
	 48	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 10 (2024)

iJIM  |  eISSN: 1865-7923  |  Vol. 18 No. 10 (2024)  | 

JIM International Journal of

Interactive Mobile Technologies

Jordanov, J., Simeonidis, D., Petrov, P. (2024). Containerized Microservices for Mobile Applications Deployed on Cloud Systems. International Journal
of Interactive Mobile Technologies (iJIM), 18(10), pp. 48–58. https://doi.org/10.3991/ijim.v18i10.45929

Article submitted 2023-10-16. Revision uploaded 2024-01-12. Final acceptance 2024-03-01.

© 2024 by the authors of this article. Published under CC-BY.

Online-Journals.org

PAPER

Containerized Microservices for Mobile Applications
Deployed on Cloud Systems

ABSTRACT
This study explores the transformative role of containerized microservices in the sphere of
mobile application development, especially within public cloud ecosystems. It focuses on how
technologies such as Docker and Kubernetes contribute to improving deployment, scalability,
and overall management of mobile applications, with an emphasis on containerizing back-
end services. We analyze their efficiency in streamlining deployment processes, focusing on
how they improve the application’s performance and reliability. Additionally, we examine
various alternative deployment strategies, such as blue-green, rolling, and canary releases,
to emphasize their effectiveness in minimizing risks and facilitating smooth transitions in
dynamic cloud environments. The study takes a comprehensive approach to achieve this goal,
which includes a systematic review of existing literature, a thorough examination of rele-
vant use cases, and an assessment of open-source technologies. Our findings reveal not only
the practical benefits of these strategies but also their strategic application, offering import-
ant insights for software engineers and decision-makers. This study emphasizes the signifi-
cance of integrating and optimizing containerized microservices in mobile app development
to achieve more efficient, scalable, and manageable application lifecycles on cloud-based
platforms.

KEYWORDS
microservices, mobile application, public cloud, containerization, virtualization

1	 INTRODUCTION

In the context of a more digitized environment, contemporary deployment
tactics have undergone significant transformations, facilitated by technologies
such as continuous integration (CI), continuous delivery (CD) [1–3], Docker, and
Kubernetes. These technologies have the dual benefit of streamlining the deploy-
ment process and reducing the likelihood of integration difficulties through auto-
mated build and test methods. CI procedures facilitate the frequent merging of
changes made by developers back into the main branches, thereby accelerating

Jordan Jordanov, Dimitrios
Simeonidis, Pavel Petrov(*)

University of Economics –
Varna, Varna, Bulgaria

petrov@ue-varna.bg

https://doi.org/10.3991/ijim.v18i10.45929

https://online-journals.org/index.php/i-jim
https://online-journals.org/index.php/i-jim
https://doi.org/10.3991/ijim.v18i10.45929
https://online-journals.org/
https://online-journals.org/
mailto:petrov@ue-varna.bg
https://doi.org/10.3991/ijim.v18i10.45929

iJIM | Vol. 18 No. 10 (2024)	 International Journal of Interactive Mobile Technologies (iJIM)	 49

Containerized Microservices for Mobile Applications Deployed on Cloud Systems

the development cycle. In addition, the robust characteristics of cloud resources,
enhanced by worldwide data centers, provide exceptional benefits in terms of scal-
ability and security.

Nevertheless, the academic discourse lacks comprehensive knowledge of the
concerns related to the development cycle, scalability, and post-deployment main-
tenance of mobile apps, which is a significant gap that this study aims to address.
There is a lack of academic research specifically examining the impact of contain-
erized microservices on the performance, manageability, and scalability of mobile
apps deployed on cloud platforms.

Considering the significant potential for transformation offered by cloud comput-
ing and containerization technologies such as Docker and Kubernetes, conducting
comprehensive research is crucial and timely. This assertion holds special validity
as enterprises increasingly shift their focus towards mobile technology, highlighting
the importance of efficiently implementing and overseeing mobile apps as a critical
aspect of company operations.

To address this gap, the main objective of this study is to evaluate the utilization
of containerized microservices in public cloud systems, specifically in the context
of mobile application development, with a particular focus on backend container-
ization. Our objective is to examine various deployment strategies and monitoring
tools and assess their overall impact on the efficiency and effectiveness of mobile
application development processes. By exploring the relationship between these
technologies and mobile application development, we aim to gain a thorough under-
standing of how containerization can enhance the development lifecycle in cloud-
based environments.

