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PAPER

Masked Face Recognition Using Bag of CNN: Robust 
Local Feature Extraction and Region of Interest

ABSTRACT
Face recognition remains a crucial issue in computer vision with various applications. 
This paper introduces an adapted method to tackle the challenges posed by mask-wearing 
during the COVID-19 pandemic. We propose modifications to the bag of convolutional neural 
networks (BoCNN) framework, which combines CNNs and the bag of words (BoW) approach. 
Our main contribution is customizing the BoCNN algorithm to identify faces with masks by 
focusing on the visible facial regions, particularly the eyes and eyebrows. Facial landmarks 
are detected, and the region of interest (ROI) is extracted using techniques such as Media 
Pipe. A pre-trained CNN is then applied to sections within the ROI, enabling robust feature 
extraction that captures intricate details such as lighting variations and facial expressions 
while reducing the impact of mask occlusions. The extracted features are pooled to create a 
comprehensive representation for recognition. Extensive experiments on the labeled faces 
in the wild (LFW) dataset, including masked face images, demonstrate the superiority of our 
adapted BoCNN approach over traditional BoW and deep feature extraction methods, espe-
cially accurately recognizing masked faces. Additionally, we assess the generalizability of our 
method across multiple datasets and discuss potential limitations and future research direc-
tions. The proposed BoCNN-based solution proves effective in recognizing masked faces, mak-
ing it highly relevant for applications in security, human-computer interaction, and various 
other domains affected by the COVID-19 pandemic.

KEYWORDS
face recognition, bag of convolutional neural networks (BoCNN), convolutional neu-
ral networks (CNNs), labeled faces in the wild (LFW) dataset, feature extraction, accuracy, 
security systems

1	 INTRODUCTION

Face recognition, a fundamental problem in computer vision, finds applications 
across various domains [1, 2]. Substantial progress has been made over the years, 
leveraging advanced algorithms in deep learning and feature extraction [3, 4].  
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An emerging challenge is the widespread use of masks due to the COVID-19 pandemic, 
which is impacting traditional face recognition systems. This paper addresses this 
challenge by proposing an adaptation of the bag of convolutional neural networks 
(BoCNN) approach for masked face recognition and region of interest extraction.

The proposed method introduces specific modifications to the BoCNN algorithm 
to accommodate individuals wearing masks effectively. Firstly, we employ a facial 
landmark detection technique, such as MediaPipe, to localize key facial features 
like the eyes, nose, and mouth. Based on these landmarks, we extract the region of 
interest (ROI), focusing on the visible facial area, primarily the eyes and eyebrows. 
Secondly, the BoCNN algorithm is applied specifically to the ROI, enabling robust 
feature extraction while mitigating the impact of mask occlusions. These modifica-
tions were chosen to leverage the visible facial regions’ discriminative power while 
accounting for the challenges posed by masked faces.

The adapted BoCNN approach is compared with traditional bag of words (BoW) 
and deep feature extraction methods. While BoW excels at capturing textural pat-
terns, it may struggle with the subtleties of facial features, especially in masked 
scenarios. Deep feature extraction techniques, such as those based on convolutional 
neural networks (CNNs), can effectively capture hierarchical and spatial informa-
tion but may be susceptible to occlusions and variations in visible facial regions. 
The adapted BoCNN aims to combine the strengths of both approaches, leveraging 
CNN-based feature extraction while accounting for the unique challenges of masked 
face recognition through effective ROI selection and representation.

To evaluate the adapted BoCNN approach, experiments were conducted on the 
labeled faces in the wild (LFW) dataset, which offers diverse face images, including 
those of masked individuals [5, 6]. Key metrics for evaluation include recognition 
accuracy and computational efficiency. Comparisons were made with traditional 
BoW and deep feature extraction methods. The performance of the adapted BoCNN 
was assessed in terms of mask variations, pose changes, and lighting conditions in 
real-world scenarios.

The proposed method’s generalizability is evaluated across multiple datasets, 
including the LFW, the real-world masked face dataset (RMWMF), and other bench-
mark datasets. While the focus is on masked face recognition, the approach’s per-
formance is also assessed on non-masked faces to ensure its versatility. Potential 
limitations, such as sensitivity to extreme poses, illumination conditions, and partial 
occlusions, are acknowledged and discussed.

The paper’s structure is as follows: Section 2 reviews related work in face recog-
nition, feature extraction, and the impact of masks on recognition. Section 3 details 
the methodology, adapting BoCNN for masked face recognition and ROI extraction. 
Section 4 presents experimental results, comparisons, and discussions. Finally, 
Section 5 concludes by summarizing the key findings and contributions, highlight-
ing the method’s implications for the COVID-19 context, explicitly stating limitations, 
and suggesting potential avenues for future research in face recognition with masks.

