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PAPER

AFARM: Anxiety-Free Autonomous Routing Model 
for Electric Vehicles with Dynamic Route Preferences

ABSTRACT
Energy and environmental concerns have fostered the era of electric vehicles (EVs) to take 
over and be welcomed more than ever. Fuel-powered vehicles are still predominant; how-
ever, this trend appears to be changing sooner than we might expect. Countries in Europe, 
Asia, and many states in America have already made the decision to transition to a fully 
EV industry in the next few years. This looks promising; however, drivers still have con-
cerns about the battery mileage of such vehicles and the anxiety that such driving experi-
ences! Indeed, driving with the probability of having insufficient battery charge that may be 
involved in guaranteeing the delivery to the trip destination imposes a level of anxiety on the 
vehicle drivers. Therefore, for an alternative to traditional fuel-powered vehicles to be con-
vincing, there needs to be sufficient coverage of charging stations to serve cities in the same 
way that fuel stations serve traditional vehicles. The current navigation models select routes 
based solely on distance and traffic metrics, without taking into account the coverage of fuel 
service stations that these routes may offer. This assumption is made under the belief that all 
routes are adequately covered. This might be true for fuel-powered vehicles, but not for EVs. 
Hence, in this work, we are presenting AFARM, a routing model that enables a smart naviga-
tion system specifically designed for EVs. This model routes the EVs via paths that are lined 
with charging stations that align with the EV’s current charge requirements. Different from 
the other models proposed in the literature, AFARM is autonomous in the sense that it deter-
mines navigation paths for each vehicle based on its make, model, and current battery sta-
tus. Moreover, it employs Dijkstra’s algorithm to accommodate varying least-cost navigation 
preferences, ranging from shortest-distance routes to routes with the shortest trip time and 
routes with maximum residual battery capacities as well. According to the EV driver’s prefer-
ence, AFARM checks the set of candidate paths at the source point and selects the appropriate 
path for the vehicle to drive based on its current status. Consequently, AFARM provides an 
anxiety-free navigation model that allows for a reliable and environmentally friendly driving 
experience, promoting this alternative mode of transportation.
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1	 INTRODUCTION AND PROBLEM STATEMENT

Recently, the theme of electric vehicles (EVs) has emerged as a promising 
alternative to traditional fuel-powered vehicles. EVs are not only powerful but also 
friendly to the environment and the economy. Indeed, with no fossil sources to burn, 
EVs emit no carbon dioxide or any other pollutants or greenhouse gases. For drivers, 
the use of EVs is considered cost-efficient, as it involves not only the costs of energy 
but also maintenance. True, EVs are constructed with simpler mechanical designs 
that provide higher torque power, eliminating the need for gearbox conversions 
or oil-consuming components. On the other hand, this transportation technology 
may also bring about a sense of anxiety, particularly for individuals driving long 
distances!

1.1	 Problem

Driving with the probability of having insufficient battery charge that guarantees 
the delivery to the trip’s destination imposes a level of anxiety on EV drivers [1], [2]. 
Navigation systems for fuel-powered vehicles are excellent, as they accurately deter-
mine the optimal routes based on metrics that ensure the shortest or fastest trips to 
the desired destinations. To some extent, this could work for EVs as well. However, 
a route that suits a fuel-powered vehicle may not necessarily suit an EV. Certainly, 
the routes chosen by traditional navigators are assumed to have fuel stations to 
serve vehicles traveling along them. However, for EVs, the question arises: are these 
routes also equipped with electric charging stations to cater to the needs of EVs? If 
so, would this coverage suit all those EVs that come with varying battery capacities? 
The subsections that follow will elaborate on the challenges.

EVs varying makes and models. Electric vehicles vary in their battery sizes and 
energy consumption, leading to varying requirements. An EV with a large battery 
capacity may take routes that are not suitable for vehicles with limited or relatively 
small battery capacities. Therefore, an efficient route selection process needs to con-
sider the EV make and model in addition to the other inputs of source and destina-
tion points.

