
iJIM | Vol. 18 No. 10 (2024)	 International Journal of Interactive Mobile Technologies (iJIM)	 173

iJIM  |  eISSN: 1865-7923  |  Vol. 18 No. 10 (2024)  | 

JIM International Journal of

Interactive Mobile Technologies

Benavides-Astudillo, E., Fuertes, W., Sanchez-Gordon, S., Nuñez-Agurto, D. (2024). NDLP Phishing: A Fine-Tuned Application to Detect Phishing
Attacks Based on Natural Language Processing and Deep Learning. International Journal of Interactive Mobile Technologies (iJIM), 18(10), pp. 173–190.
https://doi.org/10.3991/ijim.v18i10.45725

Article submitted 2023-10-09. Revision uploaded 2024-01-08. Final acceptance 2024-01-26.

© 2024 by the authors of this article. Published under CC-BY.

Online-Journals.org

PAPER

NDLP Phishing: A Fine-Tuned Application
to Detect Phishing Attacks Based on Natural
Language Processing and Deep Learning

ABSTRACT
Phishing is a cyberattack that aims to deceive and harm users socially or economically. The
most elaborate method to carry out this type of attack is through phishing web pages. For
an untrained eye, it is not easy to distinguish whether a page is phishing. Different solutions
combat this type of attack, such as those using deep learning (DL). Still, they need to be more
aligned with the body text of web pages, taking into account their linguistic characteristics,
or they will only exist as a model without providing practical application. This study aims to
develop a lightweight tool, an extension for installation in the Google Chrome web browser
that enables the detection of phishing attacks using DL and natural language processing (NLP)
techniques. This proposed tool is NDLP Phishing (NDLP is a combination of the acronyms NLP
and DL). First, we selected and adjusted the hyperparameters of BiGRU layers, dropout, batch
Size, epochs, BiGRU neurons, and GloVe dimension of a BiGRU detection model based on DL
and NLP. Second, an extension was developed for Google Chrome based on the fine-tuned
model. The results of our experiments show a set of optimal hyperparameters to train the
model. Subsequently, we applied these hyperparameters and achieved a mean accuracy of
98.55%. The code for the algorithms that generated the prediction model and the code for the
Google Chrome extension are shared on GitHub.

KEYWORDS
phishing, deep learning (DL), natural language processing (NLP), application, chrome
extension, BiGRU, fine-tuning

1	 INTRODUCTION

People have become dependent on electronic devices and Internet services.
The use of devices has grown exponentially since the COVID-19 pandemic. Due
to mobility restrictions, online transactions multiplied during the pandemic for

Eduardo Benavides-
Astudillo1,2(), Walter
Fuertes2, Sandra
Sanchez-Gordon1, Daniel
Nuñez-Agurto2

1Department of Informatics
and Computer Science,
Escuela Politécnica Nacional,
Quito, Ecuador

2Department of Computer
Sciences, Universidad de
las Fuerzas Armadas ESPE,
Sangolquí, Ecuador

diego.benavides@
epn.edu.ec

https://doi.org/10.3991/ijim.v18i10.45725

https://online-journals.org/index.php/i-jim
https://online-journals.org/index.php/i-jim
https://doi.org/10.3991/ijim.v18i10.45725
https://online-journals.org/
https://online-journals.org/
mailto:diego.benavides@epn.edu.ec
mailto:diego.benavides@epn.edu.ec
https://doi.org/10.3991/ijim.v18i10.45725

	 174	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 10 (2024)

Benavides-Astudillo et al.

purchasing food, clothing, and other items, as well as paying for services. However,
as the number of users utilizing Internet platforms for transactions has increased,
so has the number of attackers attempting to obtain confidential information from
users to commit fraud against them [1]. Computer systems may have software and
hardware that prevent computer attacks; however, the chain is only as strong as
its weakest link. This weak link is often the user themselves, who are tricked using
social engineering techniques into revealing confidential information.

Social engineering is a practice that enables attackers to acquire sensitive or con-
fidential information from a user of a system or organization by exploiting specific
human characteristics [2], such as behavior [3], or their susceptibility to attacks [4].
The primary type of social engineering cyberattack is phishing, in which the attacker
utilizes electronic devices to deceive users through emails and web pages, among
other methods. Figure 1 illustrates the impacted business sectors in 2021 [5]. The
primary technique to detect if a web page is phishing is to check if the page is on a
blacklist [6]. However, the blacklisting procedure fails when a new phishing page
appears. Several methods, such as machine learning, can be used to combat this
new attack involving phishing web pages [7]. Machine learning techniques, such as
deep learning (DL), analyze new text using the characteristics of previously trained
DL algorithms.

1.51%

1.91%

2%

2.09%

4.36%

6.34%

11.11%

13.11%

17.27%

17.61%

22.69%

Delivery Companies

Financial Services

IT Companies

Telecommunications Companies

IMS

Social Networks and Blogs

Banks

Payment Systems

Global Internet Portals

Online Stores

Others

Fig. 1. Percentage of phishing attacks by type of organization

Currently, most web page solutions focus on applying DL algorithms to the URLs
of these pages, with only a few solutions targeting the text within the web pages [8].
These solutions fail to leverage the rich semantics and syntax present in the ana-
lyzed text. Some researchers leverage semantics and syntax through natural lan-
guage processing (NLP) to counter phishing attacks [7]. Still, they target the text in
phishing emails rather than phishing web pages. Furthermore, solutions that apply
NLP to the text of phishing emails result in excessive computational processing. In
contrast, the literature review did not identify any solution that provides an appli-
cation to alert users when a web page has a high likelihood of phishing based on its
textual content.

Due to the importance of obtaining a solution to detect this type of attack on web
pages, the main goal of this study is to offer a refined and lightweight application
that alerts the user if a page intended to be opened has a high probability of being
phishing. The following secondary objectives must be carried out to meet this main
goal: 1) Develop a refined DL model that captures the semantic and syntactic char-
acteristics of text extracted from web pages; and 2) Create a browser extension that
promptly and accurately alerts users to potential phishing web pages.

https://online-journals.org/index.php/i-jim

iJIM | Vol. 18 No. 10 (2024)	 International Journal of Interactive Mobile Technologies (iJIM)	 175

NDLP Phishing: A Fine-Tuned Application to Detect Phishing Attacks Based on Natural Language Processing and Deep Learning

The hyper-parameters were turned using a manual search method, evaluating
BiGRU layers, dropout, batch size, epochs, BiGRU neurons, and GloVe dimension.
The traditional cascade method was used to develop the application, consisting of
requirements analysis, design, coding and testing, and implementation.