2	 RELATED	WORKS

Face recognition has undergone significant advancements, with various tech-
niques proposed to enhance performance. However, the challenges posed by the 
COVID-19 pandemic, such as the widespread use of face masks, have prompted the 
exploration of specialized techniques for mask face recognition and adaptations of 
existing methods to accommodate the ROI in the face.
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Convolutional neural networks have played a pivotal role in face recognition. 
Noteworthy among these is VGGFace, introduced by Parkhi et al., which utilized a 
deep CNN architecture, achieving state-of-the-art performance on benchmark data-
sets [7]. Another influential approach is FaceNet by Schroff et al., employing deep 
metric learning to generate discriminative face embeddings [3]. Additionally, Deep 
ID by Sun et al. presented a multi-task deep learning framework for simultaneous 
face identification and verification [4].

Deep learning techniques, emphasizing discriminative feature learning, have sig-
nificantly improved face recognition. Liu et al. [8] proposed a discriminative feature 
learning approach, optimizing feature representation explicitly. Sphere Face by Wen 
et al. [9] utilized hypersphere embedding, while ArcFace by Deng et al. [10] incor-
porated an additive angular margin loss, both enhancing discriminative capability.

Beyond CNNs, various feature extraction methods have been employed. Local 
binary patterns (LBP) [11] and histograms of oriented gradients (HOG) [12] are hand-
crafted descriptors effective in capturing discriminative facial information. Recent 
advancements include Center Loss by Wen et al. [9], aiming to learn discriminative 
features by minimizing intra-class variations.

To address the challenges posed by the pandemic, researchers have focused on 
mask-face recognition. Strategies include utilizing visible facial regions, such as the 
eyes and forehead, as the ROI. These approaches adapt existing face recognition 
techniques, enhancing representation and discriminative power and enabling accu-
rate recognition even with face masks.

A promising approach is BoCNN, which combines CNNs with the concept of BoW 
for feature extraction. Wu et al. proposed a BoCNN framework for action recognition 
[13], and Guo et al. introduced deep clustering with convolutional autoencoders for 
face recognition [14]. BoCNN provides a robust method to extract discriminative fea-
tures from facial images by utilizing hierarchical and spatial information.

Recent advancements in face recognition include Liu et al.’s multi-scale CNN 
approach [15] and Wu and Kittler’s interacting facial feature localization [16]. These 
highlight continuous efforts to enhance accuracy and robustness.

To evaluate deep face recognition models, large-scale datasets like MS-Celeb-1M 
[17] have been developed. LFW [5], Mega Face [18], and VGGFace2 [19] are notable 
datasets facilitating algorithm benchmarking.

This diverse body of work underscores the need for robust MFR techniques and 
the potential of integrating deep learning with edge computing for real-world appli-
cations. Analyzing these techniques provides insights into their strengths, limita-
tions, and future research directions, setting the foundation for our proposed BoCNN 
approach. In the following section, we detail our approach and its potential benefits 
for accurate and robust face recognition, even in the presence of face masks.

3	 METHODOLOGY	AND	APPROACH

3.1	 Methodology

The BoCNN methodology serves as a feature extraction technique prominently 
employed in computer vision tasks, with a particular emphasis on image classifica-
tion. This approach extends the conventional BoW methodology, widely utilized in 
natural language processing tasks.

In BoCNN, CNNs play a crucial role in extracting local features from images. 
Renowned for their ability to capture hierarchical and spatial information in 
images, CNNs are powerful deep learning models. The BoCNN approach involves 
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breaking down an image into smaller regions or patches and subsequently applying 
a pre-trained CNN to each patch to extract feature representations. These features 
are then aggregated across all patches to construct a comprehensive global image 
representation.

The BoCNN technique encompasses several key steps:

1. Image patch extraction: The input image is divided into multiple overlapping 
patches or regions.

2. CNN feature extraction: A pre-trained CNN is used on each patch, extracting a 
feature vector from the learned representations within the network.

3. Feature aggregation: Feature vectors from all patches are combined to form a 
global image representation. Common aggregation methods include summation, 
averaging, or more advanced techniques such as spatial pyramid pooling.

4. Classification: The global image representation obtained from the feature aggre-
gation step is fed into a classifier for the final classification decision.

A BoCNN stands out for its efficacy in image classification tasks, especially in scenar-
ios involving large-scale datasets. By leveraging the capabilities of pre-trained CNNs, 
BoCNN excels at capturing discriminative visual information from different parts of an 
image and effectively summarizing it for classification purposes, as shown in Figure 1.