Battery state of health. Moreover, even for those EVs that are from the same 
make and model, batteries also vary in their state of health (SoH). SoH is an import-
ant factor that refers to the aging state of the battery cells, which greatly affects 
the expected battery performance. Accordingly, EVs vary in their charging require-
ments even if they are from the same make and model, which means their route 
requirements would also vary. As an example, in the EVs automobile sector, vari-
ous makes and models of EVs exist, each with different specifications and varying 
battery ranges. This ranges from 120 km for a fully charged battery to 600 km or 
even more. For a trip of 500 km, a fully charged EV, with a range of 600 km, would 
reach the trip’s destination without needing to be charged. In contrast, a 240 km 
range EV would need to be charged twice, and a 120 km range EV would need to be 
charged at least four times.

Driving conditions. Factors such as driving mode, time of day, and weather con-
ditions may also affect the actual range of the battery. Indeed, driving in sport mode 
consumes a different amount of energy compared to classic or eco modes, even for 
the same EV make and model. The same applies when considering driving during 
the day or at night, in sunny or cold weather conditions. Each has its own specific 
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requirements, such as lighting, air conditioning, heaters, wipers, and so on. This may 
also extend to road conditions, including challenges such as mud and snow.

Therefore, the process of route selection for electrically powered vehicles is more 
complex compared to traditional fuel-powered vehicles [3]. The adequate coverage 
of suitable charging stations for electric vehicles is crucial in such situations. Truly, a 
route that may suit an EV may not suit another, even if they are from the same make 
and model.

With the adoption of the new theme of the eco-friendly transportation indus-
try by governments and countries worldwide, cities need to address the aforemen-
tioned coverage problem by ensuring appropriate coverage along all routes, both 
interior and exterior. This looks promising; however, it may take a while to mate-
rialize! Accordingly, in this work, we are presenting AFARM, a model built to assist 
in routing EVs based on existing road-network maps [4], but adapted to find routes 
that meet the varying requirements of EVs. In this context, the proposed navigation 
system needs to be “autonomous and dynamic” for two main reasons: (1) it should 
track the specific make and model of the running EV to determine the most suitable 
navigation routes, and (2) the selected routes should be continuously updated in 
real-time to adapt to any changes in the EV or road network conditions. Taking that 
into account, the model is developed to offer the following route navigation options: 
(1) the shortest distance routes; (2) the routes with the maximum residual battery 
capacities; and (3) the fastest routes in terms of time.

1.2	 Contribution

Finding the shortest matching paths is a significant advancement. However, for 
an efficient navigation system for EVs, there are additional concerns that need to 
be addressed. In most cases, the anxiety mentioned above does not dissipate upon 
reaching the destination of the trip; rather, drivers may require their EVs to retain 
ample residual battery charge before embarking on a new trip. Such charges are 
sufficient to guide them to the nearest charging station along their routes to their 
new destinations. What is more, finding the shortest path that is guaranteed to have 
the appropriate charging stations is great. However, for some drivers, the total time 
of the trips is also an important factor to consider. A path that is defined as being the 
shortest (in terms of distance) is not necessarily the fastest! Indeed, the shortest path 
that passes through more charging stations may require a longer trip time compared 
to another path with longer distances but fewer charging stations. True, the time 
spent charging at the charging stations along the route is included in the total trip 
time calculation, in addition to the propagation times. Therefore, stopping at more 
charging stations will inevitably result in longer trip times. In this work, in addition 
to the goal of shortest path routing, we are extending our focus to address the con-
cerns of residual battery capacity and total trip times. Briefly, this work contributes 
by presenting a navigation model that is:

•	 Anxiety-free, as it navigates the routes of trips from their starting points to their 
destination. These selected routes are guaranteed to have the necessary charging 
points, if needed. So, the anxiety of being on the side of the road is eliminated.

•	 The tactical approach involves selecting routes for running trips that ensure 
there is enough battery charge capacity to initiate new trips. A form of strategic 
planning involves being ready for upcoming journeys.

https://online-journals.org/index.php/i-jim
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•	 The shortest navigation model identifies all possible paths for the vehicle starting 
at the source point. Among the candidate paths, the system selects the shortest 
suitable route for the EV in operation.

•	 Fastest: Time wise, this route differs from the shortest distance routes as it consid-
ers the trip’s distance in kms and the number of charging points to pass through.

•	 Autonomous: each EV is treated as an independent entity utilizing its navigation 
system. Therefore, even if multiple vehicles have the same source-destination 
points, they may receive different routing decisions.

•	 The model is dynamic, continuously monitoring the vehicle and road conditions 
in real-time, and adjusting the selected paths as needed.