2	 LITERATURE REVIEW

Cloud computing has emerged as a disruptive technological paradigm, sig-
nificantly reshaping company operations and service delivery. As defined by the
National Institute of Standards and Technology (NIST), cloud computing is charac-
terized by five fundamental attributes, including on-demand self-service, broad net-
work access, resource pooling, rapid elasticity, and measured service. They form
the foundation of cloud computing’s operational capabilities [4]. These collective
characteristics enable organizational adaptability, cost effectiveness, and scalability.
The cloud may be accessible via various deployment modes, including public clouds
managed and operated by external service providers such as Amazon Web Services
(AWS), Google Cloud Platform (GCP), and Microsoft Azure. These clouds allow cus-
tomers to access computational resources via the Internet, while the cloud providers
retain exclusive ownership and management of all hardware, software, and sup-
porting infrastructure. Access is primarily achieved using conventional web brows-
ers, making it a highly advantageous option for a wide range of tasks, including
temporary or exploratory ones.

The academic discussion regarding cloud computing has mainly focused on its
service models, namely Infrastructure-as-a-Service (IaaS), Platform-as-a-Service
(PaaS), and Software-as-a-Service (SaaS) [5], each with distinct advantages and
drawbacks. Nevertheless, a noticeable deficiency exists in the existing body of schol-
arly work regarding the use of cloud computing for deploying mobile applications.
The need for further investigation arises from the potential transformative impact
of combining the fundamental attributes of cloud computing with the features

https://online-journals.org/index.php/i-jim

	 50	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 10 (2024)

Jordanov et al.

of public clouds to revolutionize the administration and deployment of mobile
applications.

The microservice architecture has become a significant paradigm, especially for
cloud-native applications. The architectural approach described involves decompos-
ing an application into discrete, autonomous services [6], designed to encapsulate
specific business functionalities that interact with each other through well-defined
application programming interfaces (APIs). The architectural concept of technology
agnosticism enables teams to flexibly select the most appropriate technology stack
for each microservice.

Business teams often emphasize the urgent need for promptly incorporating
novel features, creating a conducive atmosphere that fosters creativity and swift
experimentation, and having the flexibility to deploy changes instantly without
being constrained by predetermined deployment timelines. Attributes of microser-
vices, such as increased adaptability, innovation, and rapid feature implementation,
offer significant advantages in enhancing the performance and utility of mobile
applications. The interaction between mobile apps as front-end and cloud-based
microservice systems as backend often emphasizes the importance of data storage,
synchronization, and security.

Nevertheless, its architectural design has specific intricacies that require sci-
entific investigation. While the initial administration of individual services may
seem simple, the complexity of the entire system increases, particularly with
deployments and interactions between services. The complexity of network
latency and fault management increases with service expansion. The dispersed
nature of the architecture introduces additional complexities to operations such
as testing and debugging. The difficulty of data integrity arises because each
service maintains a data repository, necessitating methods such as eventual
consistency.

Numerous potential remedies have been suggested to address these issues.
Containerization and orchestrators are essential components for enabling flexible
deployment and scaleability in diverse computing environments. Several deploy-
ment techniques (e.g., blue-green, rolling, and canary deployment) are designed
to achieve a harmonious balance between rapid feature delivery and service
reliability. Docker and Kubernetes have been explored as methods to facilitate
smooth service operations. Furthermore, DevOps methodologies and the utilization
of CI/CD pipelines have been widely promoted to automate and optimize deploy-
ment procedures [7].

The lack of scholarly research in the academic discussion regarding the use of
containerized microservices for deploying mobile applications on cloud systems has
inspired the current study. This study aims to emphasize the impact of container-
ization technologies on the advancement and acceptance of mobile apps in cloud
environments.

3	 METHODOLOGY AND DATA COLLECTION

This section aims to explain the methodological framework, data sources, and
analytical processes used in the current study to enhance transparency and facil-
itate the replication of the research. The theoretical foundations of the study are
based on a comprehensive analysis of the existing literature, including essential
ideas and models related to containerization, microservices, and mobile and cloud

https://online-journals.org/index.php/i-jim

iJIM | Vol. 18 No. 10 (2024)	 International Journal of Interactive Mobile Technologies (iJIM)	 51

Containerized Microservices for Mobile Applications Deployed on Cloud Systems

computing technologies. The study utilizes many benchmark programs, primarily
those developed by Microsoft [8], to provide an evaluative framework. These pro-
grams demonstrate cross-platform compatibility and are built using a containerized
and microservices-oriented design that is compatible with Linux, Windows, Docker
containers, and cloud-based Kubernetes services.