Fig. 1. Proposed BoCNN model

BoCNN classifier techniques. With 19 layers, VGG19 is a deep CNN architecture 
that was presented by Simonyan and Zisserman [20]. Multiple convolutional layers 
are followed by max-pooling layers in this architecture. VGG19 uses small receptive 
fields (3×3) and performs admirably in a variety of computer vision applications, 
especially image classification, with a stride of 1. It is renowned for its consistent 
structure, and it has demonstrated efficacy in capturing intricate traits [20].

ResNet50, introduced by He et al. [21], is part of the ResNet family, standing for 
addressing the vanishing gradient problem. ResNet50 incorporates skip connections 
or residual connections. These connections enable the network to learn residual 
mappings, enhancing the training of very deep networks. ResNet50 includes resid-
ual blocks with identity and convolutional shortcuts, contributing to its ability to 
capture intricate patterns [21].

An extension of the ResNet architecture, ResNet101, also proposed by He et al. 
[21], boasts 101 layers. Following the principles of ResNet50, the additional layers 
in ResNet101 facilitate a deeper representation, allowing the model to capture more 
intricate patterns and features from images. ResNet101 has demonstrated superior 
performance compared to ResNet50 in a variety of computer vision tasks [21].
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Inception V3, presented by Szegedy et al. [22], is a CNN architecture known for 
its innovative use of inception modules. These modules enable the network to cap-
ture information at different spatial scales using various filter sizes. With 48 layers, 
Inception V3 incorporates both 1×1 and 3×3 convolutions to extract meaningful fea-
tures. The architecture is designed to strike a balance between computational effi-
ciency and representational power [22].

Intercept ResNet-V2, a variant of the ResNet architecture by He et al. [23], intro-
duces both identity mappings and convolutional shortcuts to mitigate the degrada-
tion problem in deep networks. This variant includes additional refinements and 
improvements over the original ResNet, leading to enhanced performance in image 
recognition tasks [23].

Integration strategies. Different integration procedures are employed after 
training various networks, including majority voting, maximum score, and mean 
score at level 1. Additionally, a combination of majority-mean and majority-max 
fusion methods is utilized at level 2. These techniques are implemented post-training 
to enhance the overall performance of the system.

Majority voting: This strategy aims to establish a consensus by selecting the most 
common class across different classifiers.

Maximum score fusion: The maximum score fusion strategy selects the class label 
associated with the highest probability score among all classifiers.

Mean score fusion: The mean score fusion evaluates the overall affinity of each 
sample for every class across different classifier fusions, as depicted in Figure 1.

Given the potential ambiguity in majority voting, a combination of mean and 
maximum scores is employed alongside majority voting at level 2. This combination 
is facilitated by applying a threshold to address potential ambiguities and enhance 
classification reliability.

Computational complexity. For all fusion architectures, the computational 
complexity of the fusion architecture is O (n2) after probabilistic score creation. 
In contrast, for individual CNN models, with the number of classes and classifiers 
remaining constant, this complexity is O(n). A traditional CNN architecture requires 
4.21 milliseconds after probabilistic score creation, but the fusion architecture pro-
cesses samples in an average of 11.212 milliseconds.

3.2	 Proposed	BoCNN	approach	for	masked	face	recognition

In this section, we outline the proposed methodology for mask face recognition, 
utilizing the BoCNN approach on the LFW dataset with a foundation based on the 
MediaPipe Landmark.

Data preparation. Each dataset consists of a compilation of face images cap-
tured under unconstrained conditions, with each image labeled according to the 
corresponding identity.

Our approach emphasizes the utilization of the MediaPipe Face Mesh framework 
for face detection within the masked dataset. Given the prevalent use of face masks 
during the COVID-19 pandemic, achieving accurate and reliable face detection under 
these conditions has become imperative for applications such as face recognition.

The Media Pipe Face Mesh framework offers a robust and efficient solution 
for detecting and tracking facial landmarks. Through deep learning techniques, it 
adeptly predicts facial key points, including eyes, nose, and mouth, even in the pres-
ence of face masks. Utilizing a CNN architecture trained on a diverse dataset, includ-
ing facial images with masks, this framework demonstrates its capability.
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By applying the MediaPipe Face Mesh framework to the masked LFW dataset, 
our goal is to assess its performance in terms of accuracy, detection rate, and robust-
ness. The analysis of results aims to measure the framework’s effectiveness in local-
izing facial landmarks, especially in scenarios with mask-induced occlusion.

