
	 46	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 17 (2024)

iJIM  |  eISSN: 1865-7923  |  Vol. 18 No. 17 (2024)  | 

JIM International Journal of 

Interactive Mobile Technologies 

Hebabaze, S.E., El Ghmary, M., El Bouabidi, H., Maftah, S., Amnai, M. (2024). From Micro-benchmarks to Machine Learning: Unveiling the Efficiency  
and Scalability of Hadoop and Spark. International Journal of Interactive Mobile Technologies (iJIM), 18(17), pp. 46–60. https://doi.org/10.3991/ijim.v18i17. 
44555

Article submitted 2023-09-08. Revision uploaded 2024-06-24. Final acceptance 2024-06-29.

© 2024 by the authors of this article. Published under CC-BY.

Online-Journals.org

PAPER

From Micro-benchmarks to Machine Learning: Unveiling 
the Efficiency and Scalability of Hadoop and Spark

ABSTRACT
With the exponential growth of data, the demand for efficient and scalable data processing 
solutions has become paramount. Hadoop and Spark, pivotal components of the open-source 
Big Data landscape, have been put to the test in this study. We conducted a comprehensive per-
formance analysis of Hadoop and Spark in virtualized environments, evaluating their prowess 
across a suite of benchmarks. The benchmarks encompassed a spectrum of workloads, 
from micro-benchmarks such as Sort, WordCount, and TeraSort to web search tasks such as 
PageRank and machine learning endeavors including Naive Bayes and K-means. The central 
focus was to gauge their performance, efficiency, and resource utilization. The findings of this 
study underscore the benefits of Spark’s in-memory processing, demonstrating its superiority 
over Hadoop in various scenarios. Spark excels in machine learning and web search appli-
cations, particularly when handling smaller inputs. Its efficient memory management and 
support for multiple iterations make it a strong choice. In resource-constrained environments 
or when dealing with large input files and limited memory, Hadoop may still hold an edge. The 
design and implementation of data processing solutions in virtualized environments should 
carefully consider the specific demands of each framework. This study not only presents a per-
formance comparison of Hadoop and Spark across different benchmarks but also emphasizes 
the vital implications for designing and deploying data processing solutions in virtualized 
settings. It serves as a cornerstone for informed decision-making, paving the way for opti-
mized algorithms and techniques in the dynamic landscape of big data processing.
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big data, Hadoop, Apache Spark, MapReduce, HiBench benchmark, machine learning, 
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1	 INTRODUCTION

Nowadays, traditional data management systems can’t process the data’s com-
plexity because of its size, structure, and limited processing time [1]. Massive and 
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complex data, known as “Big Data,” requires new approaches such as Hadoop and 
Spark. Hadoop is batch-oriented, while Spark is in-memory and real-time, mak-
ing it faster and more versatile [2]. This paper compares Hadoop and Spark, two 
popular data processing frameworks, highlighting their strengths and weaknesses. 
It emphasizes the importance of selecting the right framework for specific tasks. 
The paper also contributes to the ongoing discussion among professionals and 
organizations about improving web-based mobile learning in educational contexts 
by providing insights into learner behavior, identifying patterns, and predicting 
outcomes [3] [4].

2	 RELATED WORKS

Samadi et al. [5] compared the performance of Spark and Hadoop on virtual 
machines and found that Spark performs better across all workloads using fewer CPU 
resources. Vettriselvi et al. [6] compare the performance of Spark and Hadoop. Their 
empirical results indicate that Spark execution time and throughput are better than 
Hadoop. Lagwankar et al. [7] investigated Hadoop and Spark micro-benchmarks for 
clustering applications. They found that the behavior of these micro-benchmarks 
is affected by the size, pattern, type, and source of the input datasets. Hedjazi et al. 
[8] compared real-time processing frameworks to batch-processing Hadoop frame-
works when working on a large-scale classification project. The authors emphasized 
that although Hadoop is not an ideal solution when low latency is necessary, Apache 
Spark performs well in iterative processing. Jinbae Lee et al. [9] showed that using 
Hadoop and Spark schemes enhanced the precision of resource provisioning and 
job scheduling in large-scale data processing. Based on a wordcount job, Amritpal 
Singh et al. [10] concluded that Spark is the best choice for stream processing while 
Hadoop is better for batch processing. Safa et al. [11] found that Spark outperformed 
Hadoop in terms of several important performance characteristics, including pro-
cessing time, CPU usage, latency, execution time, job performance, and scalability 
for non-real-time data. Based on their experimental analysis, Ketu et al. [12] con-
cluded that Hadoop, an on-disk computation-based model, performs worse than 
Spark, an in-memory computation-based model. Tkdogan et al. [13] found that Spark 
is approximately five times faster in the training phase, and Hadoop consistently 
exhibits better classification accuracy, especially with larger input workloads. The 
authors of [14] suggest that the performance of Hadoop and Spark is influenced by 
the nature of the tasks. Spark generally outperforms Hadoop due to its in-memory 
processing, but choosing the right framework depends on specific healthcare appli-
cations and data characteristics. Future study should focus on scalability, energy 
efficiency, cloud benchmarking, and adaptability to changing workloads for a com-
prehensive understanding of their performance in evolving big data analytics land-
scapes. In this paper, we compared Hadoop and Spark performance by running six 
benchmarks to evaluate execution time, speedup, peak and average memory, and 
CPU usage on both platforms.