The primary data sources for this inquiry are peer-reviewed academic papers,
case studies, and open-source code repositories. Moreover, precise technical guide-
lines, characteristics, and limitations are derived from relevant official documents
to establish the technical boundaries of the research. The data collection procedure
rigorously adheres to ethical standards.

4	 TECHNOLOGIES FOR FRONTEND DEVELOPMENT

Mobile app development has primarily utilized three types of platform technol-
ogies: native, hybrid, and cross-platform. Each represents a unique combination
of development languages, integrated development environments (IDEs), level of
access to smartphone features, and user experience. Native technologies, such as
Swift for iOS and Java or Kotlin for Android, offer superior performance and provide
extensive access to device capabilities. They utilize dedicated IDEs such as Xcode and
Android Studio. However, they require parallel development and support for each
platform. In contrast, hybrid technologies such as Apache Cordova (utilizing HTML,
CSS, and JavaScript) provide a write-once, run-anywhere approach with a moderate
level of device accessibility. However, they can compromise the app’s performance
and feel less “native.” Finally, cross-platform technologies such as React Native
(JavaScript and JSX) and Flutter (Dart) attempt to bridge this gap. Utilizing their own
IDEs, such as Visual Studio Code or IntelliJ IDEA, these technologies enable a unified
codebase that compiles native code, offering a more authentic user experience and
extensive access to device features. However, cross-platform technologies may still
lag behind native technologies in accessing the latest platform-specific features or
handling complex graphical interfaces. Hence, carefully considering the advantages
and disadvantages of each platform based on the project’s specific requirements is
critical to making an informed choice [9].

The emergence of cloud-based platforms, such as Expo and GitHub Codespaces,
has significantly contributed to the advancement of mobile application development,
achieving unparalleled levels of quality and performance. The controlled environ-
ment provided by Expo enhances the speed of development cycles through features
such as real-time code compilation, a collection of pre-configured native modules,
and the availability of Web, Android, and iOS emulators on demand. Consequently,
the need for complex local configurations is eliminated. In a similar vein, GitHub
Codespaces offers a comprehensive cloud-based IDE that facilitates real-time coding,
debugging, and testing. These technologies, along with several others, bring about a
significant change in the realm of mobile development by providing production-like
environments at any stage of the programming process.

The effectiveness and efficiency of a mobile application are closely tied to the
strength and reliability of its backend communication infrastructure. The backend
system serves as a central component for data administration, computational oper-
ations execution, and client communication. Figure 1 illustrates the current trend
towards cloud-centric designs, which serves as a prime example of this intercon-
nection [9].

https://online-journals.org/index.php/i-jim

	 52	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 10 (2024)

Jordanov et al.

Fig. 1. Structural composition of a cloud-centric ecosystem that utilizes web and mobile
application with the microservices [9]

The system architecture being discussed emphasizes client apps, which serve as
the primary way users interact with digital services. The system’s highest level of
performance and the resulting satisfaction of the users depend on effective interac-
tions with the backend cloud infrastructure. The design paradigm places significant
emphasis on the importance of a robust backend, a concept that will be further dis-
cussed in the following sections.

5	 TECHNOLOGIES FOR BACKEND CONTAINERIZATION

Containerization is an approach in software development where an application’s
code, dependencies, and configurations are packaged into a binary file called an
image. Images are read-only “templates” stored in a registry that serves as a reposi-
tory or library for images. The image is transformed into a running container instance
that can be started, stopped, moved, and deleted. Containers are created for different
parts of the application, such as the web service, database, and caching. Software
containerization enables developers and IT professionals to automatically propagate
changes across environments. Containers also isolate applications from each other
within a shared operating system. Applications run on the container host. From an
application perspective, instantiating an image means creating a container. Another
benefit of containerization is scalability. Scaling happens quickly; new containers are
created for short-term tasks. Containers offer the benefits of isolation, portability, flex-
ibility, and control over the entire application lifecycle. Major public cloud service
providers that can be utilized include Azure, Google Cloud, and Amazon Web Services.