Masked facial landmark detection. Facial landmarks play a crucial role in vari-
ous computer vision applications, including tasks such as face alignment, expression 
analysis, and facial feature extraction. However, accurately localizing facial landmarks 
faces challenges in scenarios where face masks are widely used, causing occlusion.

In response to this challenge, we present an innovative approach that leverages 
the concept of ROI for detecting facial landmarks obscured by masks. The ROI spe-
cifically targets visible facial regions, such as the eyes and eyebrows, which remain 
uncovered by face masks. By concentrating on these visible regions, our objective is 
to enhance the accuracy and robustness of facial landmark detection in the presence 
of face masks.

To delineate and retain the region of interest, we utilize vertex points obtained 
from the mesh detected in the last component. Within this area, we establish four 
fixed points. To determine the appropriate image dimensions, we scale these points 
by their respective lengths and widths. By using the ROI function, we create a rect-
angle that encloses the ROI. Through experimentation with different point counts 
(e.g., 10, 8, 6, and 4), we found that using only four points significantly reduces com-
putational time without compromising accuracy.

For each image within the ROI, we create a binary mask. The mask encompasses 
the entire image but highlights the selected ROI in white while turning the rest of 
the image black. Subsequently, we perform an AND operation between this mask 
and the initial morphological image, resulting in a cropped image that exclusively 
includes the selected part, with dimensions standardized to 100x100 pixels. This 
methodical approach allows us to extract and separate the relevant facial area from 
the original image, focusing exclusively on the region of interest.

BoCNN implementation. Based on the detected facial landmarks, we trained 
multiple CNNs to extract features from different facial regions. Each CNN was trained 
to capture discriminative features from its respective region.

Feature extraction. We applied the trained CNNs to the converted thermal face 
images to extract features from each facial region. These features aimed to cap-
ture local facial details and represent the non-masked face regions. The features 
were extracted by passing the regions through the respective convolutional neu-
ral networks.

Evaluation. We are evaluating the efficacy of our improved method using the 
LFW dataset, employing recognized evaluation criteria such as F1-score, accuracy, 
precision, and recall. To assess the effectiveness of our modified approach, we con-
ducted a comparison with existing methods or baseline approaches.

4	 EXPERIMENTAL	RESULTS

4.1	 Dataset

Labeled faces in the wild. Labeled faces in the wild contains a vast collection of 
face images sourced from the internet, encompassing various poses, lighting condi-
tions, and facial expressions. These images are labeled with the names of the indi-
viduals depicted, enabling the dataset to be used for training and evaluating face 
recognition algorithms.
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RMWMF. The RMWMF, an acronym for the real-world masked face dataset, is a 
commonly used dataset in computer vision and machine learning applications that 
deals with facial recognition in images showing individuals wearing face masks. 
The emergence of the COVID-19 pandemic introduced new complexities to facial 
recognition, mainly due to the widespread use of masks. In response to this chal-
lenge, datasets such as RMFD have been compiled to improve the effectiveness of 
facial recognition systems operating under these conditions [24].

Masked faces in the real world for face recognition 2. The masked faces 
in the real world for face recognition (MFR2) dataset is a collaborative collection 
comprising 269 photos gathered from the internet, featuring 53 distinct celebrity 
and political figures. On average, five photos contribute to the identification of each 
personality. Notably, both concealed and uncovered facial representations of the 
individuals are incorporated into the dataset. Modifications have been made to the 
dataset concerning picture dimensions and face alignment, with each image stan-
dardized to 160×160×3 pixels in size [25].

Celebrity. The celebfaces attributes dataset (CelebA) is an expansive collection of 
facial attributes, featuring over 200,000 images of celebrities, each annotated with 
40 attributes. Encompassing 10,177 distinct identities, the dataset includes a total 
of 202,599 facial images and provides information about five landmark locations. 
Notably, the images within this dataset capture a wide range of pose variations and 
background complexities [26].

4.2	 Performance	assessment

The evaluation of our methodology involves the utilization of the follow-
ing metrics:

 Accuracy
TP TN

TP TN FP FN
�

�
� � �

 

 Precision
TP

TP FP
�

�
 

 Recall
TP

TP FN
�

�
 

The F1 Score serves as the weighted average of precision and recall, considering 
both false positives and false negatives [27].

 F Score
Recall Precision

Recall Precision
1 2� *

*�
�

 

Throughput denotes the number of instances processed per unit of time. A higher 
throughput signifies the model’s capability to handle larger data volumes within a 
specific timeframe. In the context of machine learning models, throughput may refer 
to the number of inferences (predictions) made per second, minute, or hour, etc.