The rest of this paper is organized as follows: Section 2 presents some related 
work, and Section 3 discusses our proposed routing model, followed by the meth-
odology in Subsection 3.1. Section 4 presents the benchmark model, and Section 5 
showcases and discusses a sample of the simulation results that were conducted to 
assess and compare the model. Finally, Section 6 concludes the paper.

2	 RELATED WORK

Several proposals in the literature have addressed the area of EVs and their 
related research problems. Mostly, they address issues to safety, power consump-
tion, battery manufacturing technologies, and cybersecurity risks [5]. When it comes 
to charging, most of the research focuses on power grids, load-balancing, wired/
wireless charging techniques [6], and scheduling from both economic and load 
perspectives [7], [8], [9].

For the problem of routing and path selection for EVs, in [10], the authors pro-
posed a routing model that claims to solve the issue of range anxiety. They proposed 
creating a polygon-shaped area as a navigation space towards the vehicle’s trip des-
tination. For the polygon area, the model defines four reference points starting with 
the charging request point. Their proposal may include a route that could be lined 
with charging stations leading to the destination. While, such a path selection model 
lacks guarantees that it will meet the “running” EV charge requirements or choose 
the true shortest path to the destination. Indeed, a path that may suit an EV may 
not suit another from a different make or model. Moreover, without considering 
the running EV battery charge and SoH, those selected paths might be misleading. 
True, this could occur in two cases: (1) If the chosen route does not have an ade-
quate number of charging stations, the EV may run out of battery along the way 
and require towing. (2) If the selected route includes unnecessary charging stations, 
a shorter path could exist if these extra stations were not mandatory on the naviga-
tion route.

In the same domain of research, the work of [11] proposed an autonomous adap-
tive routing model that aims to enhance the path selection process outlined in [10], 
and introduces a cognitive model that takes into account the type of EV in the rout-
ing process. The proposal in [11] is also adaptive, as it adjusts the path selection pro-
cess to any changes or updates that occur in the vehicle’s or road’s status in real-time. 
Compared to the navigation paths chosen in [10] the model presented in [11] is cog-
nitive, adaptive, and shorter. However, restricting the search domain for a charging 
station to a relatively small area, as suggested in [11], may not guarantee the selected 
navigation paths are the shortest. Indeed, such zone limitations may allow for a rela-
tively short path, but not necessarily the true shortest. In [12], the authors proposed a 
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novel routing methodology that encompasses all the relevant paths between pairs of 
source and destination points for trips. In this context, the term “appropriate” refers 
to paths that align with the EV’s profile and the coordinates of the trip. In the same 
context, the work presented in [14] discusses a time-window-constrained route navi-
gation model that assumes a fixed cargo weight and static power consumption rates. 
Furthermore, their work assumes static traffic loads on the vehicle routes, which are 
more dynamic than static in real-life settings. Indeed, such assumptions are hard 
to meet, as vehicles carry a varying number of passengers and cargo weights, and 
therefore, their energy consumption rates would also vary. In our AFARM model, the 
route selection process involves reading the dynamic EV status and then identifying 
suitable candidate routes.

In [15], the authors proposed an EV navigation model that aims to find shorter 
route distances compared to those of fuel-powered vehicles. In our model, finding a 
short route is a priority. However, battery-wise, such short routes need to guarantee 
the delivery of the trips’ destination points. Our AFARM model is autonomous as 
it searches for the shortest-matching routes that ensure the running EV’s battery 
matches the driving status requirements.

The proposal in [16] addressed the same issues, but from a different perspective. 
Minimizing the total trip time was the focus of the study [16]. While it is a crucial 
priority, achieving minimal travel times may result in longer distances, which can 
be challenging for EV drivers with limited battery ranges. From the perspectives of 
infrastructure, market, and drivers’ feedback and preferences, such new alternatives 
to the existing transportation systems have been discussed in [13].

The work in [17] includes proposals related to the management models of energy 
supply to the main power grids under study. In references [18], [19], and [20], the 
authors addressed the challenges of dynamic billing to regulate electricity power 
consumption rates. In the same context, the work in [21], [22], and [23] addressed 
billing mechanisms that could be deployed to incentivize EV charging activities 
during specific periods of the day. Using an appropriate notification mechanism [24], 
this would be truly useful when considering the EVs potential loads on the electricity 
power grids, but not for navigation and EV routing services.