Docker is the most widely used and established technology [10–11]. It is an
open-source project that automates the deployment of applications as portable,
self-contained containers that can run on-premises or in the cloud. Docker pro-
motes and develops this technology. Its containers can run on Linux or Windows.
Advantages for developers include accelerated onboarding of new programmers to
the project, elimination of application conflicts, and streamlined software updating
and migration processes. Figure 2 presents a comparison between a virtual machine
and a Docker container [12].

https://online-journals.org/index.php/i-jim

iJIM | Vol. 18 No. 10 (2024)	 International Journal of Interactive Mobile Technologies (iJIM)	 53

Containerized Microservices for Mobile Applications Deployed on Cloud Systems

Fig. 2. Comparison between virtual machines and Docker containers [12]

Virtual machines include the application, necessary libraries, and a full operat-
ing system. In comparison, full virtualization requires one resource and a longer
startup time.

Docker containers include the application and all of its dependencies. However,
they share the OS kernel with other containers running as isolated processes in the
user space of the host operating system. Except for Hyper-V containers, where each
container runs inside a dedicated virtual machine. Even though Docker simplifies
the application packaging process, a solution like Kubernetes is necessary to manage
these containers, especially at scale. Kubernetes automates deploying and schedul-
ing application containers in a cluster, provides self-healing capabilities (e.g., auto-
matic container restart, rescheduling, and replication), and facilitates horizontal
scalability [13].

Kubernetes provides high-level operations that can be executed through
the microservices’ code. Robots with instructions are transferred to the cloud
machines, known as a “cluster,” which is a collection of Linux or Windows vir-
tual machines (node points) where the applications are deployed (but not directly).
Kubernetes manages the routing and logistics of microservices (most commonly
used in this architecture).

Docker and Kubernetes facilitate deployment strategies such as blue-green,
rolling, and canary release deployments.

Blue-green deployment: This strategy involves two identical production envi-
ronments, blue and green [14]. Only one of these environments is active at any time.
Suppose the “blue” environment is active and handling traffic. If a new version of
the application needs to be deployed, a “green” environment is then set up. Thus,
tests can be extensively conducted in this separate environment. Once stability and
performance are satisfactory, the router switches to a “green” environment, which
becomes active. The “blue” environment remains inactive until the next release,
enabling quich rollback if necessary.

Rolling deployment: In a rolling deployment, a new version of the application
is gradually deployed to several instances at a time, instead of all at once, while the
remaining instances still retain the old version [15]. This approach allows for careful
deployment and maintains service availability during the deployment process. If prob-
lems occur, the deployment process can be halted, affecting only a subset of instances.

https://online-journals.org/index.php/i-jim

	 54	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 10 (2024)

Jordanov et al.

Canary release deployment: Named after the practice of sending a canary into a
mine to check for hazardous gases, canary deployment involves introducing a change
to a small subset of users before applying it to the entire infrastructure. The goal is to
test the new release on a small portion of traffic, ensuring it works as expected, before
rolling it out to a wider user base [16]. If something goes wrong, only the canary
instances are affected, and we can roll back the changes without affecting all users.

The canary release deployment model may be well-suited for a cloud-based
order management system. This strategy involves gradually implementing changes
to a subset of users before rolling them out to the entire system. By segmenting the
deployment in this way, it is possible to monitor the impact of system changes in real
time, thereby reducing the risk of widespread disruption. It provides a comprehen-
sive testing environment for new features or modifications to the order management
system, enterprise resource planning, fleet management, and monitoring systems.
This enables the team to identify potential issues before they impact all end users.
Production test patterns are strategies used in software development to ensure that
the software functions as expected in a production environment. These models can
help prevent software defects, improve system resilience, and maintain quality and
reliability. A/B testing is one such model that enables data-driven decision-making in
the context of a cloud-based order management system by simultaneously deploy-
ing different versions of system improvements or new features to subsets of users,
thereby allowing comparative performance evaluations [17–22].

All these strategies offer various ways to reduce risk and minimize downtime
during deployment. The choice of strategy should be based on the specific needs and
circumstances of the project.