3	 MAIN CONCEPTS

This section elaborates on the fundamental concepts central to this study, offering 
a more comprehensive understanding of big data, the architectural disparities 
between Hadoop and Spark, and the methodologies employed in related study.
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3.1	 5 V’s concept in big data

The challenges that have evolved in the big data environment can be classified as 
“5V”s [15]. The five Vs must include velocity, volume, and variety, with the addition 
of veracity and value. Volume [16] means that the data is too large to be handled or 
stored on a single device. Velocity [15] comes from the need to process massive data 
quickly and accurately. In the world of big data, tackling real-time processing, such 
as swiftly handling rapidly expanding data, is a constant challenge often linked with 
stream-based processing. This is particularly evident in scenarios such as managing 
a live Twitter data stream, where the need for processing data in real-time becomes 
crucial [17]. Variety [18] corresponds to the fact that the data can come from various 
and varied sources, which are heterogeneous and will not all respect the same data 
format. Veracity [19] is the fact of being able to evaluate whether a piece of data is 
correct or not to eliminate the data that seems incorrect or inconsistent. Value is the 
result of extracting new knowledge and new data from existing data.

3.2	 Hadoop

Hadoop is one of the big data systems built on the shared-nothing principle 
in cloud computing [12]. Hadoop is a framework and a set of tools designed to 
help with the storage and processing of extremely large amounts of data. Indeed, 
Hadoop [20] is made up of many interconnected parts working together, some of 
which are mandatory and others are optional. HDFS, or Hadoop distributed file 
system, stores several copies of data blocks across the nodes for improved reliability, 
faster calculations, and high availability. Data is fetched by MapReduce for fur-
ther processing [21]. MapReduce is a method of processing data. It involves two 
functions, map and reduce [22]. The first process data by mapping input values to 
key-value pairs. Then, reduce combines values with the same keys into a single value. 
YARN: The Yet Another Resource Negotiator is a cluster resource manager [7] that 
performs both JobTracker and Application-Master functions in separate engines. It is 
a core feature of Hadoop 2, which increases the size and functionality of any cluster. 
YARN helps support non-MapReduce applications running on the same cluster as 
MapReduce programs.

3.3	 Apache Spark

Apache Spark is a fast data processing engine designed specifically for managing 
massive amounts of distributed data on a large scale [23]. The program’s main 
advantages are its speed, lazy mode, and versatility [24]. Spark is a software program 
that effectively solves big data problems. It’s one of the most used programs thanks 
to its support for multiple parallel operations and scaling [25]. Spark provides the 
same fault tolerance and scalability as MapReduce by supporting apps that retrieve 
working datasets over several operations [26]. When Apache Spark operates only in 
memory, activities can be completed up to 100 times faster than Hadoop MapReduce. 
Combining disks and memory can speed up the process by 10 times. Spark is 
designed to work well with RDD (resilient distributed dataset) [27]. RDD: Spark 
stores information about shards to reconstruct lost fragments in case of a loss. This 
makes Spark more resilient, as opposed to other programming languages that would 
have to revert to a previous checkpoint. At each iteration, Spark workers reuse data 
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read from HDFS or other file systems. This avoids using up system resources by 
duplicating the data for a checkpoint. Reorganizing data on a read-only disk helps 
speed up processing. RDD partitions can’t be modified [28]. To compare Hadoop and 
Spark, the authors in [13] used a custom benchmarking study for binary classifica-
tion tasks. The study used diverse LibSVM datasets and generated sequential files for 
Hadoop. Execution time, accuracy, and scalability were evaluated.