Compared to the other models in the literature, our proposed model, AFARM, 
is autonomous. It determines navigation paths for each vehicle based on its make, 
model, and current battery status. Moreover, it allows for various navigation pref-
erences, ranging from shortest-distance routes to routes with maximum residual 
battery capacity, as well as shortest trip-time routes. According to the driver’s pref-
erence, it checks the set of candidate paths at the starting point and selects the most 
suitable path for the vehicle to drive on.

3	 THE PROPOSED ANXIETY-FREE AUTONOMOUS ROUTING MODEL

This section presents our routing model for EVs, which offers an autonomous and 
dynamic route solution with various preferences. A navigation model, as illustrated 
in Figure 1, considers the EV profile, battery state of health, trip’s origin and desti-
nation points, driver’s route preference, and autonomously determines the optimal 
route that best fits the EV and its driver. In such a scenario, we assume there are 
25 different charging stations providing coverage over a specific geographical area. 
We also assume that there are three varying EVs traveling in this area, each with a 
unique profile, battery SoH, trip coordinates, and driver preferences.
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Fig. 1. A Demonstration to the proposed EVs’ autonomous routing model

3.1	 Model’s methodology

Different from the benchmark model [10], which considers the charging request 
point as the initial reference for the search area, our proposal involves finding the 
routing path R

ev
i

 with respect to the trip’s starting point. Moreover, our model reads 
the following information (1) EV make m, m ∈ M, (2) the EV model e, e ∈ E, (3) its 
battery charge β

ev
i

 in kWh, SoH, and (4) the EV’s power consumption profile ρ
ev
i

 in 
kW/kWh, along with (5) the source s

ev
i

 and destination d
ev
i

 points of the desired trip. 
As presented in Equation (1), the model calculates the vehicle’s battery range limit 
in kilometers or miles. Consequently, it determines the longest distance ↑ D

ev
i

 the 
vehicle can travel before needing to be charged. This could be bounded by the value 
α, which helps define a desired usable limit for the total battery capacity.

	 � � �
��

�
��

D
ev ev ev
i i i

�m e *�( . ) � � � 	 (1)

Having such value of ↑ D
ev
i

, and different from the work in [11], as shown in 
Equation (2) below, the model finds a set of candidate charging points ci, ci ∈ C, that 
are reachable within a distance D

c
i

 less than or equal to what is ↑ D
ev
i

 calculated in 
Equation (1) from the trip’s source point s

ev
i

, or a desired threshold value.

	 D D
c
i

� �� .� � � �
ev
i

� �c C�
i

	 (2)

However, beside the distance condition of Equation (2), for each running, this list 
is bounded with the following set of constraints:

Model’s constraints.

•	 Compatible charging points: Among those charging points ci, ci ∈ C, that sat-
isfy the distance condition of Equation (2), only the charging points compatible 
with the  make and model requirements of the vehicle are considered potential 
charging candidates; others are exempted. As shown in Equation (3), the model 
identifies the compatible points in C

ev
i

.
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otherwise
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•	 Charging points’ reachability: The selected points in Equation (3) need to 
satisfy an additional filtering constraint, the reachability constraint. This con-
straint necessitates that each point in RC

ev
i

 to allow for a path to reach the trip’s 
destination point d

ev
i

, either directly or indirectly, as illustrated in Equation (4). 
Therefore, the model excludes any charging point that does not contribute to 
the journeys’ destination. So, any charging points whose neighboring charging 
points are further away than the EV’s distance limit is excluded from the list.

	 RC
if point c allows fora path to d

otherwise
ev

i ev

i

i� �
� � � � � �� �� ��1

0

��
�
�

��
�	 (4)

3.2	 Routing with trip distance perspective

After obtaining the list of candidate charging points that meet the model con-
straints in RC

ev
i

, it calculates the distances for the paths vP z Z
z

l . � �∈ , each candidate 
charging point, c RC

i ev
i

∈ , can take to reach the trip’s destination point d
ev
i

. In real-
time, this information is added to the list RC

ev
i

.
If the selected navigation mode is the shortest trip distance, the candidate paths 

are sorted based on their distances in descending order. The path with the shortest 
distance, vPz, is then chosen as the navigation route to follow. The selected route not 
only provides directions and other road attributes but also highlights the charging 
points where the EV needs to stop and recharge its battery if necessary.