Regarding deployment strategies, Docker can be useful in blue-green deploy-
ments. A new container can be set up with the updated version of the applica-
tion, and traffic can be directed to it when it is ready. Docker also enables the easy
creation and management of separate instances required for rolling and canary
deployments. Kubernetes can help by managing two different sets of pods (blue and
green). Service objects can be used to route traffic between the two environments.
Kubernetes initially supports this strategy through rolling deployment, updating
an implementation by gradually replacing old modules with new ones. This func-
tion ensures that a minimum number of packages are always available during the
update, and at most, a certain number of packages are created above the desired
amount. Kubernetes can gradually transition traffic to the updated version of the
application and monitor performance. If the updated version works well, traffic
redirection can continue until the new version can handle all requests. However, if
something goes wrong, the traffic can be redirected back to the older, stable version.

6	 AFTER-DEPLOYMENT MANAGEMENT OF CLOUD MICROSERVICES

Installing a service in the cloud is not the final step of the deployment. Therefore,
effective system logging and monitoring are essential management procedures.
Understanding the complex responsibilities they have and the wide range of tools
available is essential to guaranteeing optimal system functionality. Infrastructure
monitoring and application monitoring are the two main categories. Infrastructure
monitoring involves estimating and controlling system resources such as
CPU, memory, disk space, and network traffic. Due to their comprehensive resource
monitoring capabilities and capacity to identify constraints, tools like Nagios
are well-suited for this purpose. In contrast, application monitoring focuses on the

https://online-journals.org/index.php/i-jim

iJIM | Vol. 18 No. 10 (2024)	 International Journal of Interactive Mobile Technologies (iJIM)	 55

Containerized Microservices for Mobile Applications Deployed on Cloud Systems

functionality and efficiency of the application within the system. It addresses aspects
such as response time, error rate, and transaction tracking critical to a seamless user
experience in order management systems [23–24].

Maintaining a system log supplements monitoring. It helps developers track
bugs and understand the sequence of events that led to system failure. For example,
the ELK (Elasticsearch, Logstash, and Kibana) stack is an open-source logging sys-
tem that collects logs from various sources [25–27], stores them for quick retrieval
(Elasticsearch), processes and transforms them (Logstash), and then visualizes them
in a user-friendly manner (Kibana). This utilization of resources lays the groundwork
for a strong, dependable, and efficient procurement management system. The ELK
enables quick identification of system errors and proactive problem-solving, thus
facilitating the delivery of a quality product to the end user.

Monitoring is crucial for application administration and management, particu-
larly in the context of APIs. The purpose of monitoring serves the following objectives:

•	 Anticipation and preventive measures involve identifying potential problems
before they escalate.

•	 Identifying problems as soon as they become apparent.
•	 Providing operational oversight to gain a thorough understanding of API

efficiency and usage patterns.
•	 Significance of the observation.
•	 Customer expect APIs to deliver consistent performance and availability in

today’s digital age.
•	 Functionality protection offers dependable monitoring mechanisms to ensure

that the API operates optimally and meets its service level objectives.

Some important metrics to track in an API ecosystem include the following:

•	 Requests per second provide insight into the current API traffic and demand.
•	 Monitoring the number of crashes can help identify recurring issues or vulnera-

bilities early.
•	 Latency estimates the response time of an API, providing insight into its efficiency

and performance.
•	 Monitoring the number of active users can provide insight into the demand and

popularity of the system.
•	 Session count provides an overview of user interaction and engagement

with the API.
•	 Understanding the geographic distribution of users can help optimize server

location and enhance the user experience.
•	 Monitoring CPU usage can reveal potential limitations or areas that require

optimization.
•	 Regular monitoring of memory usage ensures that the system is not overloaded

and operates efficiently.

7	 LIMITATIONS AND FUTURE WORK

This study is limited by its primary focus on public cloud systems, potentially
overlooking the specifics of private or hybrid cloud deployments. The rapid evolu-
tion of cloud technologies and microservices necessitates an ongoing reassessment
of our findings to ensure their relevance.

https://online-journals.org/index.php/i-jim

	 56	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 10 (2024)

Jordanov et al.

In discussing front-end development technologies, it is crucial to consider secu-
rity challenges. These include vulnerabilities in code libraries, risks associated with
data storage and transmission, and the need for robust authentication mechanisms.
The integration of front-end technologies with back-end containerization demands
attention to security at both ends, ensuring a comprehensive approach to safeguard-
ing the application.

