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PAPER

Machine Learning Models to Classify  
and Predict Depression in College Students

ABSTRACT
Depression is an increasingly common mental health condition worldwide and is influenced 
by various factors such as anxiety, frustration, obesity, medical issues, etc. In severe cases, it 
can even result in suicide. This study aimed to utilize machine learning (ML) models to catego-
rize and forecast student depression. The research involved analyzing a dataset of 787 college 
students through a series of steps, including cleansing, model training, and testing using tech-
niques to classify and predict student depression. Three ML models were employed: logistic 
regression (LR), K-nearest neighbor (KNN), and decision tree (DT). The findings revealed that 
the LR model achieved the highest accuracy in prediction, with a rate of 77%, 70% recall, 
and 72% F1 score. Moreover, the study highlighted that two out of five students experience 
mild depression, around 90% of depressed students do not seek treatment, obese students are 
2.5 times more prone to depression, male students are twice as likely to be obese, and male stu-
dents generally have a higher body mass index (BMI) compared to female students. The study 
concludes that integrating ML models into the triggers that lead to depression among students.
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1	 INTRODUCTION

Depression is an increasingly common mental illness worldwide, affecting an 
estimated 5.7% of the adult population [1]. Worldwide, approximately 280 million 
people have depression [2]. Depression is caused by various factors, such as anxiety, 
frustration, and medical problems [3], [4]. This illness can become a severe health 
issue, especially when it is recurrent and of moderate to severe intensity, causing suf-
fering to the affected individual and disrupting their daily lives [5], [6]. In the worst- 
case scenarios, it can lead to suicide [7]. In recent years, suicide has become one 
of the leading causes of death, with rates on the rise [8]. Over 700,000 people com-
mit suicide every year [9]. Young people in developing countries are particularly 
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vulnerable to depression due to the social, economic, educational, and health 
challenges faced by these nations [10], [11].

The world is constantly changing, and technological development has played 
an important role in creating new human capabilities [12]. This has led people to 
work longer hours to keep up with the fast pace of the world, exposing them to 
physical and mental stress that impacts their health [13]. According to the World 
Health Organization (WHO) [14], depression rates are increasing globally. For 
instance, in 2022, Ukraine reported the depression rate at 6.3%, followed by the 
United States at 5.9%, Australia at 5.9%, Finland at 5.6%, Estonia at 5.9%, Greece at 
5.7%, Brazil at 5.8%, Portugal at 5.7%, Belarus at 5.6%, and Peru at 4.8%. As illus-
trated in Figure 1, countries with the lowest rates of spread are spread across almost 
all continents, with the Pacific Island region of Oceania having the lowest rates of 
depression.

Peruvian university students face various personal, academic, economic, health, 
transportation, and other daily challenges [15]. Another significant factor contrib-
uting to depression among university students is the return to face-to-face classes. 
Throughout the COVID-19 pandemic, many students have experienced severe 
financial strain on their families [16], making it difficult for them to afford the costs 
associated with attending college [17]. In Peru, approximately 30% of university 
students exhibit symptoms of depression, including sadness, irritability, feelings of 
emptiness, anxiety, guilt, low self-esteem, a lack of hope for the future, thoughts 
of death or suicide, and a lack of energy [18]. Social media has transformed the 
way we communicate and has become an essential part of many people’s lives [19]. 
Individuals with depression often have suicidal tendencies and may turn to social 
networks to express their emotions [20], [21]. However, excessive use of social 
media among young people is linked to higher rates of anxiety, depression, and 
sleep disturbances. Modern machine learning (ML) models and techniques are 
increasingly used for predicting suicide risk. While traditional statistical methods 
are still utilized, ML models incorporate a wider range of variables for risk assess-
ment, leading to improved accuracy [22]. These prediction systems leverage artifi-
cial intelligence (AI) to make highly precise predictions for new scenarios [23]. The 
dataset for this study comprises eighteen attributes and includes information from 
787 undergraduate students at Lahore University in 2021. The study aims to classify 
and predict student depression using ML techniques, employing cross-validation 
to determine the most effective classifier among logistic regression (LR), K-nearest 
neighbor (KNN), and decision tree (DT) models.