4	 HIBENCH BENCHMARK AND ANALYSIS

4.1	 Methodology

The benchmarking methodology employed in this study involved a systematic and 
reproducible evaluation approach for each benchmark category. For the “WordCount” 
benchmark, the WordCount benchmark was executed across three distinct input sizes 
(37 KB, 314 MB, and 3.1 GB), generating datasets automatically using the HiBench 
benchmark suite. A similar systematic approach was adopted for the “Sort” bench-
mark, focusing on input sizes ranging from 3 MB to 3.3 GB. The “PageRank” and 
“K-means” benchmarks followed comparable methodologies, utilizing datasets gener-
ated by the HiBench suite with varying input sizes. For the “Naive Bayes” benchmark, 
the deployment involved a pseudo-distributed environment with standardized sys-
tem configurations, emphasizing consistency and control in the testing environment. 
In our comparison, we used virtual machines, which provide many advantages over 
physical machines. They’re easy to maintain and can be quickly deployed. We installed 
Spark and Hadoop with a 6 GB and 60 GB hard disk. We used Linux Ubuntu 18 as an 
operating system, and we placed a single workstation in this experiment. However, 
each daemon ran in its own Java virtual machine using the HDFS file system.

The cluster deployment setup parameters are:

•	 Spark and Hadoop are installed in pseudo-distributed mode
•	 Spark Version: 2.4.5
•	 Hadoop Version:2.8.4
•	 Hibench Version The bigdata micro-benchmark suite v7
•	 Spark configurations:

–	 Executor Number: 2
–	 Executor cores: 4
–	 Executor Memory: 2 GB
–	 Driver Memory: 1 GB

4.2	 Benchmarks

Table 1. Benchmark categories

Category Benchmarks

Micro-Benchmark Sort

WordCount

TeraSort

Web Search PageRank

Machine Learning Naive Bayes

K-means

https://online-journals.org/index.php/i-jim
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Table 1 categorizes the benchmarks needed to assess Hadoop and Spark perfor-
mance. HiBench contains workloads and generates all the input files.

Micro-benchmark: We used three benchmarks: Sort, WordCount, and TeraSort. 
Sort is I/O-bound and involves sorting a data source. WordCount is CPU-bound and 
extracts a small subset of data from a larger source. TeraSort is CPU-bound in Map and 
I/O-bound in Reduce and involves sorting a larger data source generated by Teragen. 
Web search: This test measures the performance of the cluster for page ranking 
tasks. A preparatory phase generates the graph of the data to be processed via the 
PageRank algorithm. Then, the processing is carried out by a series of MapReduce 
jobs. This test is a CPU-bound type. Machine learning: Naive Bayes classification 
performs random classification on a set of data. It involves two MapReduce jobs 
and is I/O-bound with high CPU usage. The K-means algorithm classifies a dataset 
and visualizes its representation. It is compute-bound during iteration and I/O-
bound during clustering.

4.3	 Performance measurement

In assessing the benchmarks, various performance metrics were systematically 
captured and analyzed. For the “WordCount” benchmark, the evaluation encom-
passed key indicators: execution time, CPU utilization, memory usage, and speedup. 
This analysis offered valuable insights into the efficiency of both Spark and Hadoop, 
highlighting their adeptness in managing diverse data scales. Similarly, the “Sort” 
benchmark underwent scrutiny through the monitoring of execution times, coupled 
with a detailed examination of memory and CPU usage patterns. In the case of the 
“PageRank” benchmark, a thorough assessment involved tracking execution times 
across three iterations, with a specific focus on memory and CPU usage under dif-
ferent input sizes. The performance examination of the “K-means” benchmark 
highlighted efficiency and scalability, demonstrating Spark’s significant speedup 
advantage. Lastly, the analysis of the “Naive Bayes” workload centered on key 
metrics: execution time, speedup, memory usage, and CPU usage, offering a holistic 
comprehension of the efficiency and scalability of both Spark and Hadoop in tasks 
demanding significant memory resources.

4.4	 Results and analysis

WordCount benchmark

Table 2. Workload execution time and speedup of Spark over Hadoop

Input Size 37 KB 314 MB 3.1 GB

Execution Time (s)
Hadoop 99.02 177.71 823.33

Spark 50.09 65.31 182.44

Speedup 2.0 2.7 4.5

Table 2 illustrates the speedup difference between Spark and Hadoop when 
working with the same datasets and demonstrates the improvement in runtime per-
formance when a WordCount program runs on Spark compared to one running 
on Hadoop.

https://online-journals.org/index.php/i-jim
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Fig. 1. Percentage of memory usage

As illustrated in Figure 1, Hadoop and Spark memory usage increases as their 
input size increases. But when it comes to the percentage of memory usage, Hadoop 
outperforms Spark. In terms of CPU usage, Spark has outstanding performance in 
CPU resource saving, and consumes up to 5 times less than Hadoop, as shown in 
Figure 2, since Hadoop counts on the hard disk while Spark stores the key-value 
pairs in memory.
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Fig. 2. Percentage of CPU usage

Performance factors and interpretation: The performance difference 
between Hadoop and Spark in the WordCount benchmark is mainly due to the size 
of the input data and the characteristics of the tasks. Spark is more efficient than 
Hadoop for larger datasets, achieving up to 4.5 times faster speedups. This is because 
Spark can store key-value pairs in memory, which reduces the need for disk access 
and improves CPU utilization.

