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PAPER

Multi-Approach Learning with Embedded Sensors 
Application in Gesture Recognition

ABSTRACT
The increased attention to human daily activities in academic circles has proven highly 
valuable, serving various specific needs and producing desired outcomes across different 
fields. Evaluating human activity data opens up numerous possibilities for researchers, 
facilitating personalized support options such as timely stress interventions, real-time feed-
back mechanisms, and applications for assisting individuals with disabilities or monitoring 
mental health. This paper presents a comprehensive approach integrating multiple sensors 
to recognize human body movements, applicable to real-life scenarios such as classrooms, 
driving, and kitchen-related activities. Our focus is to enhance the precision of motion classi-
fication and improve motion classification rates by merging acceleration and rotation signals 
and analyzing an enhanced array of features using various high-caliber machine-learning 
models. This methodology achieves exceptional performance and flexibility, with accuracy 
rates ranging between 96% and 98%, substantiating activity recognition within diverse 
contexts. It aims to reduce system recognition errors, improve the classification process, and 
promote the advanced utilization of artificial intelligence algorithms in signal processing and 
in controlling and enhancing bionic hands.

KEYWORDS
wearable sensors, vehicle control tasks, kitchen activities, educational activities, machine 
learning, deep and ensemble learning

1	 INTRODUCTION

The advancement of dynamic technologies and the proliferation of vast amounts 
of sensor-type data have positioned human-computer interaction (HCI) as a focal 
point of extensive global research. Central to these research endeavors is human 
activity recognition (HAR), which involves discerning and identifying human actions 
through the analysis of physical observations and environmental parameters from 
diverse sensor sources [1]. Within this context, the monitoring and analysis of activi-
ties of daily living (ADLs) have gained prominence due to technological advancements 
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and the reduction in equipment costs. The HAR community has increasingly favored 
sensor-based solutions over vision-based methods due to cost efficiency and privacy 
concerns [2]. This trend highlights the practical utilization of wearable sensors, which 
are cost-effective and highly effective in monitoring human behavior during routine 
activities [3]. Wearable sensor-based activity recognition has occupied a central posi-
tion in an extensive body of research, augmenting the depth of scientific inquiry 
and affording added avenues for data integration and aggregation. These sensors 
encompass a variety of internal sensor types, including accelerometers, gyroscopes, 
magnetometers, and GPS, among others. These sensors are conducive to simulta-
neous utilization, facilitating the delivery of contextually sensitive and adaptable 
services tailored to individuals’ immediate contexts and circumstances [4].

A review of various research projects indicates that the data fusion approach 
is currently gaining traction for many reasons [5], [6]. To reach an elevated level 
of understanding human activities and obtain high-accuracy results, researchers 
are now fusing a variety of technologies in a hybrid method, concurring that the 
combination of sensors is essential in order to create innovative forms and patterns 
of information that complement the convoluted nature of people’s movements and 
facilitate their identification and classification [7], [8]. Four key stages have poten-
tially been distinguished for the development of HAR [9]. They, according to [10] are: 
1. Sensor Selection and Implementation: In the initial phase, meticulous consider-
ation is given to the selection and strategic deployment of sensors. This stage holds 
pivotal significance, as it determines the breadth and quality of data acquisition. 
2. Sensor Data Capture: Subsequent to the selection process, data capture ensues, 
wherein the designated sensors collect information relevant to human activities. 
3. Data Processing and Feature Extraction: The journey then proceeds to a critical 
juncture where the data undergoes comprehensive processing and relevant features 
are extracted. This process is pivotal in distilling meaningful insights from the raw 
data and facilitating substantive analysis. 4. Selection and Adoption of a Machine 
Learning Algorithm for Activity Interpretation and Deduction: The culmination of 
this process involves the judicious selection and deployment of machine learning 
algorithms. These algorithms are instrumental in interpreting and deducing human 
activities based on the processed data.

The objective of this study is to develop an advanced activity recognition sys-
tem capable of offering evolutionary functionalities to its users. By analyzing 
data generated by sensors during various everyday activities in different contexts 
and circumstances, the system leverages diverse machine learning algorithms to 
gain a deep understanding of human activities. This facilitates the development 
of sophisticated, adaptable solutions to enhance interactive human-computer 
systems and e-health applications. This project is centered on the development of 
an activity recognition system designed to achieve a notably high degree of accu-
racy for multiple contexts of daily activities. The primary emphasis of this study 
is the detection and monitoring of human behavior, with specific applications 
aimed at optimizing vehicle control, analyzing kitchen-related behaviors for per-
formance improvements, and enhancing educational activity recognition for 
educators and students in real-world experiences. The objectives include devel-
oping supervised learning systems that explore driver gestures and behaviors to 
optimize vehicle responses and enhance safety and performance; creating a deep 
learning model for kitchen environments where actions and practices are exam-
ined for productivity and prevention improvements; and implementing an ensem-
ble learning approach that recognizes and interprets gestures in educational 
settings to tailor educational content and teaching approaches to individual learn-
ing styles and provide real-time feedback and personalized learning experiences.  
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By focusing on these objectives, the research seeks to leverage gesture recognition 
innovations to improve vehicle control, kitchen efficiency, and the multifaceted 
educational process, thereby contributing to the fields of intelligent environments 
and automation technology. The model development process encompasses a com-
prehensive consideration of multiple critical factors, including the diversification 
of activities, user privacy (non-visual contexts), and the effective deployment and 
accessibility of sensors in terms of their combination and positioning. These factors 
are recognized as the cornerstone elements essential for the realization of a success-
ful ADL recognition system. The fundamental techniques and objectives underpin-
ning our activity recognition system are visually depicted in Figure 1. This study 
paper contributes significantly to the field in several key aspects:

•	 Propose an activity recognition approach utilizing cost-effective, non-intrusive 
wrist-worn sensors to identify ADLs across diverse age groups.