The following are the main contributions of this study:

•	 Provide a dataset with clean information, free from the words and characters
present in the HTML code of the web pages.

•	 Share the complete code for tuning and training the detection algorithm using
BiGRU, as well as the trained algorithm file.

•	 Display the appropriate hyperparameters for model tuning.
•	 Share the complete code required to create the extension that can detect a new

phishing page.
•	 Share an extension that can be installed and tested in the Google Chrome browser.

In the next section, the related works will be reviewed. Section 3 will present the
methodology and tools used. Section 4 will show the results. Section 5 will discuss
the study. Finally, in Section 6, the conclusions and future work will be presented.

2	 RELATED WORK

This study aims to develop an application for detecting phishing attacks using
NLP and DL based on [9]. In addition, the analysis should be conducted on the con-
tent of the phishing web pages. That is why the search for related published work has
been conducted on the Web of Science, Scopus, IEEE, and ACM scientific databases.

The search was performed with the following search string: [Phishing and (NLP)
and (DL)]. Initially, this search yielded 62 research articles. Duplicates, papers not in
English, papers lacking a model or application, or failing to demonstrate a solution
combining NLP and DL were excluded. Finally, we selected the documents presented
in Table 1.

Table 1. Related work

Id Title

[10] A deep learning model with hierarchical LSTMs and supervised attention for anti-phishing.

[11] Phishing Detection Using Deep Learning Attention Techniques.

[12] Machine Learning and Deep Learning for Phishing Email Classification Using One-Hot
Encoding.

[13] Spam email detection using deep learning techniques.

[14] Applying machine learning and natural language processing to detect phishing emails.

[15] Intelligent Deep Learning Based Cybersecurity Phishing Email Detection and Classification.

[16] Phish Responder: A Hybrid Machine Learning Approach to Detect Phishing and Spam Emails.

[17] Lightweight URL-based phishing detection using natural language processing transformers
for mobile devices

[18] Phishing Email Detection Model Using Deep Learning

[19] Cyberattack Detection in Social Network Messages Based on Convolutional Neural Networks
and NLP Techniques

[9] A Phishing-Attack-Detection Model Using Natural Language Processing and Deep Learning.

https://online-journals.org/index.php/i-jim

	 176	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 10 (2024)

Benavides-Astudillo et al.

The study [10] proposes a model to detect phishing attacks by applying the
LSTM algorithm to the header and body text extracted from emails. For this pur-
pose, they establish a hierarchical structure, with sentences at the upper level and
words at the lower level. The ratio between the words appearing on a legitimate
web page, (legitimate rank (word)) and a phishing web page, (phishing rank (word))
is calculated to analyze the text and each term. Finally, a precision of 98.16%, recall
of 95.96%, and F1 score of 97.05% are obtained. Neither in this study nor in any of
the subsequent studies was an application developed.

In article [11], the email data corpus is first preprocessed. Two models based on
attention mechanisms, BERT and XLNet, analyze this corpus. XLNet and BERT were
utilized to comprehend the context of incoming emails and offer effective and accu-
rate filtering. The final accuracy of the learned BERT was 99.66%, while XLNet’s
achieved an absolute accuracy of 99.62%.

The research [12] is a comparative study of ML and DL algorithms. It explores
one-hot encoding and word embedding for preprocessing email body data. This
study applies Naive Bayes, SVM, Decision Tree, LSTM, and CNN algorithms in com-
bination with Word Embedding using one-hot encoding. The study also varies the
hyperparameters of each algorithm. The DL algorithms yielded superior results com-
pared to the ML algorithms, but the computational time was excessively high. The
best performing algorithm was the combination of CNN with one-hot embedding,
achieving an accuracy of 95.70%; however, CNN with Word Embedding achieved
96.34% accuracy.

The study [13] examines the text found in spam emails using BERT, a model that
utilizes layers of attention to grasp the context of the text. In this study, it is con-
cluded that BERT contextual word embedding’s yield better results compared Keras
word embedding. The text preprocessed by BERT is fed into a BiLSTM algorithm,
which achieves 96.43% accuracy and a 96% F1 score.

The study [14] uses body text to improve phishing detection accuracy. The email
body is analyzed using NLP, DL algorithms, and GCN to determine if an email is phish-
ing or legitimate (ham). After cleansing the dataset, the next step is to construct a single
large graph from the entire email corpus, with the words and emails used as nodes.
The edges connecting the word nodes depend on the co-occurrence information
between two words. The boundaries between a word and an email are determined by
the word frequency and the email frequency of the word. The classifier proposed in
this research performs well on a balanced and labeled dataset. The accuracy exceeds
98%, and all evaluation metrics surpass those of existing detection models.

In the article [15], an analysis is made of the body of the emails using n-grams.
This NLP technique captures the relationships between the words in the email. The
clean data is then passed through the GRU algorithm to detect whether an email
is phishing. A unique aspect of this work is the optimization of the GRU algorithm
using the Cuckoo Search algorithm. The application of these techniques together
resulted in an accuracy of 99.72%.

Phish Responder [16] is a solution that utilizes DL and NLP to detect phishing
and spam email attacks. For this, an NLP analysis of the body of the emails was
re-performed using only tokenization and TF-IDF, without employing techniques
such as stemming, lemmatization, and POS tagging. For the LSTM model applied to
text-based datasets, 99 % accuracy rate was achieved.

Other techniques do not necessarily require NLP preprocessing with a dictio-
nary, such as GloVe, before being input into a DL algorithm. For example, BERT
and ELECTRA are combined with artificial neural networks for phishing attack
detection [17]. Unlike our proposal, this work is oriented towards applying algorithms
to the URLs and HTML code of web pages.

https://online-journals.org/index.php/i-jim

iJIM | Vol. 18 No. 10 (2024)	 International Journal of Interactive Mobile Technologies (iJIM)	 177

NDLP Phishing: A Fine-Tuned Application to Detect Phishing Attacks Based on Natural Language Processing and Deep Learning

Since the primary vector of phishing attacks is email, many studies already utilize
DL and NLP to detect phishing attacks. We have included the study conducted by
[18] in our related work because it employs techniques and methods similar to those
used in our study. In our work, the analysis is performed on web pages and not
on emails.