Future research should explore the application of containerized microservices
across various cloud models, including private and hybrid, to gain a more compre-
hensive view of deployment challenges. Investigating emerging technologies such
as serverless computing and AI-driven tools within microservice architectures could
provide valuable insights.

8	 CONCLUSION

This paper explores the dynamics of mobile application development technolo-
gies, backend containerization, and post-deployment management. It emphasizes
the importance of making informed technology choices and implementing effective
monitoring and logging practices for successful software development projects.

Mobile application development encompasses various frontend platform tech-
nologies, including native, hybrid, and cross-platform approaches, each offering
distinct advantages and limitations. The choice of technology depends on project
requirements, and the mobile application’s backend is an important part. Backend
containerization, a pivotal aspect of modern software development, involves pack-
aging an application’s code, dependencies, and configurations into images that can
be deployed as containers. Docker, a widely adopted open-source platform, simpli-
fies application deployment and offers benefits such as scalability, isolation, por-
tability, and flexibility. Container orchestration tools such as Kubernetes automate
container management, enabling scalability and self-healing.

Effective post-deployment management of cloud microservices includes robust
monitoring and logging. Infrastructure monitoring oversees system resources, while
application monitoring evaluates functionality and efficiency. Tools such as Nagios
excel at resource monitoring, while application monitoring tools focus on response
time, error rates, and transaction tracking. Finally, a comprehensive logging system,
such as the ELK stack, enables quick error identification and proactive issue resolu-
tion, thereby enhancing the overall product quality.

9	 ACKNOWLEDGMENT

This study has been financed by NPD-331/2023 from the University of
Economics-Varna Science Fund.

10	 REFERENCES

	 [1]	 E. Soares, G. Sizílio, J. Santos, D. Alencar da Costa, and U. Kulesza, “The effects of contin-
uous integration on software development: A systematic literature review,” Empirical
Software Engineering, vol. 27, no. 3, 2022. https://doi.org/10.1007/s10664-021-10114-1

	 [2]	 J. P. Lima and S. R. Vergilio, “Test case prioritization in continuous integration envi-
ronments: A systematic mapping study,” Information & Software Technology, vol. 121,
p. 106268, 2020. https://doi.org/10.1016/j.infsof.2020.106268

https://online-journals.org/index.php/i-jim
https://doi.org/10.1007/s10664-021-10114-1
https://doi.org/10.1016/j.infsof.2020.106268

iJIM | Vol. 18 No. 10 (2024)	 International Journal of Interactive Mobile Technologies (iJIM)	 57

Containerized Microservices for Mobile Applications Deployed on Cloud Systems

	 [3]	 O. Elazhary, C. Werner, Z. S. Li, D. Lowlind, N. A. Ernst, and M.-A. Storey, “Uncovering
the benefits and challenges of continuous integration practices,” in IEEE Transactions
on Software Engineering, 2022, vol. 48, no. 7, pp. 2570–2583. https://doi.org/10.1109/
TSE.2021.3064953

	 [4]	 NIST, “The NIST definition of cloud computing,” National Institute of Standards and
Technology, U.S. Department of Commerce, no. 800–145. https://nvlpubs.nist.gov/
nistpubs/legacy/sp/nistspecialpublication800-145.pdf

	 [5]	 S. Stuckenberg and S. Beiermeister, “Software-As-A-Service development: Driving forces
of process change,” in PACIS 2012 Proceedings, 2012, vol. 122. https://aisel.aisnet.org/
pacis2012/122

	 [6]	 S. Li, H. Zhang, Z. Jia, C. Zhong, C. Zhang, Z. Shan, J. Shen, and M. A. Babar, “Understanding
and addressing quality attributes of microservices architecture: A systematic litera-
ture review,” Information & Software Technology, vol. 131, p. 106449, 2021. https://doi.
org/10.1016/j.infsof.2020.106449

	 [7]	 C. De La Torre, “Containerized docker application lifecycle with Microsoft platform
and tools,” Microsoft Corp., 2022. https://learn.microsoft.com/en-us/dotnet/architecture/
containerized-lifecycle/

	 [8]	 R. Vettor and S. Smith, “Architecting cloud native .NET applications for Azure,” Microsoft
Learn, 2023. https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native/