Sort benchmark

Table 3. Workload execution time and speedup of Spark over Hadoop

Input Size (MB) 3 328 3285

Execution Time (s)
Hadoop 129 271 2206

Spark 54 119 694

Speedup 2.4 2.3 3.2

Table 3 shows that Spark outperforms Hadoop when processing data of various 
sizes. The sizes of the inputs vary from 3 MB to 3.3 GB. The maximum acceleration 
is 3.2 times.
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Figures 3 and 4, show memory and CPU usage for Hadoop and Spark. To imple-
ment Sort Workloads, Spark requires more memory resources but costs less CPU 
resources than Hadoop. Hadoop has an extremely high maximum CPU utilization, 
up to three times higher than Spark.

Performance Factors and Interpretation: A closer look at Table 3 reveals 
that Spark consistently outperforms Hadoop across varying data sizes, indicating 
its adaptability to different workloads. Spark’s sustained superiority in sort work-
loads highlights its efficiency in data sorting and manipulation. System configura-
tion analysis shows that Spark demands more memory but efficiently utilizes CPU 
resources, contrasting with Hadoop’s high CPU utilization, suggesting inefficiencies 
in its resource management.

TeraSort benchmark
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Fig. 5. Execution time comparison for TeraSort in seconds
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Figure 5 shows a comparison of runtime performance for TeraSort running 
on Hadoop and Spark, illustrating the speedup of Spark over Hadoop on the same 
datasets. Input sets vary from three million to 3000 million records in size, with each 
record being 100 bytes. When the input is tiny, Spark and Hadoop perform equally 
well. When the input is greater than three million records, Spark outperforms 
Hadoop. At a large input size, the difference is more visible.
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Fig. 6. Percentage of memory usage

Figures 6 and 7 present the memory and CPU usage, respectively. The memory usage 
is comparable for both frameworks, indicating efficient resource utilization. However, 
Figure 7 illustrates that Spark consumes fewer CPU resources, particularly evident at a 
data size of 3 GB, where Hadoop’s maximum CPU usage is six times higher than Spark.
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Performance factors and interpretation: Spark consistently outperforms 
Hadoop across data sizes and workloads in the TeraSort benchmark, demonstrating 
its efficiency in handling diverse datasets. Spark’s superior performance benefits from 
its efficient CPU utilization, while Hadoop’s high CPU usage suggests inefficiencies. 
Spark’s ability to achieve competitive performance with lower CPU utilization reaf-
firms its prowess in handling diverse workloads compared to Hadoop.

PageRank benchmark

Table 4. Speedup of Spark over Hadoop

Input Size 10.6 KB 1.73 MB 1.1 GB

Number of Pages 5E + 01 5E + 03 5E + 06

Execution Time (s)
Hadoop (s) 200 600 5988

Spark (s) 40 70 4232

Speedup 5.0 8.6 1.4
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Table 4 shows a comparison of runtime performance for PageRank running on 
Hadoop and Spark. Table 4 summarizes the acceleration of Spark over Hadoop on 
the same datasets. Input datasets range from 50 pages to five million pages, and 
input sizes range from 10.6 KB to 1.1 GB.
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The workload is evaluated through three iterations. Spark outperforms Hadoop 
by up to 8.6 times when the input size is between 50 and 5000 pages, whereas the 
input size increases and Hadoop’s execution time approaches Spark’s time. PageRank 
works with iterations that require more memory resources. As shown in Figure 8, 
Spark consumes up to twice as much RAM as Hadoop. Whenever the input data size 
is too large, Spark becomes limited by memory for newly generated RDDs and must 
initiate its replacement policy, affecting Spark’s performance and increasing CPU 
use, as seen in Figure 9. Hadoop’s CPU utilization is about the same regardless of the 
input size. Compared to Hadoop, Spark saves CPU resources with minimal inputs.
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Performance factors and interpretation: Spark outperforms Hadoop for smaller 
datasets, with the gap narrowing as the size of the data increases. Spark’s higher mem-
ory consumption is evident in PageRank tasks, while Hadoop maintains consistent CPU 
utilization. Data scale and task type influence the performance of Spark and Hadoop.