While email phishing and webpage phishing attacks are more prevalent, attacks
through social network messages are also on the rise due to the expansion of net-
works such as WhatsApp, Facebook, Twitter, and Instagram, among others. The
authors of the article [19] propose using NLP and convolutional neural networks to
detect social network attacks and classify the type of cyberattack (malware, phishing,
spam, or boot).

The authors [9] characterized the detection of phishing attacks based on the text
extracted from web pages. For this, to begine with, the text of the web page is cap-
tured. For this, first, a capture of the web page is made. The extracted text is pre-
processed, and Keras embedding is used with the GloVe dictionary to capture the
semantic and syntactic characteristics of the text. Subsequently, the preprocessed
data is input into a BiGRU algorithm to predict whether a page is phishing, achieving
up to 97.39% mean accuracy.

The publications [10] to [19] in Table 1 propose models for detecting phishing
attacks using NLP and DL. However, they only focus on features of phishing emails
or social networks, neglecting phishing web pages. Thus, the only study in Table 1
that identifies phishing web pages is [9]. None of the reviewed papers present an
application capable of real-time detection to determine if a webpage is phishing
or not when attempting to access it. See Table 2 for a summary of the revised
characteristics of the related work.

Table 2. Techniques used in related articles and its scope

Id NLP DL Phishing
Web Page Application

[10] Yes Yes No No

[11] Yes Yes No No

[12] Yes Yes No No

[13] Yes Yes No No

[14] Yes Yes No No

[15] Yes Yes No No

[16] Yes Yes No No

[17] No Yes Yes No

[18] Yes Yes No No

[19] Yes Yes No No

[9] Yes Yes Yes No

Our proposal NDLP Yes Yes Yes Yes

3	 METHODOLOGY AND TOOLS

This section is structured into two parts. In the first part of the methodology, the
steps to follow to achieve two objectives are outlined: first, developing a refined

https://online-journals.org/index.php/i-jim

	 178	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 10 (2024)

Benavides-Astudillo et al.

algorithm to detect attacks using DL and NLP, and second, the procedures to imple-
ment and install a Chrome browser extension for the refined algorithm. The fol-
lowing subsection presents the hardware and software tools used to implement
this project.

3.1	 Methodology

The phases and steps conducted in this study are detailed below.
Phase I. Determine the optimal hyper-parameters to fine-tune the NLP

and DL phishing attack detection application. There are three main strategies
to determine the hyperparameters of machine learning algorithms: grid search,
random search, and manual search. For our study, we followed the manual search
method [20]. Although grid search and random search can achieve higher hyper-
parameter resolution, the computational cost is very high. Furthermore, according
to [21], most hyperparameters that are analyzed will not significantly increase the
accuracy of the analyzed algorithm. Therefore, we have adopted the manual hyper-
parameter search approach based on expert knowledge, intuition, and experience.
The steps followed in the manual search for hyperparameters are [22]:

1.	 Understanding the model and hyperparameters
2.	 Definition of the search space
3.	 Data division
4.	 Training, evaluation, analysis of results, and manual adjustment
5.	 Cross validation
6.	 Test on the test set
7.	 Documentation

1.	 Understanding the model and hyperparameters
	  One of our research objectives is to develop an algorithm that is fast, efficient,

and highly accurate in detecting phishing attacks [23]. We previously selected the
BiGRU algorithm utilizing embeddings from the GloVe dictionary [9] [24].

2.	 Definition of the search space
	  To enhance the performance of the model presented in [9] and develop

a lightweight application without compromising its accuracy, it was essen-
tial to fine-tune hyperparameters in the preprocessing stage and the design of
the DL algorithm [21]. For this purpose, the algorithms are executed with the
hyperparameters, and their various values are shown in Table 3.

Table 3. Hyper-parameters to evaluate

Hyper-Parameter Values

Number of words 100 200 500 1000

BiGRU Neurons 32 64 128 256

Dimension of the GloVe embedding dictionary 50 100 200

Number of epochs 5 10 20

Batch size 32 64 128 256

Dropout value 0.1 0.5 0.7

BiGRU layers 1 2

https://online-journals.org/index.php/i-jim

iJIM | Vol. 18 No. 10 (2024)	 International Journal of Interactive Mobile Technologies (iJIM)	 179

NDLP Phishing: A Fine-Tuned Application to Detect Phishing Attacks Based on Natural Language Processing and Deep Learning

3.	 Data division
	  Out of 9761 records, the dataset was divided into 80% for training and

20% for testing. This split was done implicitly using K-fold = 5 with K-fold
cross-validation.

4.	 Training and evaluation, analysis of results, and manual adjustment.
	  In this step, the training and evaluation are carried out with each of the

hyperparameters in the search space. The assessment of the results of the algo-
rithm’s execution is conducted, followed by manual adjustments to each value
of every hyperparameter. Figure 2 illustrates the sequence of analysis for each
hyperparameter.

Determine the number of BiGRU layers.

Determine the dropout value.

1.Determine the batch size.

Determine the number of epochs.

Determine the dimension of the GloVe embedding dictionary.

Determine the number of neurons in the BiGRU layer.

Determine the number of words entered

Fig. 2. Steps to determine the optimal hyper-parameters of NDLP Phishing

5.	 Cross validation
	  A K-fold cross-validation algorithm [25] with five folds is used for each model

run. We utilized K-fold cross-validation due to the imbalance in the data used for
training, testing, and tuning our BiGRU algorithm. The metric used to compare
the algorithms’ performance was mean accuracy.

6.	 Test on the test set
	  Finally, we executed the model with the optimal hyperparameters obtained

in the previous steps and determined the mean accuracy achieved. It aims to
emphasize average accuracy and the duration required to train and test the
algorithm.

7.	 Documentation
	  The effects of the experiments are presented in the results section.

Phase II. Make an application based on the fine-tuned attack detection
model using NLP and DL. Once we have obtained a lightweight algorithm with
high accuracy in the previous phase, our next objective is to develop an application
based on that algorithm. This application can be installed as an extension in Chrome,
the most widely used web browser. We followed the following steps to carry out the
application:

1.	 Requirements analysis
2.	 Design
3.	 Coding, testing
4.	 Implementation

https://online-journals.org/index.php/i-jim

	 180	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 10 (2024)

Benavides-Astudillo et al.