3.3	 Routing with residual battery capacity perspective

Different from the benchmark model [10], which considers the charging request 
point as the first reference for the search area, our proposal determines the rout-
ing path R

ev
i

 with respect to the trip’s origin point. Moreover, our model reads the 
following information: (1) EV make m, m ∈M, (2) the EV model e, e ∈E, (3) its bat-
tery charge β

ev
i

 as in kwh, with its SoH, (4) the EV’s power consumption profile ρ
ev
i

 
in kW/kWh, and (5) the source s

ev
i

 and destination d
ev
i

 points of the desired trip. 
As presented in Equation (1), the model calculates the vehicle’s battery range limit 
in kilometers or miles. This value represents the longest distance ↑ D

ev
i

 the vehicle 
can travel before needing to be recharged. This could be done with the value α, 
which helps define a desired usable limit for the entire battery capacity. In addition 
to distance routing, the option of considering residual battery capacity can be incor-
porated into the route selection methodology. After returning home, maintaining 
residual battery capacity is one of the primary goals that EV drivers consistently 
strive to achieve after each trip. This ensures they can embark on their next journey 
without any worries about power availability.

To meet this requirement, our proposed routing model allows the selection of 
paths that offer the maximum possible residual battery capacities. To do this, the 
model must identify the final charging point that the EV used just before reaching 
its destination. To facilitate this, we proposed the following definitions to classify 
candidate charging points, c RC

i ev
i

∈ , to either direct or indirect ones:
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•	 Definition 1: Direct path charging points are that undergo pass a distance ver-
ification step to determine if the trip’s destination point d

ev
i

 is within the dis-
tance limit ↑ D

ev
i

 that the vehicle evi can reach from the starting point ci, c RC
i ev

i

∈ ,  
with a fully charged battery. Accordingly, the list RC

ev
i

 is updated R
C

d

ev
i

 as shown 
in Equation (5) to filter the candidate charging points based on their reachability 
options, which can be either direct or indirect.

	
                        

   
1

0
i i

evi

i ev evd
C

if point c RC allows a direct path to d
R

otherwise

 ∈= 


	 (5)

•	 Definition 2: Indirect charging points are those that provide a route to the trip’s 
destination point  

ievd , but through other charging points along the way. This means 
that the point d

ev
i

 is located beyond the reachability limits of the examined point 
ci. Such points are treated as new source points for the trip. Consequently, the 
model determines the next charging points (i.e., relay points) that must adhere to 
the constraints outlined in Equations (3), (4), and (5) once more.

	   Hence, for those points that satisfy the aforementioned definition of direct 
charging points, the model calculates the distances between these points and 
a chosen trip destination point d

ev
i

. With the distances being found, the model 
estimates the expected residual battery capacity β

ev
i

 at the destination point for 
each point �d

ev
i

. Having said that, the model sorts the paths accordingly and then 
chooses the path that provides the maximum residual capacity to drive through.

3.4	 Routing with trip time perspective

In the same way that Internet routing protocols use metrics to prioritize one path 
over another, these metrics may vary from on network to another or from one auton-
omous system to another. Our navigation model also accommodates different route 
metrics for selection. In this context, in addition to the options of the shortest distance 
and the maximum residual capacities, the option of trip time is also available. This 
includes the travel time (i.e., the propagation time) and, if necessary, the charging time 
(i.e., the time the EV takes to charge at the selected charging stations along the route).

It is worth highlighting that this may also include the waiting times at the 
charging stations, which vary from one station to another. However, in this work, 
we assumed no queues at the charging stations to wait for being served, and so 
the waiting time is not considered. Accordingly, those paths with more charging 
stations to pass through might not be preferred for drivers who have time concerns. 
Therefore, the model can find them other paths that may come with longer distances 
to drive but less total trip time as they pass through fewer charging points.

	 vP ev D
z

t

i vp
z

�( ) � ( )� � � � �F �₣ 	 (6)

To do so, for each candidate path to drive, the model finds the number of relay 
nodes ℵ (i.e., the charging points or route hops) and accordingly adds the charging 
time to the drive time as shown in Equation (6), where ₣ is a time unit set per one kilo-
meter distance, D

vp
z

 is the distance, calculated by the model for the assigned path v
p
z

.
The parameter γ is a service time unit assigned to each instance the EV stops to 

charge at a charging station along the entire route, and consequently, it is multiplied 
by the number of stops ℵ (i.e., the path hops) along the path. Once calculated, the 
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model adds these time values vP
z

t to the list RC
ev
i

. Once sorted accordingly, the system 
can select the path with the shortest travel time.