2	 PREVIOUS STUDIES

The National Institute of Mental Health (NIMH), the Pan American Health 
Organization (PAHO), researchers, and academics have published work related to 
mental health. For example, [24] developed a DT-based model to predict the risk 
of depressive disorder in students. Additionally, the authors in [25] worked on a 
ML model to find a better classifier and thus achieve improved results in model 
accuracy. For this purpose, they utilized various models such as K-NN, RF, multi-
layer perceptron (MLP), support vector machine (SVM), and fuzzy logic, achieving 
performance levels of 100%, respectively. Moreover, in the paper [26], a ML model 
was developed to detect and predict depression in students aged 4 to 17. The fac-
tors contributing to depression are diverse, ranging from a lack of social support to 
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financial problems and the learning environment. Similarly, the study [27] exam-
ined mental health problems among students. They also analyzed ML models to 
predict mental health, with the SVM model standing out as the most popular and 
accurate, achieving accuracies between 70% and 96%. Likewise, in the study [28],  
five ML techniques were analyzed: RF, neural network, DT, SVM, and Naïve Bayes 
(NB), with SVM and RF yielding the best results in predicting depression. Currently, 
ML is widely used to predict emotions and psychological characteristics, from 
design to implementation. In this context, the study [29] designed a prediction 
model using LR, NB, RF, DT, and K-NN models to identify major disorders such as 
low self-esteem, Internet addiction, and depression. Technological advancements 
in recent years have contributed to the health sector with various techniques and 
tools that have improved results and predictions significantly [29]. Consequently, 
different ML algorithms have been analyzed to classify and detect depression in 
students, with the SVM algorithm identified as the most efficient and yielding the 
best results for detecting depression. Early detection of depression is crucial, as it 
aids in prevention and evaluation.

In this context, the study [30] utilized ML models with 26 predictor variables 
to predict suicide risk in Korean adolescents. They employed models such as LR, 
RF, SVM, ANN, and extreme gradient boosting. The findings revealed that 12.4% 
of adolescents had a history of suicide due to depression. The extreme gradient 
boosting model performed the best with 79%, followed by SVM at 78.7%, LR at 
77.9%, RF at 77.8%, and ANN at 77.5%. ML models have significantly contributed 
to the advancement of automated diagnostic methods in various pathologies. For 
instance, in a study conducted with ML [31] based on brain connectivity, a set of 
brain imaging data was used for depression detection. The results provided by 
most ML models lack explicit explanations for individuals, making the predic-
tions difficult to comprehend. In the paper [32], a study was conducted to predict 
multi-aspect features using deep learning models. The results indicated that the 
NB model achieved the lowest F1 score, while the multimodal learning model out-
performed SVM, NB, and BiGRU. As this model is specifically designed to identify 
depressed users, the proposed hybrid model based on MLP and CNN (MDHAN) 
demonstrated the best performance with an 89% F1 score, suggesting that HAN 
with a multi-aspect strategy achieves significant accuracy in detecting depression. 
Additionally, in [33], they developed an ML-based model to classify patients based 
on socio-demographic information, personality traits, and mood, concluding that 
LR models and the Elastic Net method yielded results with accuracies of 84% and 
80%, respectively.

To predict depression using ML models, many challenges must be addressed, 
such as data quality, character identification, interpretability, ethical and privacy 
concerns, and individual and temporal variability. When using mental health data 
to improve accuracy and adaptability, it is necessary to address these challenges to 
protect data privacy.

3	 METHODOLOGY

This section describes the ML models that will be used, as well as the case study 
that will be developed to address the classification and prediction of depression in 
college students.
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3.1	 Logistic regression

The reinforcement learning (LR) model is used for classification and predictive 
analysis. It is also often used to attempt to correlate the probability of an event occur-
ring [34]. The concept is that the LR model estimates the probability of yielding zero 
when no event occurs or one when the event occurs based on the explanatory vari-
able’s value [35]. In LR, a logit transformation is applied to the probabilities, where 
the probability of success is divided by the probability of failure [36]. This is refered 
to as logarithmic probabilities and is represented by equation (1).
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Equation (1) shows the independent variable with the combinations β0 + β1 X, and 
the dependent variable is the estimated probability π (x). The LR model in ML falls 
under the supervised learning category. In this context, the LR model utilizes the 
negative log-likelihood as the loss function and employs the gradient descent process 
to determine the global maximum and obtain the estimates [36].