1.	 Requirements analysis
	  The developed application should consider the following requirements:

•	 It would be best if you took advantage of the characteristics of NLP.
•	 It must be able to capture the text of analyzed web pages.
•	 It must preprocess and provide clean text to a DL algorithm.
•	 It must have an accuracy rate of over 95%.
•	 It must be fast and consume minimal computational resources.
•	 It must be able to run in the primary web browser.

2.	 Design of the application
	  First, users open a web page. If they want to determine whether a page is a

phishing website, they can click on the extension installed in the body of the
web browser. The application captures the text on the web page at that moment.
This text is then pre-processed with NLP, obtaining data without stop words,
POS-tagged, lemmatized, pad-sequenced, and tokenized. Subsequently, this pre-
processed data is sent to our pre-trained and fine-tuned algorithm. Finally, the
end user is informed whether the page they are trying to open is phishing or
legitimate (ham). See the architectural design in See Figure 3.

Fig. 3. Design of the proposed application NDLP phishing

3.	 Coding and testing
	  The coding and testing procedures are detailed in the results section.
4.	 Implementation
	  The implementation procedure is detailed in the results section.

3.2	 Tools

Hardware environment tuning the model’s hyperparameters required
a high-processing server and a laptop with standard specifications to run the
application. Table 4 shows the specifications of the two pieces of equipment used.

https://online-journals.org/index.php/i-jim

iJIM | Vol. 18 No. 10 (2024)	 International Journal of Interactive Mobile Technologies (iJIM)	 181

NDLP Phishing: A Fine-Tuned Application to Detect Phishing Attacks Based on Natural Language Processing and Deep Learning

Table 4. Hardware features

Component Server Features Client Features

Processor AMD Ryzen Threadrippe 2920X Intel Core I7, 10th generation

RAM 16 GB Crucial Ballistix DDR4-3000 8GB

Video card 16 GB Phantom Gaming X Radeon VI NVidia GeForce MX230

SSD 500 GB Crucial SSD M.2 NVMe 256 GB

HD 3 TB Western Digital HDD Purple Not apply

Main board ASUS ROG Zenith Extreme Alpha Not apply

Software environments. For the execution of the tuning process, a RIG server
was utilized with Python 3.5.2 on Jupyter Notebook 6.0.2, along with the libraries:
Keras, NLTK, NumPy, pandas, requests, scikit-learn, and TensorFlow.

Dataset. The dataset used for the experiments was obtained from the Phishload
page [26]. The dataset consists of 10,488 rows. Since the original data contained
many unusable characters for our algorithm analysis, it was preprocessed before
being used in our experiment. Finally, only 9761 valid rows were obtained, of which
8589 are phishing rows and 1172 are from ham. The data, filtered and cleaned by
us, can be downloaded from our website.

4	 RESULTS

This section is composed of two different parts. The first part presents the results
obtained from model tuning and identifies the optimal hyperparameters for this
process. The second part elaborates on the steps to create the extension based on the
optimized algorithm and demonstrates its functionality.

4.1	 Determine the optimal hyper-parameters to fine-tune the 	
NLP and DL phishing attack detection application

The entire tuning experiment was performed in Jupyter Notebook and can be
reproduced with the code shared in the following GitHub link: https://github.com/
debenavides/NDLP-hyper-parameter-tuning/.

In the comments of the shared code above, each hyperparameter and its
corresponding values are displayed.

The tuning was performed on the model proposed in the study [9] because it
aligns with the assumptions of predicting a phishing attack using NLP and DL on the
text extracted from the body of the web pages. Before starting, it should be mentioned
that in the study [9], several aspects were analyzed. These details will serve as the
basis for our experiment. It was determined in [9] that the algorithm that yielded the
best results in this type of problem was BiGRU, surpassing the average accuracy of
LSTM, BiLSTM, and GRU.

The aim of this work is not only to provide a highly accurate model but also to
ensure it is lightweight enough for the application to be installed on a regular com-
puter or mobile device. So, our tuning aims to provide a lightweight application
without compromising accuracy.

https://online-journals.org/index.php/i-jim
https://github.com/debenavides/NDLP-hyperparameter-tuning/
https://github.com/debenavides/NDLP-hyperparameter-tuning/

	 182	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 10 (2024)

Benavides-Astudillo et al.

Determine the number of words entered. The algorithms were tested in the
article [9] using four text inputs of 100, 200, 500, and 1000 words. It was conducted
that the optimal number of words to enter was 200.

Determine the number of neurons in the BiGRU layer. Based on the experi-
ment conducted by [9], where 128 neurons were utilized in the BiGRU layer, our cur-
rent study assesses the mean accuracy achieved with 32, 64, 128, and 256 neurons.
The results obtained can be seen in Table 5.

Table 5. BiGRU neurons

BiGRU Neurons K-Fold Mean Accuracy

32 0.9680

64 0.9713

128 0.9737

256 0.9757

Table 5 shows that the K-fold mean accuracy obtained with 32 neurons signifi-
cantly differs from that obtained with 64, 128, and 256 neurons. This difference
occurs because the mean accuracy curve tends to stabilize as the number of neurons
increases. On the other hand, with 256 neurons, the mean accuracy increases slightly,
but at a high computational cost. As a result, 32 and 256 neurons are excluded from
further experiments, and only 64 and 128 neurons are considered.

Determine the dimensions of the GloVe embedding dictionary. The next
tuning step involved determining the optimal dimension of the GloVe dictionary
[27], taking into account the available GloVe dimensions of 50, 100, 200, and 300.
The results of the tests with vectors of 50, 100, and 200 dimensions are shown
in Table 6.

Table 6. GloVe dimensions

BiGRU Neurons GloVe Dimension K-Fold Mean Accuracy

64 50 0.9685

64 100 0.9703

64 200 0.9749

128 50 0.9681

128 100 0.9736

128 200 0.9758

As shown in Table 5, the algorithm’s performance was evaluated with 50, 100,
and 200 dimensions of the GloVe dictionary (300 dimensions were not necessary),
both with 64 and 128 BiGRU neurons. It is observed that the value obtained with
100 and 200 GloVe dimensions does not vary significantly from that obtained with
a 50-dimensional vector. This may be because the model has little complexity. Since
a lightweight model is required, a size of 50 GloVe dimensions is adopted as the
optimal value.