3.5	 The model’s routing algorithm

Table 1 presents the proposed anxiety-free autonomous routing algorithm for EVs 
with dynamic route preferences. The algorithm summarizes the aforementioned 
discussion, and as is clearly noticed, the model runs autonomously based on the EV’s 
current status and the attributes of the trip’s points. Hence, once the EV reaches the 
chosen charging point ci, we run the navigation process all over again starting from 
the point ci as a new source point. Therefore, according to the new charge status, 
the model chooses the next part of the route towards the trip’s destination point d

ev
i

.

Table 1. Anxiety-free autonomous routing algorithm for EVs with dynamic route preferences
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4	 THE BENCHMARK MODEL

To validate our proposed model and assess its outcomes, we compare it with the 
proposal found in [11] that reads the EV’s battery status at the trip’s source point and 
accordingly finds the charging requirements for the running vehicle in particular. 
Based on that, as shown in Figure 2, it finds a threshold point called J on the tradi-
tional shortest path (i.e., the path that is chosen by the regular navigators for the 
fuel-running vehicles) towards the destination. Around that point, the model finds a 
charging station that feeds the EV with the required charge to continue its journey. 
This guarantees matching the real charge requirements of the running EV, but not 
through the shortest path for the whole trip.

Accordingly, they route the EV from its source point towards that threshold 
point J, and then from J towards the destination; forcing the route to pass through 
J in particular may not deliver the true shortest path for the whole journey. 
Certainly, as we will discuss next, if we let the model read the EV’s battery sta-
tus and accordingly find the candidate routes at the source point of the journey, 
then we may have a better chance to find the true shortest-matching path to the 
destination.

Fig. 2. AARM’s route found through threshold area centered on point J [11]

Table 2 below presents the AARM algorithm proposed in [11], it summarizes 
their model’s discussion, and as it is clearly noticed, the AARM model runs in an 
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autonomous manner based on the trip’s coordinates and the running EV status, 
besides being adaptive to any updates on the driving mode and any other updates 
related to the path selection process.

Table 2. The benchmark model, AARM, EVs’ routing algorithm [11]

5	 SIMULATION RESULTS AND DISCUSSION

In this section, we are presenting samples of the results obtained from the sim-
ulation that we developed using the Microsoft Visual Studio and C++, in order 
to assess the performance of our proposed routing model. We chose the Visual 
Studio as it allows for a cross platform for efficient development environment 
to build C++ codes that go with varying systems and platforms. As a hypothetical 
test bed, we assumed having a geographical area like that shown in Figure 3, and 
as shown in the figure, we assigned a set of 25 charging stations, labelled A–to–Z, 
that are distributed all over the map to provide a kind of coverage to serve the 
electric vehicles.

These charging stations are assumed to provide compatible charging services for 
the different EVs’ makes and models used in this simulation. Accordingly, over this 
area and through the assigned set of charging stations, we ran different navigation 
requests from three different types of EVs that are shown in Table 3. It is worth 
highlighting that the trips we run in our simulation can be from any node to any 
other node labeled A to Z in the map in Figure 3. However, although the nodes A to 
Z are charging points, they are not considered active charging points when chosen 
as either a trip’s source or destination points.

Table 3. Simulated EVs of different makes and models*

Make Model Range with 100% SoH Current Battery Charge

Nissan Leaf 2016 168 kms 80%

Volkswagen e-Golf 2018 190 kms 80%

EQA Mercedes Benz 2021 350 kms 80%

Note: *These values are only for simulation, and do not necessarily represent the accurate case 
in real life.
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Fig. 3. A hypothetical geographical area with 25 EVs’ charging stations

5.1	 Discussion

From the simulation results, we aim to access the behavior of our proposed 
routing model, in this part, our discussion is extended to include varying naviga-
tion options (i.e. the drivers’ routing preferences) provided by the proposed model, 
which include: (1) the trip’s total distance, (2) the residual battery charge capacity at 
the trip’s destination point, and (3) the time of the whole trip. It is worth to note that 
by considering different EVs from different makes and models, we are examining 
how autonomous our model is, and how it chooses the routing paths according to 
the running EV status and battery requirements.

