benchmarks to Machine Learning: Unveiling the Efficiency and Scalability of Hadoop and Spark

Performance factors and interpretation: Spark outperforms Hadoop in the
Naive Bayes benchmark due to its architecture, which is optimized for iterative pro-
cessing in machine learning tasks. Spark’s efficient use of memory and CPU resources
also contributes to its performance advantage. The benchmark results show that
Spark can be up to 31.9 times faster than Hadoop.

5	 CONCLUSION

In conclusion, our study underscores critical implications for the development
of efficient and scalable data processing solutions within the realm of big data. The
consistent outperformance of Spark, particularly in memory-intensive tasks, empha-
sizes its role as a powerful engine for applications requiring iterative processing,
such as machine learning and web searching. The specific scenarios where Spark
excels, such as with K-means and Naive Bayes on small inputs, provide actionable
insights for decision-makers. For tasks demanding multiple iterations and substantial
memory resources, Spark emerges as the preferred choice, while Hadoop may find
suitability in environments dealing with large input files and limited memory. These
recommendations offer practical guidance in aligning framework choices with task
requirements. Additionally, our study aligns with and contributes to the ongoing
discourse on the performance of Hadoop and Spark in the dynamic landscape of big
data. Recent studies, such as those by Samadi et al. [5] and Safa et al. [11], have con-
sistently highlighted Spark’s superior performance, particularly in scenarios with
smaller inputs and memory-intensive tasks. These findings reinforce larger trends
in big data study. that highlight the role of memory efficiency and real-time pro-
cessing capabilities in shaping the choice between Hadoop and Spark. Future study
directions may explore scalability with larger datasets, encompassing various data
mining tasks beyond classification, and address additional aspects such as energy
efficiency and adaptability to changing workloads in cloud environments.

6	 REFERENCES

 [1] M. Naeem et al., “Trends and future perspective challenges in big data,” in Advances in
Intelligent Data Analysis and Applications. Smart Innovation, Systems and Technologies,
J. S. Pan, V. E. Balas, and C. M. Chen, Eds., Springer, Singapore, vol. 253, 2022, pp. 309–325.
https://doi.org/10.1007/978-981-16-5036-9_30

 [2] A. Mostafaeipour, A. Jahangard Rafsanjani, M. Ahmadi, and J. Arockia Dhanraj,
“Investigating the performance of Hadoop and Spark platforms on machine learning
algorithms,” The Journal of Supercomputing, vol. 77, pp. 1273–1300, 2021. https://doi.
org/10.1007/s11227-020-03328-5

 [3] M. Hakiki et al., “Enhancing practicality of web-based mobile learning in operating
system course: A developmental study,” International Journal of Interactive Mobile
Technologies (iJIM), vol. 17, no. 19, pp. 4–19, 2023. https://doi.org/10.3991/ijim.v17i19.
42389

 [4] A. D. Samala et al., “Top 10 most-cited articles concerning blended learning for introduc-
tory algorithms and programming: A bibliometric analysis and overview,” International
Journal of Interactive Mobile Technologies (iJIM), vol. 17, no. 5, pp. 57–70, 2023. https://
doi.org/10.3991/ijim.v17i05.36503

 [5] Y. Samadi, M. Zbakh, and C. Tadonki, “Performance comparison between Hadoop and
Spark frameworks using HiBench benchmarks,” Concurrency and Computation: Practice
and Experience, vol. 30, no. 12, 2018. https://doi.org/10.1002/cpe.4367

https://online-journals.org/index.php/i-jim
https://doi.org/10.1007/978-981-16-5036-9_30
https://doi.org/10.1007/s11227-020-03328-5
https://doi.org/10.1007/s11227-020-03328-5
https://doi.org/10.3991/ijim.v17i19.42389
https://doi.org/10.3991/ijim.v17i19.42389
https://doi.org/10.3991/ijim.v17i05.36503
https://doi.org/10.3991/ijim.v17i05.36503
https://doi.org/10.1002/cpe.4367

 58 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 18 No. 17 (2024)

Hebabaze et al.