Determine the number of epochs. So far, ten epochs have been used for test-
ing. To enhance the mean accuracy, the model is evaluated with 5, 10, and 20 epochs.
The results of the model execution with varying epochs are presented in Table 7.

https://online-journals.org/index.php/i-jim

iJIM | Vol. 18 No. 10 (2024)	 International Journal of Interactive Mobile Technologies (iJIM)	 183

NDLP Phishing: A Fine-Tuned Application to Detect Phishing Attacks Based on Natural Language Processing and Deep Learning

Table 7. Epochs

Epochs BiGRU Neurons GloVe Dimension Elapsed Time (Min) Mean Accuracy

5 64 50 0:12 0.9905

10 64 50 0:23 0.9896

20 64 50 0:46 0.9844

Table 7 shows that the accuracy decreases as the number of epochs increases,
possibly due to overfitting. Even with five epochs, a mean accuracy of 0.9905 is
achieved. Five epochs are adopted for the model.

Determine the batch size. A larger batch size can lead to greater generalization;
however, this requires more memory capacity and longer training time. Therefore,
batch size values of 32, 64, 128, and 256 are analyzed. See the results in Table 8.

Table 8. Batch size

Batch Size Epochs BiGRU Neurons GloVe Dimension Elapsed Time (Min) Mean Accuracy

32 5 64 50 0:51 0.9851

64 5 64 50 0:26 0.9896

128 5 64 50 0:13 0.9844

256 5 64 50 0:09 0.9611

Table 8 shows that the mean accuracy value obtained for a batch size of 256 is
considerably lower than the other values. In addition, it has been determined that the
value obtained with a batch size of 64 offers better results than the other batch size.

Determine the dropout value. It is essential to determine an appropriate drop-
out rate to reduce overfitting without compromising performance or speed [28].
Therefore, an assessment is conducted at low, medium, and high dropout values.
The values obtained with dropouts of 0.1, 0.5, and 0.7 can be seen in Table 9.

Table 9. Dropout size

Dropout Batch Size Epochs BiGRU
Neurons

GloVe
Dimension

Elapsed
Time (Min)

Mean
Accuracy

0.1 64 5 64 50 0:12 0.9635

0.5 64 5 64 50 0:12 0.9454

0.7 64 5 64 50 0:11 0.9384

Table 9 shows that the elapsed time in the execution with the three dropout val-
ues analyzed practically remains unchanged; however, the mean accuracy obtained
with the 0.1 dropout is better than that obtained with the other two dropout values.

Determine the number of BiGRU layers. We added an additional layer to test
for improved accuracy after determining the optimal hyperparameters for a single
BiGRU layer. The results for one and two layers of BiGRU are presented in Table 10.

Table 10. BiGRU layers

BiGRU Layers Dropout Batch
Size Epochs BiGRU

Neurons
GloVe

Dimension
Elapsed

Time (Min)
Mean

Accuracy

1 0.1 64 5 64 50 0:11 0.9635

2 0.1 64 5 64 50 0:19 0.9454

https://online-journals.org/index.php/i-jim

	 184	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 10 (2024)

Benavides-Astudillo et al.

Based on the results presented in Table 10, we observed that increasing the num-
ber of layers in our DL model did not enhance the mean accuracy. Furthermore,
the training time increased by seven minutes compared to the previous model.
We concluded that adding more layers to the model is unnecessary and may
lead to increased complexity, longer processing times, and decreased accuracy.
This decrease may be because the data processed by our model is not necessarily
very complex.

After tuning the model, Table 11 displays the values of the hyperparameters
obtained in our proposal.

Table 11. Tuned hyper-parameters for the NDLP application

BiGRU Layers Dropout Batch
Size Epochs BiGRU

Neurons
GloVe

Dimension

Our tuned model NDLP 1 0.1 64 5 64 50

4.2	 Make an application based on the fine-tuned attack 	
detection model using NLP and DL

Coding and testing. The code files used to develop the Google extension can
be found at the following link on the GitHub site: https://github.com/debenavides/
NDLP-Phishing/.

The following describes the content of each file in the shared repository:
Preprocessed_dataset.csv. This dataset contains 9761 valid rows, with 8589

rows classified as phishing and 1172 as ham. This dataset contains three columns:
“context,” which includes the text obtained from each web page, and the categorical
columns “phishing” and “ham,” which indicate whether a web page is a phishing
site or not. This data is ready to be entered into the NLP and DL algorithms.

NDLP phishing tuned Model.ipynb. This file contains the model that has already
been tuned with all the parameters optimized. In this model, variations of all the
hyperparameters have been analyzed. The experiment was performed on the data
contained in the Preprocessed_dataset.csv file. Finally, the trained model NDLP_
model.h5 is generated and saved in the model.

NDLP_model.h5. This file is the saved model of the NDLP Phishing Tuned Model.
ipynb, which is then sent to production to detect a new phishing page.

One webpage analysis.ipynb. This code contains two parts: in the first part, the
HTML text obtained from a new web page is cleaned, and in the second part, a
prediction is made by calling the trained model NDLP_model.h5.

Ext_NDLP.zip. This folder contains all the Chrome extension files. Before running
this extension, it must be added to the Chrome browser. This folder includes the code
for pre-processing the web page and the fine-tuned NDLP_model for analyzing the
pre-processed text.

How the Google Chrome extension works. The browser extension is config-
ured using the manifest.json file, which serves as a configuration map defining essen-
tial properties such as name, version, and required permissions. The popup interface,
popup.html, provides a simple user interface with a button that, when activated by
the popup.js script, sends a message to the content script content.js to start captur-
ing text on the current web page. The content.js script runs in the web page con-
text and utilizes the browser API to capture the page text document.body.innerText.

https://online-journals.org/index.php/i-jim
https://github.com/debenavides/NDLP-Phishing/
https://github.com/debenavides/NDLP-Phishing/

iJIM | Vol. 18 No. 10 (2024)	 International Journal of Interactive Mobile Technologies (iJIM)	 185

NDLP Phishing: A Fine-Tuned Application to Detect Phishing Attacks Based on Natural Language Processing and Deep Learning

Then, the fetch function sends an HTTP request to the Flask server with the captured
text as JSON data.