Trips’ total distance. To simulate the choice of shortest-path routing, for the 
same set of source-destination couples, we chose to run our proposed model for 
the three different EVs shown in Table 3. For these EVs, we also chose different SoH 
readings to show how it may affect the chosen trip paths. 90% SoH, 70% SoH, and 
50% SoH. Accordingly, Figure 4 shows the resultant routes for six trips that we ran 
for the 2021 EQA Mercedes Benz EV between the following three different couples of 
source and destination points. In a ( )s d

ev ev
i i

,  notation, and with reference to the map 
shown in Figure 3, those points are (Z, M), (I, Z), and (X, B).
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Fig. 4. Route lengths for 2021 EQA mercedes benz

It can be clearly noticed from the results shown in the figure that the routes obtained 
through the proposed routing model have shorter trip distances when compared to 
those of the benchmark model. This is also the case for the routes chosen by the 2018 
Volkswagen e-Golf, whereas Figure 5 presents the routes with shorter or equal dis-
tances to drive when navigating using our proposed model compared to those of the 
benchmark ones. Getting equal distances is considered the worst-case scenario, and it 
happens only in the case that the benchmark’s chosen route was by coincidence the 
shortest and, accordingly, will be the same route to find in the new model as well.

Fig. 5. Route lengths for 2018 Volkswagen e-Golf

As for the 2016 Nissan Leaf, in Figure 6, the model provides the following: a 
shorter route for the (Z, M) trip, an equal one for (I, Z), while for the trip of (X, B), our 
proposed model provides a route with 291 km for the whole trip, charging four times 
at the charging station points (Q, J, H, C), while no route is provided by the benchmark 
model for this particular trip. This is due to the fact that the 2016 Leaf originally came 
with a low battery range, which is only 168 km for a fully charged 100% SoH battery. 
In this run, the EVs are assumed to have only 50% SoH, which results in a very low 
range that limits the search space for candidate charging points according to the 
benchmark model and so results in no path being found towards destination point B.

Fig. 6. Route lengths for 2016 Nissan Leaf
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In this context, it is also worth checking the behavior of the proposed navigation 
model when reversing the couples of the trips’ source-destination points. Figure 7 
shows the results obtained for the 2016 Nissan Leaf when reversing the source and 
destination points for the same trips shown in Figure 6. The results are interesting; 
as an example, using the new proposed model resulted in: (1) A 280.41 km distance 
for the (Z, M) trip drives the EV via the routes Z, V, T, M, while it is 276.49 km when 
the trip’s coordinates are reversed to (M, Z), routing the EV via M, S, R, Z. (2) Equal 
routes for both trips, (I, Z) and (Z, I) with a total distance of 247.11 km driving via 
the same route nodes. (3) A route of 291.15 km for the (X, B) via X, Q, J, H, C, B, and 
277.09 km for the reversed one passing through B, C, H, I, X.

As for the benchmark model, the results show: (1) 351 km route for the (Z, M) 
trip, and 295.85 when reversed to (M, Z) passing through M, N,W, Z. (2) A route with 
247 km for the (I, Z) trip via I, Q, W, Z, but no route for the trip when reversed! (3) 
There is no route for neither the (X, B) nor its reversed trip.

Fig. 7. Route lengths for 2016 Nissan Leaf, reversed trips

In this context, beside the comparison with the benchmark AARM model of [11], 
we also compared our proposed navigation model, AFARM, with that of [10], which 
adopts the polygon area navigation scheme. Among the simulation results, Figure 8 
presents the navigation results of the three models for the (B, V) trip. As we can 
clearly see from the depicted results, the polygon model of [10] has the longest dis-
tance routes when compared to the other two models, both AFARM and the bench-
mark AARM models.
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Moreover, the chosen paths of the polygon-based model in [10] are the same 
for the three EVs, which come with different SoH readings. This shows that such a 
model does not consider the EV’s profile or its dynamic battery state. On the con-
trary, this is not the case for the other models; however, compared to the benchmark 
model of AARM, the results of AFARM show shorter routes for the same trip due to 
its different route lookup methodology being deployed.

Residual battery capacity. Driving an EV usually comes with a level of anxiety 
about being in “out of battery” status at the side of a highway waiting for towing! To help 
relieve such a level of anxiety, we proposed our model of routing to ensure driving the 
EVs via paths that suit their varying needs and specifications. This looks helpful, though 
we need to consider the fact that an EV needs to have a sufficient battery charge that 
allows starting a new trip after reaching the current destination point. Therefore, those 
EV navigation models need to consider this factor when processing their route requests.