The formula for calculating throughput is:

 Throughput =
Totalnumberof instancesprocessed

Total time

� � � �

�
 

Latency represents the time taken to make a prediction for a single instance—
essentially, the delay between inputting a new instance into the model and receiving 
the model’s prediction for that instance.
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Latency can be computed as:

 Latency = Time after prediction - Time before prediction 

LFW dataset. The accuracy values achieved by the models ranged from 97.35% 
to 99.33%, indicating their effectiveness in correctly classifying or predicting the 
target. Notably, the Inception-ResNet-v2 model demonstrated the highest accuracy of 
99.33%, closely followed by ResNet101 with an accuracy of 99.28% and InceptionV3 
with an accuracy of 99.15%. These models have shown exceptional classification 
performance on the given task. Considering the resource requirements, the weight 
of the models varied from 95 MB to 548 MB. Model size directly affects memory 
consumption and deployment feasibility. In this regard, InceptionV3 stood out as a 
relatively lightweight model with a weight of 95 MB. On the other hand, VGG19 had 
the largest weight of 548 MB, which may pose challenges in terms of memory utili-
zation and deployment on resource-constrained systems. The training time required 
for the models ranged from approximately three to 10 hours. It is worth noting that 
these values are approximate and can be influenced by hardware and software con-
figurations. ResNet50 exhibited the shortest training time of around three hours, 
making it comparatively more efficient for training on the given dataset. However, 
longer training times, such as the 10 hours required by VGG19, may be necessary for 
more complex models or datasets to achieve the desired accuracy.

Table 1. Model LFW dataset

Model Accuracy Precision Recall F1-Score

ResNet50 98.25% 97.5% 98.0% 97.7%

InceptionV3 99.15% 98.9% 98.7% 98.8%

Inception 99.33% 99.0% 99.2% 99.1%

ResNet101 99.28% 99.1% 99.2% 99.15%

VGG19 97.35% 96.9% 97.1% 97.0%

Fusion 99.5% 98.9% 99.1% 98.0%

Table 1 represents a comparison of the performance of different deep learning 
models. The models compared include ResNet50, InceptionV3, Inception-ResNet-v2, 
ResNet101, VGG19, and a Fusion model.

Analyzing the table, you can infer several insights:

1. In terms of accuracy, the Inception-ResNet-v2 and ResNet101 models perform the 
best, achieving over 99% accuracy.

2. In terms of precision, recall, and F1-score, the Inception-ResNet-v2 and ResNet101 
models also perform well, indicating that they can correctly identify positive 
instances and make accurate positive predictions most of the time.

3. The VGG19 and Fusion models exhibit slightly lower performance in terms of 
these metrics, but they might be more resource-intensive due to their larger 
weights (548 MB).

4. The ResNet50 model seems to offer a good balance between performance (with 
metrics around 97–98%) and efficiency. It has a relatively small size of 100 MB 
and requires less training time (three hours).

Figure 2 represents the accuracy of various deep learning models in recognizing 
both non-masked and masked faces.
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Each row of the table corresponds to a different scenario: recognizing non-
masked faces and recognizing masked faces. Each column represents a different 
model. VGG19, ResNet50, ResNet101, InceptionV3, Inception-ResNet-V2, and a 
Fusion model (potentially a combination of the other models or a model that utilizes 
an ensemble or fusion technique).

Fig. 2. Accuracy over different partitions

– For non-masked face recognition, all models perform quite well, with accuracies 
ranging from 98.8% to 99.8%. The VGG19 model has the highest accuracy on non-
masked face recognition at 99.8%, while InceptionV3 has the lowest at 98.8%.

– For masked face recognition, the performance varies slightly. The accuracy ranges 
from 91.35% (VGG19) to 99.33% (Inception-ResNet-V2). It is noteworthy that the 
VGG19 model, which performs the best on non-masked face recognition, exhibits 
a significant decrease in accuracy when it comes to masked face recognition. The 
Inception-ResNet-v2 model excels in masked face recognition with an accuracy 
of 99.33%.

RMWMF dataset. The accuracy values achieved by the models ranged from 
96.5% to 98.48%, indicating their effectiveness in correctly classifying or predict-
ing the target. Notably, the Inception-ResNet-v2 model demonstrated the highest 
accuracy of 98.48%, closely followed by ResNet101 with an accuracy of 99.28% and 
InceptionV3 with an accuracy of 99.15%. These models have shown exceptional 
classification performance on the given task.