 [6] A. Vettriselvi, N. Gnanambigai, P. Dinadayalan, and S. Sutha, “A comparative study of
machine learning algorithms using RDD based regression and classification methods,”
Annals of the Romanian Society for Cell Biology, vol. 25, no. 4, pp. 15168–15199, 2021.
http://annalsofrscb.ro/index.php/journal/article/view/4887/3915

 [7] I. Lagwankar, A. N. Sankaranarayanan, and S. Kalambur, “Impact of map-reduce
framework on hadoop and spark MR application performance,” in 2020 IEEE
International Conference on Big Data (Big Data), Atlanta, GA, USA, 2020, pp. 2763–2772.
https://doi.org/10.1109/BigData50022.2020.9378269

 [8] M. A. Hedjazi, I. Kourbane, Y. Genc, and B. Ali, “A comparison of Hadoop, Spark and
storm for the task of large-scale image classification,” in 2018 26th Signal Processing and
Communications Applications Conference (SIU), Izmir, Turkey, 2018, pp. 1–4. https://doi.
org/10.1109/SIU.2018.8404688

 [9] J. Lee, B. Kim, and J. M. Chung, “Time estimation and resource minimization scheme
for Apache spark and hadoop big data systems with failures,” IEEE Access, vol. 7,
pp. 9658–9666, 2019. https://doi.org/10.1109/ACCESS.2019.2891001

 [10] A. Singh, A. Khamparia, and A. K. Luhach, “Performance comparison of Apache
hadoop and Apache spark,” in Proceedings of the Third International Conference on
Advanced Informatics for Computing Research (ICAICR ’19), 2019, pp. 1–5. https://doi.org/
10.1145/3339311.3339329

 [11] S. Alkatheri, S. A. Abbas, and M. A. Siddiqui, “A comparative study of big data frame-
works,” International Journal of Computer Science and Information Security (IJCSIS),
vol. 17, no. 1, pp. 66–73, 2019.

 [12] S. Ketu, P. K. Mishra, and S. Agarwal, “Performance analysis of distributed computing
frameworks for big data analytics: Hadoop vs Spark,” Computación y Sistemas, vol. 24,
no. 2, pp. 669–686, 2020. https://doi.org/10.13053/cys-24-2-3401

 [13] T. Tekdogan and A. Cakmak, “Benchmarking Apache Spark and Hadoop MapReduce on
big data classification,” in Proceedings of the 2021 5th International Conference on Cloud
and Big Data Computing (ICCBDC), 2021, pp. 15–20. https://doi.org/10.1145/3481646.
3481649

 [14] S. Ibtisum, E. Bazgir, S. M. A. Rahman, and S. M. S. Hossain, “A comparative analysis
of big data processing paradigms: Mapreduce vs. apache spark,” World Journal of
Advanced Research and Reviews, vol. 20, no. 1, pp. 1089–1098. https://doi.org/10.30574/
wjarr.2023.20.1.2174

 [15] M. Younas, “Research challenges of big data,” Service Oriented Computing and Applications,
vol. 13, pp. 105–107, 2019. https://doi.org/10.1007/s11761-019-00265-x

 [16] F. Cappa, R. Oriani, E. Peruffo, and I. McCarthy, “Big data for creating and capturing value
in the digitalized environment: Unpacking the effects of volume, variety, and veracity on
firm performance,” Journal of Product Innovation Management, vol. 38, no. 1, pp. 49–67,
2021. https://doi.org/10.1111/jpim.12545

 [17] B. Amen, S. Faiz, and T. T. Do, “Big data directed acyclic graph model for real-time
COVID-19 twitter stream detection,” Pattern Recognition, vol. 123, p. 108404, 2022. https://
doi.org/10.1016/j.patcog.2021.108404

 [18] G. Vranopoulos, N. Clarke, and S. Atkinson, “Addressing big data variety using an auto-
mated approach for data characterization,” Journal of Big Data, vol. 9, 2022. https://doi.
org/10.1186/s40537-021-00554-3

 [19] A. P. Reimer and E. A. Madigan, “Veracity in big data: How good is good enough,”
Health Informatics Journal, vol. 25, no. 4, pp. 1290–1298, 2019. https://doi.org/10.1177/
1460458217744369