Flask is used on the server side. Flask acts as a server and an environment to
load and run trained DL models. The deploy.py script configures a Flask server and
defines routes, including the POST/processText path. When a request is received on
this route, it invokes the process_text function, which performs processing opera-
tions on the text. The process_text function is responsible for processing the received
text and performing specific operations such as cleaning, tokenization, and selecting
200 words. Once the above process is complete, it uses a phishing DL model NDLP
Phishing.h5 to make the prediction.

Once the Flask server has processed the text and made the prediction, it sends the
result back to the client. The content.js script on the client side receives the server’s
response, which includes the prediction result. Based on the prediction result, the
script displays an alert to the user in the browser interface. This comprehensive
interaction flow between the client and the server ensures that the browser exten-
sion can capture, process, and evaluate the text of the current web page, enabling a
response to potential phishing attempts.

Implementation. To use this application, first open the web page to be ana-
lyzed in the Google Chrome browser. Then, click on the extension icon as shown in
Figure 4. Subsequently, the interface depicted in Figure 5 will appear.

Fig. 4. NDLP extension icon

Fig. 5. NDLP Message to check if it is a phishing attack attempt

When the user clicks on the interface in Figure 5, the NDLP program is executed.
It analyzes the text of the web page and reports in Figures 6 and 7 the percentage
probability that the page under analysis is phishing or not.

https://online-journals.org/index.php/i-jim

	 186	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 10 (2024)

Benavides-Astudillo et al.

Fig. 6. NDLP execution

Fig. 7. Message showing the percentage of a webpage being phishing or not

5	 DISCUSSION

Although articles [10–19] and [9] address the problem of detecting phishing
attacks through DL and NLP, none of them develops an application as proposed in
our study. In addition, articles that detect phishing attacks using DL and NLP on web
pages were also searched, but only article [9] was found. In contrast, the others were
only focused on phishing emails or social networks, leaving much to be investigated
in the content of web pages. For this reason, the model proposed in the article [9]
was taken as the starting point of our study. It detects phishing attacks using DL and
NLP on the text found in web pages.

To conduct a comparative analysis between the initial algorithm of the [9]-article
model and our proposed optimized algorithm, NDLP, we replicated the experi-
ment from [9] on a personal computer. Subsequently, we executed the experiment
using our proposed optimized algorithm (https://github.com/debenavides/NDLP_
Comparative). Table 12 displays the configuration of the hyperparameters for [9]
and our proposal.

Table 12. Tuned hyper-parameters for the NDLP application

BiGRU
Layers Dropout Batch

Size Epochs BiGRU
Neurons

GloVe
Dimension

Elapsed
Time

Mean
Accuracy

[9] 1 0.1 128 10 128 100 5h 32min 0.9682

Our tuned
model NDLP

1 0.1 64 5 64 50 0h 26min 0.9855

https://online-journals.org/index.php/i-jim
https://github.com/debenavides/NDLP_Comparative
https://github.com/debenavides/NDLP_Comparative

iJIM | Vol. 18 No. 10 (2024)	 International Journal of Interactive Mobile Technologies (iJIM)	 187

NDLP Phishing: A Fine-Tuned Application to Detect Phishing Attacks Based on Natural Language Processing and Deep Learning

After running the experiment, it can be seen in Table 12 that the model pro-
posed by [9] achieved a mean accuracy of 0.9682. In comparison, our tuned proposal
achieved a mean accuracy of 0.9855, surpassing the algorithm proposed in [9] by
1.7%, with in a processing time 12 times shorter.

Figure 8 illustrates the performance of two algorithms: one untuned with
10 epochs and the other tuned with five epochs. Also, in Figure 8, it can be observed
that the non-tuned algorithm, after epoch seven, starts to decline, dropping even
below 99.86%, while the tuned algorithm reaches epoch five up to 99.90%.

Fig. 8. Comparison between the accuracy of the algorithms of the proposed
model in [9] and the refined NDLP

It can be seen in Table 11 that after conducting our experiments, the hyperparam-
eters that remained unchanged from those initially used in the model [9] were BiGRU
layers and dropout. Table 11 also indicates a reduction in the hyperparameters such
as batch size, epochs, BiGRU neurons, and GloVe dimensions, which were set at 0.9855.

Thus, it can be determined that the values obtained with the tuned hyperparame-
ters only decrease the mean accuracy of the proposal from [9] to our proposal by 1%.
On the other hand, the training time with our proposal is four times faster than
the proposal [9]. Therefore, we have accepted the hyperparameters presented in
Table 10 for our model as the basis for the application developed as part of this study.

With our proposal, we aim to address the research gap by developing an application
that can detect phishing attacks on web pages using cutting-edge technologies such as
DL and NLP-GloVe. In addition, our application can only capture the text content of
any web page. It preprocesses the text with NLP-GloVe and analyzes it with DL, achiev-
ing a mean accuracy of over 99% in predicting whether a page is not phishing. The
prediction is made using the NDLP Phishing.h5 model that was previously obtained.
This application was installed as a Google Chrome extension and is user-friendly.

6	 CONCLUSIONS

The primary goal of this study was to create a user-friendly application capable
of effectively detecting phishing attacks using NLP and DL on the text within web
page bodies. This approach leverages the semantic and syntactic content of the text.

Reviewing the existing literature, we identified a significant research gap in web
page text analysis using NLP and DL. At the same time, we discovered numerous studies

https://online-journals.org/index.php/i-jim

	 188	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 10 (2024)

Benavides-Astudillo et al.

that address phishing using NLP and DL, with most focusing on phishing emails. The
emphasis on web pages was predominantly on URL analysis, neglecting the text within
the pages. Moreover, we found no evidence of these models being implemented in web
browsers in the literature we examined, highlighting the novelty of our approach.

We refined the initial model based on the text of the web pages and 98.55%
achieved a mean accuracy of 98.55%. This was accomplished with a batch size of 64,
five epochs, 64 neurons, and GloVe dimension of 50. The new solution is 1.7% higher
than the initial proposal in [9] and trains and tests 12 times faster.

We have developed a user-friendly extension for Google Chrome. This extension,
built on our refined model, not only detects phishing attacks by analyzing the text of
web pages using NLP and applying the BiGRU algorithm but also ensures a secure
browsing experience. It accomplishes this without introducing technical complexi-
ties, making it accessible to all users, regardless of their technical proficiency. This
seamless integration of advanced technology into everyday browsing is a significant
step towards safer Internet use.