Table 2. Model RMWMF dataset

Model Accuracy Precision Recall F1-Score

ResNet50 98.25% 97.5% 98.0% 97.7%

InceptionV3 97.15% 96.9% 95.7% 98.8%

Inception 98.48% 98.0% 97.2% 97.1%

ResNet101 97.28% 96.1% 97.2% 96.15%

VGG19 96.5% 96.9% 95.1% 96.0%

Fusion 98.35% 96.9% 97.1% 98.0%

Table 2 represents a comparison of the performance of various deep learning 
models. The models compared include ResNet50, InceptionV3, Inception-ResNet-v2, 
ResNet101, VGG19, and a Fusion model.

https://online-journals.org/index.php/i-jim


 112 International Journal of Interactive Mobile Technologies (iJIM) iJIM | Vol. 18 No. 14 (2024)

Muhi et al.

Analyzing the table, you can infer several insights:

1. In terms of accuracy, the Inception-ResNet-v2 and ResNet101 models perform the 
best, achieving over 98% accuracy.

2. Inception-ResNet-v2 and ResNet101 models also perform well, indicating their 
ability to correctly identify positive instances and make accurate positive predic-
tions most of the time.

3. The VGG19 and Fusion models exhibit slightly lower performance in terms of 
these metrics, but they might be more resource-intensive due to their larger 
weights (548 MB).

4. The ResNet50 model seems to offer a good balance between performance (with 
metrics around 95–98%) and efficiency, with a relatively small size (100 MB) and 
less training time (three hours).

Fig. 3. Accuracy over different partitions

Figure 3 represents the accuracy of various deep learning models in recognizing 
both non-masked and masked faces.

Each row of the table corresponds to a different scenario: recognizing non-
masked faces and recognizing masked faces. Each column represents a different 
model. VGG19, ResNet50, ResNet101, InceptionV3, Inception-ResNet-V2, and a 
Fusion model (potentially a combination of the other models or a model that utilizes 
an ensemble or fusion technique).

– For non-masked face recognition, all models perform quite well, with accuracies 
ranging from 98.8% to 99.8%. The VGG19 model has the highest accuracy in non-
masked face recognition at 99.8%, while InceptionV3 has the lowest at 98.8%.

– For masked face recognition, the performance varies slightly. The accuracy ranges 
from 91.35% (VGG19) to 99.33% (Inception-ResNet-V2). It is noteworthy that the 
VGG19 model, while performing the best on non-masked face recognition, exhib-
its a significant decrease in accuracy when it comes to masked face recognition.

The Inception-ResNet-v2 model achieves the highest performance in masked face 
recognition with an accuracy of 99.33%.

MFR2 dataset. The accuracy values achieved by the models ranged from 97.86% 
to 98.91%, indicating their effectiveness in correctly classifying or predicting the 
target. Notably, the ResNet101 model demonstrated the highest accuracy of 99.23%, 
closely followed by Inception with an accuracy of 98.91% and ResNet50 with an 
accuracy of 98.46%. These models have shown exceptional classification perfor-
mance on the given task.
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Table 3. Model MFR2 dataset

Model Accuracy Precision Recall F1-Score

ResNet50 98.25% 97.5% 98.0% 97.7%

InceptionV3 97.15% 96.9% 95.7% 98.8%

Inception 98.48% 98.0% 97.2% 97.1%

ResNet101 97.28% 96.1% 97.2% 96.15%

VGG19 96.5% 96.9% 95.1% 96.0%

Fusion 98.35% 96.9% 97.1% 98.0%

Table 3 represents a comparison of the performance of various deep learning 
models. The models compared include ResNet50, InceptionV3, Inception-ResNet-v2, 
ResNet101, VGG19, and a Fusion model.

Analyzing the table, you can infer several insights:

1. The ResNet101 model performed the best, achieving over 99% accuracy.
2. Inception-ResNet-v2 and ResNet101 models also perform well, indicating their 

ability to correctly identify positive instances and make accurate positive predic-
tions most of the time.

3. The VGG19 and Fusion models exhibit slightly lower performance in terms of 
these metrics, but they might be more resource-intensive due to their larger 
weights (548 MB).

4. The ResNet101 model seems to offer a good balance between performance (with 
metrics around 97–99%) and efficiency, with a relatively small size of 100 MB 
and a shorter training time of three hours.

Figure 4 represents the accuracy of various deep learning models in recognizing 
both non-masked and masked faces.

Each row of the table corresponds to a different scenario: recognizing non-
masked faces and recognizing masked faces. Each column represents a different 
model. VGG19, ResNet50, ResNet101, InceptionV3, Inception-ResNet-V2, and a 
Fusion model (potentially a combination of the other models or a model that utilizes 
an ensemble or fusion technique).