 [20] Samir Abou El-Seoud, Hosam F. El-Sofany, Mohamed Ashraf Fouad Abdelfattah, and
Reham Mohamed, “Big data and cloud computing: Trends and challenges,” International
Journal of Interactive Mobile Technologies (iJIM), vol. 11, no. 2, pp. 34–52, 2017. https://doi.
org/10.3991/ijim.v11i2.6561

https://online-journals.org/index.php/i-jim
http://annalsofrscb.ro/index.php/journal/article/view/4887/3915
https://doi.org/10.1109/BigData50022.2020.9378269
https://doi.org/10.1109/SIU.2018.8404688
https://doi.org/10.1109/SIU.2018.8404688
https://doi.org/10.1109/ACCESS.2019.2891001
https://doi.org/10.1145/3339311.3339329
https://doi.org/10.1145/3339311.3339329
https://doi.org/10.13053/cys-24-2-3401
https://doi.org/10.1145/3481646.3481649
https://doi.org/10.1145/3481646.3481649
https://doi.org/10.30574/wjarr.2023.20.1.2174
https://doi.org/10.30574/wjarr.2023.20.1.2174
https://doi.org/10.1007/s11761-019-00265-x
https://doi.org/10.1111/jpim.12545
https://doi.org/10.1016/j.patcog.2021.108404
https://doi.org/10.1016/j.patcog.2021.108404
https://doi.org/10.1186/s40537-021-00554-3
https://doi.org/10.1186/s40537-021-00554-3
https://doi.org/10.1177/1460458217744369
https://doi.org/10.1177/1460458217744369
https://doi.org/10.3991/ijim.v11i2.6561
https://doi.org/10.3991/ijim.v11i2.6561

iJIM | Vol. 18 No. 17 (2024) International Journal of Interactive Mobile Technologies (iJIM) 59

From Micro-benchmarks to Machine Learning: Unveiling the Efficiency and Scalability of Hadoop and Spark

 [21] K. Kalia and N. Gupta, “Analysis of Hadoop MapReduce scheduling in heterogeneous
environment,” Ain Shams Engineering Journal, vol. 12, no. 1, pp. 1101–1110, 2021. https://
doi.org/10.1016/j.asej.2020.06.009

 [22] Z. Lu, N. Wang, J. Wu, and M. Qiu, “IoTDeM: An IoT big data-oriented MapReduce
performance prediction extended model in multiple edge clouds,” Journal of Parallel
and Distributed Computing, vol. 118, pp. 316–327, 2018. https://doi.org/10.1016/j.jpdc.
2017.11.001

 [23] J. Liu, S. Tang, G. Xu, C. Ma, and M. Lin, “A novel configuration tuning method based on
feature selection for Hadoop MapReduce,” IEEE Access, vol. 8, pp. 63862–63871, 2020.
https://doi.org/10.1109/ACCESS.2020.2984778

 [24] R. J. Erizka, L. A. Romadhona, R. Febrianti, A. Winata, and C. P. Amanda, “Hadoop-
MapReduce pada YARN framework,” Journal of Network and Computer Applications,
vol. 1, no. 2, pp. 40–47, 2022.

 [25] H. Ahmadvand, M. Goudarzi, and F. Foroutan, “Gapprox: Using Gallup approach for
approximation in big data processing,” Journal of Big Data, vol. 6, 2019. https://doi.
org/10.1186/s40537-019-0185-4

 [26] E. S. Hamza, A. Abou El Kalam, A. Outchakoucht, and S. Benhadou, “Machine learn-
ing enhanced access control for big data,” Int. J. Comput. Sci. Netw. Secur., vol. 20, no. 3,
pp. 83–91, 2020.