K-means benchmark

Table 5. Workload execution time and speedup of Spark over Hadoop

Input Size (MB) 1.33 603 4096

Execution Time (s)
Hadoop 467 881 3462

Spark 71 127 956

Speedup 6.6 6.9 3.6
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Table 5 highlights Spark’s performance advantage over Hadoop on the same 
data sets. Furthermore, compare the execution time performance of K-means. 
The input size is between 1 MB and 4 GB. We ran the K-means algorithm with three 
clusters. The results presented in the table clearly show that Spark has a speedup 
of up to 6.9 times better than Hadoop. However, the benefit is limited by memory. 
Acceleration decreases when input is greater than 603 MB at equal speedup 3.6 times 
when input size is 4 GB.
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As shown in Figure 10, the maximum memory use for Spark is 100% with 
a 4 GB input. Spark cannot produce any more RDDs at this time, but it saves 
more CPU resources than Hadoop, as shown in Figure 11, particularly with tiny 
input. Its maximum CPU usage is only half that of Hadoop, with inputs of 1.3 MB 
and 603 MB.

Performance factors and interpretation: The performance gap between 
Hadoop and Spark is influenced by key factors. Spark is faster with smaller data-
sets, but this advantage decreases as data scales up, reaching 3.6 times speedup 
at 4 GB. Spark’s in-memory storage benefits are evident in the efficiency of the 
K-means algorithm compared to Hadoop’s disk-based approach. System config-
uration, including executor parameters, also impacts performance, emphasizing 
the relationship between data characteristics, algorithm requirements, and sys-
tem setups.
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Naive Bayes benchmark

Table 6. Workload execution time and speedup of Spark over Hadoop

Input Size (MB) 88.50 106.23 358.37

Pages Numbers 25000 30000 500000

Class Numbers 10.00 100.00 100.00

Execution Time (s)
Hadoop 789.00 1506.00 4660.00

Spark 98.00 102.00 146.00

Speedup 8.1 14.8 31.9

Table 6 summarizes the speedup of Spark over Hadoop on the same datasets. In 
addition, compare the execution time performance of Naive Bayes. Input sizes range 
from 88.5 to 359 MB. Spark is intended for jobs that require multiple iterations using 
the same dataset to improve a parameter’s performance by assuming it has better 
results than Hadoop on Naive Bayes, which is a machine learning benchmark. 
Table 6 shows that Spark has a significant advantage in performing Naive Bayes 
workloads, with a speedup up to 31 times more than Hadoop, particularly with large 
data sizes.
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Figure 12 indicates that Hadoop slightly exceeds Spark in memory utilization for 
the Naive Bayes benchmark with a large input dataset. Yet, in terms of CPU usage, 
Figure 13 shows that Spark outperforms Hadoop.
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Performance factors and interpretation: Spark outperforms Hadoop in the 
Naive Bayes benchmark due to its architecture, which is optimized for iterative pro-
cessing in machine learning tasks. Spark’s efficient use of memory and CPU resources 
also contributes to its performance advantage. The benchmark results show that 
Spark can be up to 31.9 times faster than Hadoop.

5	 CONCLUSION

In conclusion, our study underscores critical implications for the development 
of efficient and scalable data processing solutions within the realm of big data. The 
consistent outperformance of Spark, particularly in memory-intensive tasks, empha-
sizes its role as a powerful engine for applications requiring iterative processing, 
such as machine learning and web searching. The specific scenarios where Spark 
excels, such as with K-means and Naive Bayes on small inputs, provide actionable 
insights for decision-makers. For tasks demanding multiple iterations and substantial 
memory resources, Spark emerges as the preferred choice, while Hadoop may find 
suitability in environments dealing with large input files and limited memory. These 
recommendations offer practical guidance in aligning framework choices with task 
requirements. Additionally, our study aligns with and contributes to the ongoing 
discourse on the performance of Hadoop and Spark in the dynamic landscape of big 
data. Recent studies, such as those by Samadi et al. [5] and Safa et al. [11], have con-
sistently highlighted Spark’s superior performance, particularly in scenarios with 
smaller inputs and memory-intensive tasks. These findings reinforce larger trends 
in big data study. that highlight the role of memory efficiency and real-time pro-
cessing capabilities in shaping the choice between Hadoop and Spark. Future study 
directions may explore scalability with larger datasets, encompassing various data 
mining tasks beyond classification, and address additional aspects such as energy 
efficiency and adaptability to changing workloads in cloud environments.
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