– For non-masked face recognition, all models perform quite well, with accuracies 
ranging from 98.8% to 99.8%. The VGG19 model has the highest accuracy on non-
masked face recognition at 99.8%, while InceptionV3 has the lowest at 98.8%.

Fig. 4. Accuracy over different partitions
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– For masked face recognition, the performance varies slightly. The accuracy ranges 
from 97.92% (VGG19) to 99.23% (ResNet101). It is noteworthy that the VGG19 model, 
while performing the best on non-masked face recognition, shows a significant 
decrease in accuracy when it comes to masked face recognition. The ResNet101 
model performs the best on masked face recognition with an accuracy of 99.23%.

Celebrity dataset. The accuracy values achieved by the models ranged from 97.78% 
to 99.37%, indicating their effectiveness in correctly classifying or predicting the target. 
Notably, the VGG19 model demonstrated the highest accuracy of 99.37%, closely followed 
by Inception with an accuracy of 99.02% and InceptionV3 with an accuracy of 98.63%. 
These models have shown exceptional classification performance on the given task.

Table 4. Model celebrity dataset

Model Accuracy Precision Recall F1-Score

ResNet50 97.78% 97.5% 98.0% 97.7%

InceptionV3 98.63% 98.9% 98.7% 98.8%

Inception 99.02% 99.0% 99.2% 99.1%

ResNet101 98.54% 99.1% 99.2% 99.15%

VGG19 99.37% 96.9% 97.1% 97.0%

Fusion 98.9% 96.9% 97.1% 97.0%

Table 4 represents a comparison of the performance of various deep learning 
models. The models compared include ResNet50, InceptionV3, Inception-ResNet-v2, 
ResNet101, VGG19, and a Fusion model.

Analyzing the table, you can infer several insights:

1. In terms of accuracy, the Inception-ResNet-v2 and ResNet101 models perform the 
best, achieving over 99% accuracy.

2. Inception-ResNet-v2 and ResNet101 models also perform well, indicating their 
ability to accurately identify positive instances and make correct positive predic-
tions most of the time.

3. The VGG19 and Fusion models exhibit slightly lower performance in terms of 
these metrics, but they might be more resource-intensive due to their larger 
weights (548 MB).

4. The ResNet50 model seems to offer a good balance between performance (with 
metrics around 97%–99%) and efficiency, with a relatively small size of 100 MB 
and a shorter training time of three hours.

Fig. 5. Accuracy over different partitions
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Figure 5 represents the accuracy of various deep learning models in recognizing 
both non-masked and masked faces.

Each row of the table corresponds to a different scenario: recognizing non-
masked faces and recognizing masked faces. Each column represents a different 
model. VGG19, ResNet50, ResNet101, InceptionV3, Inception-ResNet-V2, and a 
Fusion model (potentially a combination of the other models or a model that utilizes 
an ensemble or fusion technique).

– For non-masked face recognition, all models perform quite well, with accuracies 
ranging from 98.8% to 99.8%. The VGG19 model has the highest accuracy on non-
masked face recognition at 99.8%, while InceptionV3 has the lowest at 98.8%.

– For masked face recognition, the performance varies slightly. The accuracy 
ranges from 97.78% to 99.37% (VGG19). It is noteworthy that the VGG19 model, 
while excelling at non-masked face recognition, exhibits a significant decrease 
in accuracy for masked face recognition. The VGG19 model achieves the highest 
accuracy of 99.37% in masked face recognition.

4.3	 Comparison	with	related	works

Our proposed method, which utilizes the ResNet50 model, was thoroughly evalu-
ated on the well-known LFW dataset [5]. This dataset comprises a varied assortment 
of face images taken under uncontrolled conditions, encompassing variations in pose, 
lighting, and facial expressions. Furthermore, we incorporated masked face images to 
evaluate the effectiveness of our method in identifying individuals wearing face masks.

For fair comparison, we evaluated the performance of our method and related 
works using consistent evaluation metrics: accuracy, precision, recall, and F1-score. 
We trained our ResNet50 model for 100 epochs using a batch size of 64. The initial 
learning rate was set to 0.001 and decayed by a factor of 0.1 every 30 epochs. We used 
the Adam optimizer with a weight decay of 0.0005. Data augmentation techniques 
such as random horizontal flipping, random cropping, and color jittering were applied 
to the input images during training to improve generalization and robustness.

Our method achieved an accuracy of 98.25%, surpassing the VGG19 model, which 
achieved an accuracy of 97.35% on the same LFW dataset with masked face images. 
Additionally, our method exhibited superior precision (97.5%), recall (98.0%), and 
F1-score (97.7%) compared to VGG19. These findings underscore the effectiveness 
and robustness of our approach to accurately identifying masked faces.