3.2	 K-nearest neighbor

The K-NN algorithm is a nonparametric supervised learning classifier that uses 
proximity to make classifications or predictions [37]. The algorithm stores the attri-
bute vectors and labels during its training phase for retraining [38]. During classifi-
cation, K is defined as a user-defined variable, and the unlabeled vector is classified 
by setting a label among the training attributes deemed most relevant [39]. The 
Euclidean distance is used for distance metrics for continuous variables, limited to 
vectors of real values. Equation (2) is utilized for this purpose, while the superposi-
tion metric is used for creating variables [40].
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The K-NN algorithm is applied in ML for various purposes, primarily classifica-
tion and prediction. For instance, in data processing, the algorithm is utilized to esti-
mate values; in recommendation engines, it provides automatic recommendations; 
in finance, it is applied to credit data for risk evaluation and analyzing economic 
trends; in healthcare, it plays a crucial role in predicting the risk of heart attacks and 
prostate cancer [41]. Additionally, it is employed in pattern recognition to assist in 
classifying text and images.

3.3	 Decision tree

As a nonparametric regression and classification algorithm, decision trees (DT) 
are used to predict the attributes of discrete and continuous variables [42]. DT 
models are constructed similarly to flowcharts, where each node represents an attri-
bute and each branch represents an output. There are three types of nodes in the 
DT [43]: decision nodes, probability nodes, and end nodes. Decision nodes are usually 
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represented by boxes, probability nodes by circles, and end nodes by triangles,  
as shown in Figure 1.

Fig. 1. Decision tree

3.4	 Understanding data

The dataset used for processing was obtained from the Kaggle repository and 
consists of 787 records of university students. A study was conducted using the 
patient health questionnaire (PHQ) to assess the severity of mental health problems 
(0–4: not minimal or normal; 5–9: mild; 10–14: moderate; 15–19: moderate–severe; 
20–24: severe). The variables analyzed include: php_score: score from the PHQ ques-
tionnaire depression severity: an estimate derived from php_score depressiveness: 
indicating whether the participant has depression diagnosis: indicating if the partic-
ipant has received a diagnosis from a mental health specialist depression treatment: 
whether the participants is undergoing treatment for depression suicidal: proba-
bility of suicidal tendencies GAD score: score from an anxiety disorder assessment 
anxiety severity: estimate based on the GAD score anxiety diagnosis; diagnosis by a 
mental health specialist anxiety treatment: whether the participant is receiving treat-
ment for anxiety Epworth score: score from a test measuring sleepiness: likelihood 
of daytime sleepiness BMI: body mass index who_bmp: WHO body mass index age: 
participant’s age (between 18 and 31 years) gender: participant’s sex: academic year, 
school year. K-nearest neighbor.

3.5	 Data cleaning

This section begins with data cleaning. For instance, the ‘dropna()’ function is 
used to remove rows with missing values, while the ‘Epworth()’, ‘loc()’, and ‘drop()’ 
functions are employed to handle out-of-range data, process incorrect data, man-
age outliers, and eliminate duplicate data. Subsequently, the tested variables are 
displayed in Table 1, showcasing the organized variables for which the data type 
had to be transformed into categories. Also, the number of categories has been 
reduced, and functions have been defined to sort the categories. Finally, with  
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the ‘reset_index()’ function, a stratified sample was obtained from the origi-
nal sample.