Fig. 9. Residual battery capacities for the (D, U) trip

Figure 9 shows a sample of the results obtained by the new proposed model for 
the residual battery capacities compared to those of the benchmark model. For the 
three types of EVs mentioned in Table 3, and for the trip (D, U), at the destination 
point U, the figure shows how the chosen routes of the proposed model allow for 
higher residual capacities, which allow the resumption of new trips with no anxiety 
or further concerns to worry about.

Fig. 10. Shortest trip distances for paths of max. residual capacities for the (D, U) trip

Figure 10 shows that such residual capacities come with shorter routes to drive 
by the 2016 Leaf and the 2018 e-Golf towards their destination. However, the results 
show a longer route (4.35 more km) for the 2021 Mercedes compared to that of the 
AARM, which could be justified by the fact that this run in particular did not seek for 
regular shortest routes but for the shortest distance-highest residual ones instead.
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Trips’ total time. In computer networks, the notation of least-cost routing may 
come with different interpretations based on the running routing protocol. In the 
same way, in our proposed model, beside the shortest trip distance option, we also 
allow the driver to choose the shortest trip time. This takes into account the route dis-
tance (i.e., the propagation time) and the number of charging points to stop by. The 
number of charging points on the route has a direct impact on the total trip time, as 
stopping by a station to charge the EV adds the charging time to the whole trip time. 
Having such an option may shorten the trip times; however, for EVs, reaching the 
trip destination points with sufficient residual capacities to start a new trip is con-
sidered important too. Therefore, in our proposed model, choosing the shortest trip 
times while maintaining the highest possible residual capacities is an allowed option 
for EV drivers. Accordingly, the drivers have the option to combine their preferences 
of having an anxiety-free and fastest route with a higher residual battery.

Figure 11 presents the resulting navigation times for the (D, U) trip with the run-
ning EVs having a battery SoH equal to 90%. As shown in the figure, the times for 
our proposed model are shorter for the Leaf and the e-Golf, but not for the Mercedes.

The route chosen by our proposed model for the Mercedes passes via D, T, U, with 
an extra 4.35 km compared to that of the AARM model, to ensure higher residual 
capacities by charging its battery at station T instead of going directly from D to U.

Fig. 11. Trip times for the route of maximum residual capacities for the (D, U) trip, with battery SoH = 90%

Fig. 12. Maximum residual capacities for the shortest trip times route of the (G, U) trip, 
with battery SoH = 70%
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Figure 12 shows another example of routes, but for the trip of (G, U), in which we 
choose to find the shortest routes that attain the highest residual battery capacities 
while driving EVs, all with 70% SoH.

6	 CONCLUSION

Climate change and its effects on health and environmental conditions, alongside 
the financial challenges the world is currently facing, have motivated the automobile 
industry to shift towards the EVs sector to address the aforementioned health and 
financial concerns. This looks promising; however, it creates new challenges that we 
need to tackle. Part of the challenge lies in making these new types of vehicles a truly 
convincing alternative to traditional fuel-powered vehicles. Battery range anxiety is 
considered one of the issues that hinders the adoption of such a green alternative by 
a large number of drivers. Routes in our country are well covered by fuel stations, 
in both urban and rural areas. However, this is not the case for electrical charging 
stations. Hence, in this work, we are proposing a model that can help alleviate the 
anxiety that EV drivers may feel when driving long distances, especially between or 
outside of cities. A navigation model specifically designed to cater to EVs. Compared 
to other models in the literature, our proposal’s new contribution lies in two main 
aspects: First, it determines navigation routes based on the current status of the EV, 
taking into account factors such as battery charge and SoH. Therefore, different routes 
might be assigned to different vehicles even if they have the same source and destina-
tion points. Second, according to the EVs’ battery SoH, at the trip’s starting point, the 
model evaluate the complete set of candidate routes and selects the one that is guaran-
teed to be the shortest among all the other routes. Third, it also allows drivers to check 
for routes that provide high residual battery capacities at the trips’ destination points. 
This is truly important as the EV needs to have sufficient charge capacity to start a new 
trip again. Furthermore, as the trips’ total time of the strips is a potential routing metric 
to consider, this proposed model enables EV drivers to make that choice. Furthermore, 
it is designed to combine any of the aforementioned metrics together as well.
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