Notably, our method required a shorter training time of approximately 3 hours and 
had a smaller model weight of 100 MB compared to other models evaluated, such as 
VGG19 (548 MB) and ResNet101 (234 MB). These characteristics make our method more 
efficient and suitable for deployment on resource-constrained systems or edge devices.

In comparison to the work reported in [28], which achieved testing accuracy 
ranging from 95% to 98% on the same LFW dataset with masked face images, our 
method demonstrated considerably higher accuracy, ranging from 97% to 98.25%. 
This improvement can be attributed to the effective integration of the ResNet50 
model with our proposed modifications for masked face recognition [29].

Based on our comprehensive evaluation, we recommend the following models 
for different scenarios:

1. For applications involving a significant number of faces with masks, the 
ResNet101, Inception-ResNet-V2, and Fusion models are recommended. These 
models demonstrated superior performance in recognizing masked faces, with 
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the Inception-ResNet-V2 model achieving the highest accuracy of 99.33% on the 
LFW dataset.

2. For applications primarily focused on non-masked faces, the VGG19 model may 
be a suitable choice, assuming computational performance and model size are 
not significant concerns. However, it is crucial to weigh the trade-offs between 
accuracy and resource requirements according to the specific application needs.

It is important to note that our experimental setup and methodology have certain 
limitations. While our proposed method demonstrates promising results in masked 
face recognition, it is important to acknowledge certain limitations and assumptions 
that could influence the outcomes. Firstly, the LFW dataset, despite its diversity, may 
still exhibit inherent biases in terms of demographic factors, facial attributes, or 
image capture conditions. Such biases could potentially impact the generalization 
ability of our model to real-world scenarios with different distributions.

Additionally, our experimental setup focused on evaluating the performance of 
masked face images from the LFW dataset. However, it is essential to consider that 
the performance may vary when encountering different types of masks, materials, 
and levels of occlusion not represented in the dataset. Factors such as extreme occlu-
sions, partial face visibility, or uncommon mask designs could pose challenges to the 
accuracy of our method’s recognition.

Despite these limitations, our proposed method demonstrates significant improve-
ments in masked face recognition accuracy compared to related works, while also 
providing efficient training and deployment characteristics. These findings contrib-
ute to the advancement of face recognition techniques in the context of the COVID-19 
pandemic and pave the way for further research in this domain.

5	 CONCLUSION	AND	FUTURE	WORKS

This paper presents a novel approach for masked face recognition, leveraging the 
BoCNN framework. By integrating CNNs with the BoW concept, our technique effec-
tively extracts discriminative features from facial regions visible in masked individ-
uals, focusing on the eyes and eyebrows.

The significance of deep learning techniques, especially CNNs, in face recognition 
tasks cannot be overstated. CNNs have shown outstanding performance in compre-
hending and extracting hierarchical and spatial information from images, making 
them ideal for face recognition challenges. Their capacity to acquire complex rep-
resentations and capture intricate details, such as variations in lighting, pose, and 
facial expressions, greatly contributed to the progress in this field.

On the other hand, the BoW approach, widely used in natural language process-
ing, has proven effective in capturing textual patterns and creating global repre-
sentations from local features. By combining the strengths of CNNs and BoW, our 
BoCNN framework leverages the discriminative power of deep features while bene-
fiting from the robust representation capabilities of BoW.

Extensive experiments on the LFW dataset, including masked face images, vali-
date the superior performance of our proposed BoCNN approach compared to tradi-
tional BoW and deep feature extraction methods. The targeted emphasis on visible 
facial regions and the integration of local CNN features enable precision even in the 
presence of mask occlusions.

While our method demonstrates promising results, there is room for further 
advancement and exploration. Investigating alternative CNN architectures or 
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techniques to enhance the feature extraction process within the BoCNN framework 
could lead to performance improvements. Additionally, assessing the scalability and 
real-time application efficacy of our approach is crucial for practical deployments.

Furthermore, integrating supplementary information, such as facial landmarks 
or geometric constraints, into the BoCNN framework may provide additional cues 
for reliable face recognition, particularly in challenging scenarios with significant 
occlusions or extreme variations in pose and illumination.

In conclusion, our BoCNN-based approach addresses the critical challenge of 
masked face recognition, enabling accurate and reliable recognition in the con-
text of the COVID-19 pandemic. By leveraging the strengths of deep learning and 
the BoW paradigm, our method paves the way for practical applications in secu-
rity, human-computer interaction, and various other domains affected by the wide-
spread use of face masks.
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