	 [9]	 C. De La Torre, B. Wagner, and M. Rousos, “.NET microservices. Architecture for con-
tainerized .NET applications,” Microsoft Learn, 2023. https://learn.microsoft.com/en-us/
dotnet/architecture/microservices/

	[10]	 A. M. Potdar, D. G. Narayan, S. Kengond, and M. M. Mulla, “Performance evalua-
tion of docker container and virtual machine,” Procedia Computer Science, vol. 171,
pp. 1419–1428, 2020. https://doi.org/10.1016/j.procs.2020.04.152

	[11]	 M. U. Haque, L. H. Iwaya, and M. A. Babar, “Challenges in docker development: A large-
scale study using stack Overflow,” arXiv, 2020. [Online]. Available: http://arxiv.org/
abs/2008.04467.

	[12]	 C. De La Torre, B. Wagner, and M. Rousos, “.NET Microservices: Architecture for
Containerized .NET applications,” Microsoft.com, 2022. https://learn.microsoft.com/
en-us/dotnet/architecture/microservices/container-docker-introduction/docker-defined

	[13]	 T. Menouer, “KCSS: Kubernetes container scheduling strategy,” The Journal of Super­
computing, vol. 77, pp. 4267–4293, 2020. https://doi.org/10.1007/s11227-020-03427-3

	[14]	 B. Yang, A. Sailer, and A. Mohindra, “Survey and evaluation of Blue-Green deploy-
ment techniques in cloud native environments,” in Lecture Notes in Computer Science,
2020, vol. 12019, pp. 69–81. https://doi.org/10.1007/978-3-030-45989-5_6

	[15]	 C. K. Rudrabhatla, “Comparison of zero downtime based deployment techniques
in public cloud infrastructure,” in Fourth International Conference on I-SMAC (IoT
in Social, Mobile, Analytics and Cloud), 2020, pp. 1082–1086. https://doi.org/10.1109/
I-SMAC49090.2020.9243605

	[16]	 N. C. Mendonca, P. Jamshidi, D. Garlan, and C. Pahl, “Developing self-adaptive microser-
vice systems: Challenges and directions,” in IEEE Software, 2021, vol. 38, no. 2, pp. 70–79.
https://doi.org/10.1109/MS.2019.2955937

	[17]	 R. Kohavi, D. Tang, and Y. Xu, Trustworthy Online Controlled Experiments: A Practical
Guide to A/B Testing. Cambridge: Cambridge University Press, 2020. https://doi.
org/10.1017/9781108653985

	[18]	 P. Petrov, S. Ivanov, P. Dimitrov, G. Dimitrov, and O. Bychkov, “Projects management
in technology start-ups for mobile software development,” International Journal of
Interactive Mobile Technologies (iJIM), vol. 15, no. 7, pp. 194–201, 2021. https://doi.
org/10.3991/ijim.v15i07.19291

https://online-journals.org/index.php/i-jim
https://doi.org/10.1109/TSE.2021.3064953
https://doi.org/10.1109/TSE.2021.3064953
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-145.pdf
https://aisel.aisnet.org/pacis2012/122
https://aisel.aisnet.org/pacis2012/122
https://doi.org/10.1016/j.infsof.2020.106449
https://doi.org/10.1016/j.infsof.2020.106449
https://learn.microsoft.com/en-us/dotnet/architecture/containerized-lifecycle/
https://learn.microsoft.com/en-us/dotnet/architecture/containerized-lifecycle/
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native/
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/
https://doi.org/10.1016/j.procs.2020.04.152
http://arxiv.org/abs/2008.04467
http://arxiv.org/abs/2008.04467
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/container-docker-introduction/docker-defined
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/container-docker-introduction/docker-defined
https://doi.org/10.1007/s11227-020-03427-3
https://doi.org/10.1007/978-3-030-45989-5_6
https://doi.org/10.1109/I-SMAC49090.2020.9243605
https://doi.org/10.1109/I-SMAC49090.2020.9243605
https://doi.org/10.1109/MS.2019.2955937
https://doi.org/10.1017/9781108653985
https://doi.org/10.1017/9781108653985
https://doi.org/10.3991/ijim.v15i07.19291
https://doi.org/10.3991/ijim.v15i07.19291

	 58	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 10 (2024)

Jordanov et al.