This work was based on refining the BiGRU DL algorithm, which conducts text
analysis by NLP using embeddings from the GloVe dictionary. Initially developed for
NLP tasks, Transformer algorithms have revolutionized the DL field. Thus, as part of
our future work, we will develop an algorithm that can detect phishing attacks using
the four most commonly used Transformer algorithms.

In future research involving the application of various Transformer algorithms
to detect phishing attacks, we will develop an extension that can be installed not
only in the Chrome browser but also in Mozilla Firefox, Edge, and Opera browsers.

7	 REFERENCES

	 [1]	 M. Elsadig, A. O. Ibrahim, S. Basheer, M. A. Alohali, S. Alshunaifi, H. Alqahtani, N. Alharbi,
and W. Nagmeldin, “Intelligent deep machine learning cyber phishing URL detection
based on BERT features extraction,” Electronics, vol. 11, no. 22, p. 3647, 2022. https://doi.
org/10.3390/electronics11223647

	 [2]	 W. Fuertes et al., “Impact of social engineering attacks: A literature review,” Smart
Innovation, Systems and Technologies, vol. 255, pp. 25–35, 2021. https://doi.org/10.1007/
978-981-16-4884-7_3

	 [3]	 E. Benavides-Astudillo et al., “A framework based on personality traits to identify vul-
nerabilities to social engineering attacks,” Communications in Computer and Information
Science, vol. 1535, pp. 381–394, 2022. https://doi.org/10.1007/978-3-031-03884-6_28

	 [4]	 E. Benavides-Astudillo et al., “Analysis of vulnerabilities associated with social engi-
neering attacks based on user behavior,” Communications in Computer and Information
Science, vol. 1535, pp. 351–364, 2022. https://doi.org/10.1007/978-3-031-03884-6_26

	 [5]	 statista, “Worldwide organizations most targeted by phishing attacks in 2023, by
industry,” 2023. [Online]. https://www.statista.com/statistics/420442/organizations-most-
affected-byphishing/

	 [6]	 A. Raja Saleem, S. Balasubaramanian, P. Ganesan, J. Rajasekaran, and R. Karthikeyan,
“Weighted ensemble classifier for malicious link detection using natural language pro-
cessing,” International Journal of Pervasive Computing and Communications, 2023.

	 [7]	 X. Zhang, Y. Zeng, X.-B. Jin, Z.-W. Yan, and G. G. Geng, “Boosting the phishing detection
performance by semantic analysis,” in Proceedings – 2017 IEEE International
Conference on Big Data, Big Data 2017, 2017, pp. 1063–1070. https://doi.org/10.1109/
BigData.2017.8258030

https://online-journals.org/index.php/i-jim
https://doi.org/10.3390/electronics11223647
https://doi.org/10.3390/electronics11223647
https://doi.org/10.1007/978-981-16-4884-7_3
https://doi.org/10.1007/978-981-16-4884-7_3
https://doi.org/10.1007/978-3-031-03884-6_28
https://doi.org/10.1007/978-3-031-03884-6_26
https://www.statista.com/statistics/420442/organizations-most-affected-byphishing/
https://www.statista.com/statistics/420442/organizations-most-affected-byphishing/
https://doi.org/10.1109/BigData.2017.8258030
https://doi.org/10.1109/BigData.2017.8258030

iJIM | Vol. 18 No. 10 (2024)	 International Journal of Interactive Mobile Technologies (iJIM)	 189

NDLP Phishing: A Fine-Tuned Application to Detect Phishing Attacks Based on Natural Language Processing and Deep Learning

	 [8]	 E. Benavides-Astudillo et al., “Comparative study of deep learning algorithms in the
detection of phishing attacks based on HTML and text obtained from web pages,”
Communications in Computer and Information Science, vol. 1755, pp. 386–398, 2022.
https://doi.org/10.1007/978-3-031-24985-3_28

	 [9]	 E. Benavides-Astudillo, W. Fuertes, S. Sanchez-Gordon, D. Nuñez-Agurto, and
G. Rodríguez-Galán, “A phishing-attack-detection model using natural language
processing and deep learning,” Applied Sciences 2023, vol. 13, no. 9, p. 5275, 2023.
https://doi.org/10.3390/app13095275

	[10]	 M. Nguyen and T. Nguyen, “A deep learning model with hierarchical lstms and
supervised attention for anti-phishing,” ArXiv Preprint, 805.01554, 2018.

	[11]	 Y. Safonov, “Phishing detection using deep learning attention techniques,” vol. 1, no. 1,
pp. 131–135, 2021. https://10.13164/eeict.2021.131

	[12]	 S. Bagui, D. Nandi, S. Bagui, and R. J. White, “Machine learning and deep learning for
phishing email classification using one-hot encoding,” Journal of Computer Science,
vol. 17, no. 7, pp. 610–623, 2021. https://doi.org/10.3844/jcssp.2021.610.623

	[13]	 I. AbdulNabi and Q. Yaseen, “Spam email detection using deep learning techniques,”
Procedia Computer Science, vol. 184, pp. 853–858, 2021. https://doi.org/10.1016/
j.procs.2021.03.107

	[14]	 A. Alhogail and A. Alsabih, “Applying machine learning and natural language processing
to detect phishing email,” Computers & Security, vol. 110, p. 102414, 2021. https://doi.
org/10.1016/j.cose.2021.102414

	[15]	 R. Brindha et al., “Intelligent deep learning based cybersecurity phishing email detection
and classification,” Computers, Materials & Continua, vol. 74, no. 3, pp. 5901–5914, 2022.
https://doi.org/10.32604/cmc.2023.030784

	[16]	 M. Dewis and T. Viana, “Phish responder: A hybrid machine learning approach to
detect phishing and spam emails,” Applied System Innovation, vol. 5, no. 4, p. 73, 2022.
https://doi.org/10.3390/asi5040073

	[17]	 K. Haynes, H. Shirazi, and I. Ray, “Lightweight URL-based phishing detection using
natural language processing transformers for mobile devices,” Procedia Computer
Science, vol. 191, pp. 127–134, 2021. https://doi.org/10.1016/j.procs.2021.07.040

	[18]	 S. Atawneh and H. Aljehani, “Phishing email detection model using deep learning,”
Electronics, vol. 12, no. 20, p. 4261, 2023. https://doi.org/10.3390/electronics12204261

	[19]	 J. E. Coyac-Torres, G. Sidorov, E. Aguirre-Anaya, and G. Hernández-Oregón, “Cyberattack
detection in social network messages based on convolutional neural networks and NLP
techniques,” Machine Learning and Knowledge Extraction, vol. 5, no. 3, pp. 1132–1148,
2023. https://doi.org/10.3390/make5030058

	[20]	 E. Lee, “A gentle introduction to hyperparameter tuning with scikit learn and
python,” 2023. https://drlee.io/a-gentle-introduction-to-hyperparameter-tuning-with-
scikit-learn-and-python-835139d55ef

	[21]	 J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” Journal
of Machine Learning Research, vol. 13, pp. 281–305, 2012.