Table 1. Data type checking

# Column Non-Null Count Dtype

 0 school_year 757 [Not empty] category

 1 age 757 [Not empty] int64

 2 gender 757 [Not empty] category

 3 bmi 757 [Not empty] float64

 4 who_bmi 757 [Not empty] category

 5 phq_score 757 [Not empty] int6

 6 depression_severity 757 [Not empty] category

 7 depressiveness 757 [Not empty] object

 8 suicidal 757 [Not empty] object

 9 depression_diagnosis 757 [Not empty] object

10 depression_treatment 757 [Not empty] object

11 gad_score 757 [Not empty] int64

12 anxiety_severity 757 [Not empty] category

13 anxiousness 757 [Not empty] object

14 anxiety_diagnosis 757 [Not empty] object

Dtypes: category (5), float64 (2), int64 (3), object (8)

3.6	 Exploratory data analysis

In this phase, the tags are first converted into a numerical format and then trans-
formed into a format understandable by the algorithm. A numerical value is assigned 
to each categorical value. ML algorithms can best determine how tags should be 
handled. This step is of paramount importance for data processing and is carried out 
using the sklearn(), pandas(), and NumPy library().

Character extraction is performed utilizing the principal component analysis 
(PCA) technique, using all the features provided by the dataset to predict, analyze, 
classify, or group outcomes. The characteristics are closely related to the dimensions. 
This selection considers a subset of features that are important and eliminates those 
that do not contribute to classification. Feature extraction enables the creation of 
valuable information from raw data by combining and transforming core features 
into new ones until a new dataset can be used by ML models. The distribution of 
numerical variables is a crucial factor in performing arithmetic operations. Using 
the ggplot2() function, we scanned to identify the variables and created a chart 
as shown in Figure 2. In this case, the function identified the variables: age, body 
mass index (BMI), the score to determine the severity of mental health problems  
(phq_score), the rate of a generalized anxiety disorder (gad_scor), and the level of 
daytime drowsiness (Epworth_score).
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Fig. 2. Distributions of numeric variables

Figure 2 indicates that the median BMI is 25, suggesting that most participants 
have a normal weight. However, there is a wide range of BMI values, with some par-
ticipants being overweight and others being lean. Additionally, it shows that the PHQ 
score is 8, suggesting that the majority of participants do not exhibit symptoms of 
depression. The median GAD score is 5, indicating that most participants do not have 
anxiety. Nevertheless, there are some participants with elevated scores that may sug-
gest anxiety. Similarly, the median Epworth score is 8, indicating that most partici-
pants do not experience excessive daytime sleepiness.

The principal component analysis (PCA) helps identify the correlation between 
numerical variables and characteristics. The variables in Figure 3 depict the pairwise 
correlations within the set of variables. For instance, colors such as red, orange, and yel-
low signify a positive correlation, whereas colors like blue, green, and brown represent 
negative correlations. The intensity of the color reflects the strength of the correlation.

It is important to specify that the values in a correlation matrix range from -1 to 1.  
A value of zero indicates no correlation between the variables. A value of 1 indi-
cates a perfect positive correlation, while -1 indicates a perfect negative correlation. 
For instance, in Figure 3’s matrix, it is evident that there is no significant correlation 
between BMI, PHQ score, and GAD. There is a weak correlation with the PHQ score of 
0.16, suggesting that students with a higher BMI tend to have higher PHQ scores, indi-
cating symptoms of depression. A moderately positive correlation with Epworth of 0.36 
implies that students with higher PHQ scores exhibit more symptoms of depression and 
tend to experience more excessive daytime drowsiness. The matrix also reveals a strong 
positive correlation with the GAD score, indicating that students with higher PHQ scores 
have more symptoms of depression and tend to experience more anxiety symptoms.

Fig. 3. Correlation matrix between numeric variables
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In this work, feature scaling was performed using the standardization technique, 
which allows the features to be scaled so that the values are centered around the 
mean with a unit standard deviation. This method is widely used in ML algorithms 
such as SVM, LR, and neural networks. However, algorithms such as LR, K-NN, and 
SVM require the features to be normalized. The dataset used has heterogeneous fea-
tures at each scale due to the different properties they measure. The transformed 
data is then used for training with functions such as StandarScaler(), which removes 
the mean and scales each feature to unit variance. However, it can be influenced by 
outliers. Additionally, there are functions such as scaler.fit_transform(x_train) and 
scaler.transform(x_test), as shown in Table 2.