 [27] Z. Ruihong and H. Zhihua, “WITHDRAWN: Comparative research on active learning of
big data based on mapreduce and Spark,” Microprocessors and Microsystems, p. 103425,
2020. https://doi.org/10.1016/j.micpro.2020.103425

 [28] S. Badrinarayanan et al., “A Plug-n-Play framework for scaling private set intersection
to billion-sized sets,” in Cryptology and Network Security (CANS 2023), in Lecture Notes
in Computer Science, J. Deng, V. Kolesnikov, and A. A. Schwarzmann, Eds., Springer,
Singapore, vol. 14342, 2022, pp. 443–467. https://doi.org/10.1007/978-981-99-7563-1_20

7	 AUTHORS

Salah Eddine Hebabaze is a PhD student at the Faculty of Sciences, Ibn Tofaïl
University, Kenitra, Morocco. Affiliated with the Research Laboratory in Computer
Science and Telecommunications (LARIT), Team Networks and Telecommunications.
She obtained a Research Master’s degree in Cloud and High-Performance Computing
from the National School for Computer Science and Systems Analysis (ENSIAS),
Mohammed V University (UM5), Rabat, Morocco (E-mail: salaheddine.hebabaze@
uit.ac.ma).

Pr. Mohamed El Ghmary is a Professor of Computer Science at the Faculty
of Science Dhar El Mahraz (FSDM), Sidi Mohamed Ben Abdellah University, Fez,
Morocco. He is an associate member of the Intelligent Processing and Security of
Systems (IPSS) team of the Computer Science Department at the Faculty of Science,
Mohamed V University (UM5), Rabat, Morocco. He is also an associate member of
the Research Laboratory in Computer Science and Telecommunications (LARIT),
Team Networks and Telecommunications, Faculty of Science, Ibn Tofail University,
Kenitra, Morocco. His research interests are mobile edge computing (MEC), cloud
computing, machine learning, deep learning, intelligent systems, and optimization
(E-mail: mohamed.elghmary@usmba.ac.ma).

Hamid El Bouabidi is a PhD student at the Faculty of Sciences, Ibn Tofaïl
University, Kenitra, Morocco. Affiliated with the Research Laboratory in Computer
Science and Telecommunications (LARIT), Team Networks and Telecommunications.
He obtained a Research Master’s degree in Cloud and High-Performance Computing

https://online-journals.org/index.php/i-jim
https://doi.org/10.1016/j.asej.2020.06.009
https://doi.org/10.1016/j.asej.2020.06.009
https://doi.org/10.1016/j.jpdc.2017.11.001
https://doi.org/10.1016/j.jpdc.2017.11.001
https://doi.org/10.1109/ACCESS.2020.2984778
https://doi.org/10.1186/s40537-019-0185-4
https://doi.org/10.1186/s40537-019-0185-4
https://doi.org/10.1016/j.micpro.2020.103425
https://doi.org/10.1007/978-981-99-7563-1_20
mailto:salaheddine.hebabaze@uit.ac.ma
mailto:salaheddine.hebabaze@uit.ac.ma
mailto:mohamed.elghmary@usmba.ac.ma

 60 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 18 No. 17 (2024)

Hebabaze et al.

from the National School for Computer Science and Systems Analysis (ENSIAS),
Mohammed V University (UM5), Rabat, Morocco (E-mail: elbouabidihamid2015@
gmail.com).

Sara Maftah is a PhD student at the Faculty of Sciences, Ibn Tofaïl University,
Kenitra, Morocco. Affiliated with the Research Laboratory in Computer Science
and Telecommunications (LARIT), Team Networks and Telecommunications. She
obtained a Research Master’s degree in Cloud and High-Performance Computing
from the National School for Computer Science and Systems Analysis (ENSIAS),
Mohammed V University (UM5), Rabat, Morocco (E-mail: sara.maftah@uit.ac.ma).

Pr. Mohamed Amnai is an assistant at the National School of Applied Sciences
in Khouribga, Settat University, Morocco. He joined the Department of Computer
Science and Mathematics, Faculty of Sciences, Tofaïl University, Kenitra, Morocco,
as an Associate Professor in 2018. He is also an associate member of the Research
Laboratory in Computer Science and Telecommunications (LARIT), Team Networks
and Telecommunications Faculty of Science, Kenitra, Morocco. He is also an asso-
ciate member of the laboratory at the IPOSI National School of Applied Sciences,
Hassan 1 University, Khouribga, Morocco (E-mail: mohamed.amnai@uit.ac.ma).

https://online-journals.org/index.php/i-jim
mailto:elbouabidihamid2015@gmail.com
mailto:elbouabidihamid2015@gmail.com
mailto:sara.maftah@uit.ac.ma
mailto:mohamed.amnai@uit.ac.ma