	[22]	 A. Géron, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow. United
States of America: O’Reilly Media, Inc., 2022.

	[23]	 T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A survey,” Journal of
Machine Learning Research, 2018. https://doi.org/10.1007/978-3-030-05318-5_3

	[24]	 S. Giri, S. Banerjee, K. Bag, and D. Maiti, “Comparative study of content-based phishing
email detection using global vector (GloVe) and bidirectional encoder representation
from transformer (BERT) word embedding models,” in 2022 First International Conference
on Electrical, Electronics, Information and Communication Technologies (ICEEICT), 2022,
pp. 1–6. https://doi.org/10.1109/ICEEICT53079.2022.9768612

https://online-journals.org/index.php/i-jim
https://doi.org/10.1007/978-3-031-24985-3_28
https://doi.org/10.3390/app13095275
https://10.13164/eeict.2021.131
https://doi.org/10.3844/jcssp.2021.610.623
https://doi.org/10.1016/j.procs.2021.03.107
https://doi.org/10.1016/j.procs.2021.03.107
https://doi.org/10.1016/j.cose.2021.102414
https://doi.org/10.1016/j.cose.2021.102414
https://doi.org/10.32604/cmc.2023.030784
https://doi.org/10.3390/asi5040073
https://doi.org/10.1016/j.procs.2021.07.040
https://doi.org/10.3390/electronics12204261
https://doi.org/10.3390/make5030058
https://drlee.io/a-gentle-introduction-to-hyperparameter-tuning-with-scikit-learn-and-python-835139d55ef
https://drlee.io/a-gentle-introduction-to-hyperparameter-tuning-with-scikit-learn-and-python-835139d55ef
https://doi.org/10.1007/978-3-030-05318-5_3
https://doi.org/10.1109/ICEEICT53079.2022.9768612

	 190	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 10 (2024)

Benavides-Astudillo et al.

	[25]	 F. Pedregosa, et al., “Cross-validation: Evaluating estimator performance,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011. [Online]. https://scikit-learn.
org/stable/modules/cross_validation.html

	[26]	 Phishload. [Online]. https://www.medien.ifi.lmu.de/team/max.maurer/files/phishload/
download.html

	[27]	 J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors for word representa-
tion,” 2014. https://nlp.stanford.edu/projects/glove/

	[28]	 N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from,” Journal of Machine Learning Research,
vol. 15, pp. 1929–1958, 2014.

	[29]	 J. Heaton, “Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning,” Genetic
Programming and Evolvable Machines, vol. 19, pp. 305–307, 2017. https://doi.org/10.1007/
s10710-017-9314-z

8	 AUTHORS

Eduardo Benavides-Astudillo is a Researcher and Professor at the Department
of Computer Science at Universidad de las Fuerzas Armadas ESPE in Ecuador since
2006. Eduardo has a Master’s degree in Systems Management from Universidad
de las Fuerzas Armadas ESPE, Ecuador, obtained in 2015. He is doing Ph.D. in
Informatics at Escuela Politécnica Nacional in Ecuador. His main research interests
include machine learning, deep learning, and cybersecurity. He has published sev-
eral research papers in scientific journals indexed in SJR and JCR rankings (E-mail:
diego.benavides@epn.edu.ec; ORCID: https://orcid.org/0000-0003-4543-0082).

Walter Fuertes is a Full Professor in the Department of Computer Science at
the Universidad de las Fuerzas Armadas ESPE in Sangolquí, Ecuador. He holds an
Engineering degree in Computer Systems, a Master’s degree in Computer Networking,
and a Ph.D. (Hons.) degree in Computer Science and Telecommunications (E-mail:
wmfuertes@espe.edu.ec).

Sandra Sanchez-Gordon is a Researcher and Professor in the Department of
Informatics and Computer Science at Escuela Politécnica Nacional in Ecuador since
1994. Sandra holds a Ph.D. in Applied Informatics from the University of Alicante,
Spain, in 2017, and a Master’s in Software Engineering from Drexel University, USA,
in 2001. With 30 years of experience, she has expertise in developing and imple-
menting software solutions in Ecuador, Panama, and the USA. Her research interests
include Human-Computer Interaction, Usability, Accessibility, and Applications of
Artificial Intelligence (E-mail: sandra.sanchez@epn.edu.ec).

Daniel Nuñez-Agurto is a Researcher and Professor in the Department of
Computer Science at the Universidad de las Fuerzas Armadas – ESPE Sede Santo
Domingo since 2017. Daniel holds a Master’s degree in Systems Management from the
Universidad de las Fuerzas Armadas – ESPE in Ecuador, earned in 2015. He is in the
researching phase to obtain his Doctorate in Computer Science from the Universidad
Nacional de La Plata, Argentina. Daniel has over 18 years of experience in developing
and implementing data networks and telecommunications solutions. His primary
research interests include Software-Defined Networking, Data Networks, Machine
Learning, and Cybersecurity (E-mail: adnunez1@espe.edu.ec).

https://online-journals.org/index.php/i-jim
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://www.medien.ifi.lmu.de/team/max.maurer/files/phishload/download.html
https://www.medien.ifi.lmu.de/team/max.maurer/files/phishload/download.html
https://nlp.stanford.edu/projects/glove/
https://doi.org/10.1007/s10710-017-9314-z
https://doi.org/10.1007/s10710-017-9314-z
mailto:diego.benavides@epn.edu.ec
https://orcid.org/0000-0003-4543-0082
mailto:wmfuertes@espe.edu.ec
mailto:sandra.sanchez@epn.edu.ec
mailto:adnunez1@espe.edu.ec