Table 2. Function scaling – standardization

Matrix ([

[-1.25230037, -0.51501498, 0.01682768],

[ 0.38909111, -0.31446922, 0.65269925],

[ 0.93622161, -0.2234338, 0.86465644],

 …,

[ 0.38909111, -1.11952747, -1.46687265],

[-0.15803938, 0.27208495, -0.83100108],

[ 1.4833521, -0.8437498, -0.4070867]

])

After conducting the EDA, it has allowed us to obtain statistics. For example, the 
body mass index of a male student is higher than that of a female student; about 
26% of students are obese; male students are twice as likely to have obesity and to 
suffer from severe depression as female students. Female students are twice as likely 
as male students to experience severe anxiety. Twenty-five percent of female stu-
dents are more likely to be depressed than male students. 25% of depressed students 
receiving treatment are suicidal. Students who are depressed have a higher BMI 
than those who are not depressed. Obsessed students are 2.5 times more likely to 
be depressed than normal students. Approximately 90% of depressed students do 
not receive treatment, and finally, 2 out of 5 students have mild depression. Figure 4 
shows the proportion of students with severe depression. According to the analysis, 
female students are more likely to have severe depression; meanwhile, male students 
are more likely to have moderate to severe depression; likewise, moderate and mild 
depression. However, female students are more likely to have no depression at all.

Fig. 4. Proportion of students with severe depression
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3.7	 Model training and testing

After data processing, in this section, training and testing are performed to obtain 
the best classifier using the cross-validation technique. Additionally, model fitting 
is executed using the pipeline, and finally, the model’s performance is evaluated. 
The aim of this study is to determine the most effective classifier among the LR, 
K-NN, and DT models for predicting depression in students. To achieve this, the 
cross-validation technique was utilized to assess the model and its performance. This 
technique involves dividing the dataset into two parts: one for training (80%) and 
one for testing (20%). Furthermore, the technique involves training the model on the 
training set, validating it on the test set, and storing the validation results. The follow-
ing functions were employed for training: logisticregression(), Kneighborsclassifier(), 
decisiontreeclassifier(), Kfold(), cross_val_score(), and boxplot(), which enabled the 
acquisition of the results depicted in Figure 5.

Fig. 5. Cross-validation to obtain the best model

4	 RESULTS

This section presents the results of the classification, training, and explora-
tion phases. After processing to rank the best model for prediction, Figure 5 indi-
cates that the LR algorithm achieved the best result with the highest accuracy 
rate, exceeding 85%. Consequently, the prediction in this study is conducted using 
this model. Table 3 displays the accuracy index of the three models. Additionally, 
in Figure 6, the confusion matrix was utilized to assess the classification of the 
selected ML-based model. The values on the 91st and 26th diagonals represent 
the correctly estimated values by the model, including true positives and true 
negatives. Conversely, the values on the second diagonal indicate the model’s 
errors, with 14 false negatives and 19 false positives. The accuracy rate achieved 
with the LR model is 81%, falling within an acceptable range with a precision of 
71%. Hence, it can be concluded that the model is more accurate than precise. 
Sensitivity, which is the ratio of positive cases identified by the model to the total 
number of positives, is reported at 48%, indicating the model’s ability to detect 
relevant cases.
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Table 3. Data type checking