	[19]	 G. Schermann, J. Cito, P. Leitner, U. Zdun, and H. C. Gall, “We’re doing it live: A multi-
method empirical study on continuous experimentation,” Information & Software
Technology, vol. 99, pp. 41–57, 2018. https://doi.org/10.1016/j.infsof.2018.02.010

	[20]	 L. I. Todoranova, R. V. Nacheva, V. S. Sulov, and B. P. Penchev, “A model for mobile learn-
ing integration in higher education based on students’ expectations,” International
Journal of Interactive Mobile Technologies (iJIM), vol. 14, no. 11, pp. 171–182, 2020. https://
doi.org/10.3991/ijim.v14i11.13711

	[21]	 T. F. Düllmann, C. Paule, and A. Van Hoorn, “Exploiting devops practices for depend-
able and secure continuous delivery pipelines,” in Proceedings of the 4th International
Workshop on Rapid Continuous Software Engineering (RCoSE ‘18), 2018, pp. 27–30.
https://doi.org/10.1145/3194760.3194763

	[22]	 R. V. Nacheva, “Standardization issues of mobile usability,” International Journal of
Interactive Mobile Technologies (iJIM), vol. 14, no. 7, pp. 149–157, 2020. https://doi.
org/10.3991/ijim.v14i07.12129

	[23]	 Y. Aleksandrova and M. Armianova, “Evaluation of cost-sensitive machine learning
methods for default credit prediction,” in 2022 International Conference Automatics and
Informatics (ICAI), 2022, pp. 89–94. https://doi.org/10.1109/ICAI55857.2022.9960023

	[24]	 J. Vasilev, R. Nikolaev, and T. Milkova, “Transport task models with variable supplier
availabilities,” Logistics, vol. 7, no. 3, p. 45, 2023. https://doi.org/10.3390/logistics7030045

	[25]	 P. Petrov, I. Kuyumdzhiev, R. Malkawi, G. Dimitrov, and O. Bychkov, “Database
administration practical aspects in providing digitalization of educational services,”
International Journal of Emerging Technologies in Learning (iJET), vol. 17, no. 20,
pp. 274–282, 2022. https://doi.org/10.3991/ijet.v17i20.32785

	[26]	 B. P. Rao and N. N. Rao, “HDFS logfile analysis using ElasticSearch, LogStash and
Kibana,” in Integrated Intelligent Computing, Communication and Security, 2019, vol. 771,
pp. 185–191. https://doi.org/10.1007/978-981-10-8797-4_20

	[27]	 F. Ahmed, U. Jahangir, H. Rahim, K. Ali, and D.-E.-S. Agha, “Centralized log manage-
ment using ElasticSearch, Logstash and Kibana,” in 2020 International Conference on
Information Science and Communication Technology (ICISCT), Karachi, Pakistan, 2020,
pp. 1–7. https://doi.org/10.1109/ICISCT49550.2020.9080053

11	 AUTHORS

Jordan Jordanov is an Assistant Professor and a doctoral candidate in the
Department of Informatics at the University of Economics – Varna, Bulgaria. His
research interests include modern cloud services and mobile technologies (E-mail:
jordanov.jordan@ue-varna.bg).

Dimitrios Simeonidis is a PhD candidate in Computer Science at the University
of Economics – Varna, Bulgaria. He is currently working as an IT Engineer in
Thessaloniki, Greece (E-mail: simeonidis@ue-varna.bg).

Pavel Petrov is a Professor in the Department of Informatics at the University of
Economics – Varna, Bulgaria. His research interests include distributed web systems,
big data, and mobile computing (E-mail: petrov@ue-varna.bg).

https://online-journals.org/index.php/i-jim
https://doi.org/10.1016/j.infsof.2018.02.010
https://doi.org/10.3991/ijim.v14i11.13711
https://doi.org/10.3991/ijim.v14i11.13711
https://doi.org/10.1145/3194760.3194763
https://doi.org/10.3991/ijim.v14i07.12129
https://doi.org/10.3991/ijim.v14i07.12129
https://doi.org/10.1109/ICAI55857.2022.9960023
https://doi.org/10.3390/logistics7030045
https://doi.org/10.3991/ijet.v17i20.32785
https://doi.org/10.1007/978-981-10-8797-4_20
https://doi.org/10.1109/ICISCT49550.2020.9080053
mailto:jordanov.jordan@ue-varna.bg
mailto:simeonidis@ue-varna.bg
mailto:petrov@ue-varna.bg