Accuracy Accuracy Recall F1-Score Support

LR 0 0.83 0.93 0.88 439

1 0.71 0.48 0.57 159

Accuracy 0.81 159

Average Macro 0.77 0.70 0.72 159

Weighted 0.80 0.81 0.80 159

KNN 0 0.81 0.90 0.85 439

1 0.60 0.41 0.49 159

Accuracy 0.77 598

Average Macro 0.70 0.65 0.67 598

Weighted 0.75 0.77 0.75 598

DT 0 0.80 0.79 0.79 439

1 0.44 0.45 0.44 159

Accuracy 0.70 598

Average Macro 0.62 0.62 0.62 598

Weighted 0.70 0.70 0.70 598

Fig. 6. Matrix of confusion

The ROC curve is used to evaluate the ability of a model to discriminate 
between two classes. For example, Figure 7 presents the ROC curve of the selected 
model, showing the relationship between the false positive rate and the true pos-
itive rate. The area under the curve (AUC) is 0.74, indicating that the LR model 
has a good ability to discriminate between positive and negative cases of depres-
sion. It is important to note that the ROC curve is not a perfect measure of model 
accuracy. The performance of the model may vary depending on the size of the 
dataset used.
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Fig. 7. ROC curve of the model

5	 DISCUSSIONS

The performance of ML models in predicting the factors causing depression in 
students was achieved by applying the cross-matrix with the following metrics: accu-
racy, precision, recall, and F1 score, for which 18 input variables were used (school 
year, age, gender, BMI, WHO_BMI, PHQ score, depression severity, depressiveness, 
suicide, diagnosis of depression, treatment of depression, GAD score, drowsiness, 
Epworth score, severity of anxiety, anxiety diagnosis, anxiety treatment). Among the 
models trained in this study: LR, KNN, and DT, the LR model yielded the best training 
results for predicting depression (LR: 77%; KNN: 70%; DT: 62%). These findings align 
with the metrics reported in a previous study [28], where ML SVM and RF models 
were used to predict depression and anxiety, achieving an accuracy of 92.5% for 
the SVM model and 76.4% for the RF model. Discrepancies in these metrics could be 
attributed to various factors, primarily the size of the dataset. It is also noteworthy to 
compare these results with those of another study [26], where DT and RF models of 
ML were employed to predict depression in children and adolescents aged 4 to 17. 
The results indicated that the RF model achieved the highest accuracy at 95%. This 
demonstrates that models can yield varying results based on their training.

As indicated in references [28] and [26], our research has revealed a close rela-
tionship between obesity, anxiety, and depression. Moreover, the predictive metrics 
obtained are comparable to the accuracy rates reported in studies such as [25], which 
explored mental disorders. The study concluded that the most influential factors for 
anxiety and depression prediction are obesity, age, BMI, and anxieties, making them 
the four most significant characteristics for predicting depression.
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The contribution of this study lies in classifying the LR model as the most rele-
vant for predicting depression. It has also enabled the ranking of students who are 
at higher risk of obesity, mild depression, severe anxiety, suicidal thoughts, and the 
BMI factor directly associated with depression.

Finally, we found that BMI is directly related to depression, suggesting the need 
for a comprehensive approach to physical and mental health treatment. These find-
ings represent a significant breakthrough in the field of mental health. Consequently, 
we can develop prevention and early intervention strategies to enhance student 
well-being.

6	 CONCLUSION

The paper evaluated three ML models: LR, K-NN, and DT, based on super-
vised learning, to predict factors related to depression in undergraduate students. 
According to the results, the research concludes that the LR model is the most effec-
tive and appropriate for predicting student depression, as indicated by the following 
metrics: accuracy (77%), recall: (70%), and F1 score (72%). This model can be inte-
grated into university information systems to automatically access student depres-
sion information based on key variables. Additionally, the case study successfully 
classified the dataset. For instance, approximately two out of five students have 
mild depression; around 90% of students with depression do not receive treatment; 
obese students are 2.5 times more likely to be depressed; male students are twice as 
likely to become obese; and male students have a higher BMI than female students. 
This information is crucial for decision-making. University authorities can use it to 
address issues affecting students’ mental well-being. Furthermore, by employing 
ML techniques such as the LR model, health professionals and decision-makers can 
implement them in intervention programs to prevent and enhance the health, edu-
cation, and well-being of students.

Although significant progress has been made in this field, it is essential to acknowl-
edge certain limitations that may influence future research in this area. The study’s 
limitations include sample size, the potential for omitted variables, and the absence 
of external validation. Moving forward, research could emphasize preventive 
interventions, longitudinal assessments, test outcomes, and enhancing predictions 
through statistical models.
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