•	 Establish a feature combination methodology that emphasizes the collective per-
formance of a variety of features as opposed to individual features. Analysis of 
Variance (ANOVA) is employed to identify the optimal feature combinations for 
each dataset while continuously assessing model accuracy.

•	 Validate two distinct approaches: A1: Demonstrate that the proposed method 
compares favorably to prior research, attaining over 95% classification accuracy.
A2: Highlight the potential to boost activity classification accuracy by integrat-
ing accelerometer and gyroscope data with a multi-approach learning strategy, 
which could be beneficial for timely stress interventions and the development of 
assistive technologies.

Fig. 1. Core elements of proposed activity recognition: Techniques and methodology

2	 RELATED	WORK

Human activity recognition constitutes a multifaceted challenge within the 
domains of artificial intelligence and sensor-based technologies. The intricacy of this 
challenge stems from the inherent diversity in human behaviors, which manifests 
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in various forms, durations, and contextual settings (refer to Table 1). One of the 
primary challenges in this endeavor revolves around the inherent variability and 
contextual nuances associated with human activities. Activities of daily living, 
encompassing a wide spectrum of behaviors and postures, pose a considerable chal-
lenge in accurately identifying and categorizing them, given the inherent variations 
in their execution, environmental factors, and individual preferences.

In the pursuit of addressing these challenges, noteworthy research contributions 
have emerged in the field. Notably, Mi-So, Lee, and Kyung-Won Kim in [11] intro-
duced a hand gesture recognition system employing inertial sensors. Their work 
elucidated a novel approach to hand gesture recognition, utilizing a wrist-mounted 
three-axis accelerometer, gyroscope, and magnetometer. This system was precisely 
designed to discriminate between six distinct hand gestures, including gestures 
denoting upward, downward, leftward, rightward, single-click, and double-click 
actions. Furthermore, Chun Zhu and Weihua Sheng in [12] directed their research 
efforts towards the realm of natural human-robot interaction (HRI) within the 
context of a smart assisted living (SAIL) system tailored for elderly and disabled 
individuals. Their study addressed two pivotal HRI challenges: hand gesture recog-
nition and daily activity recognition. To surmount these challenges, the authors pro-
posed an innovative multi-sensor fusion scheme that meticulously analyzed motion 
data collected from both the foot and waist regions of human subjects.

In addition to these endeavors, Hongnian Yu and Anthony Atkins in [13] contrib-
uted to the field by devising an activity recognition system capable of discerning 
nine common daily activities performed by elderly individuals. Their approach 
was distinguished by its comprehensive consideration of both technical and 
practical aspects. Notably, the recognition system relied upon a suite of compact, 
cost-effective, and unobtrusive sensors, including an accelerometer, a temperature 
sensor, and an altimeter, seamlessly integrated into a wristwatch form factor. These 
sensors collectively served as inputs for the activity recognition process.

The second paramount challenge in the realm of recognizing human activities 
resides in the quality and diversity of sensor data. An inherent limitation arises 
when reliance is placed on a solitary type of sensor, leading to a restricted compre-
hension of human activities. This limitation is particularly pronounced in the case 
of complex activities that encompass multi-modal cues. It is evident that restricting 
the selection of sensors curtails the system’s ability to encapsulate the complete con-
textual intricacies of an activity. Notably, diverse sensors exhibit distinctive strengths 
and weaknesses. Thus, a salient strategy is to harness a diverse array of sensors 
to mitigate the inherent limitations of individual sensor types, thereby augmenting 
the overall accuracy of activity recognition. Real-world activities are inherently 
intricate and often entail subtle cues that elude detection by a single sensor. For 
instance, the recognition of culinary activities necessitates the amalgamation of 
visual, auditory, and olfactory cues. It is the amalgamation of multiple sensors that 
offers a comprehensive perspective on the activity. For an exhaustive exploration of 
this domain, Lara and Labrador in [14] have conducted extensive work in the realm 
of activity recognition using wearable sensors. Their contribution encompasses an 
in-depth scrutiny of the design considerations within HAR systems. These consid-
erations span sensor and attribute selection, data collection protocols, recognition 
performance metrics, data processing methodologies, and energy consumption opti-
mizations. The research categorically classifies extant studies into three primary cat-
egories: supervised online systems, supervised offline systems, and semi-supervised 
offline systems.
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Additionally, Cornacchia et al., [15] have offered a comprehensive survey that 
stratifies previous research into two principal domains: global body motion activi-
ties, which involve holistic body movements such as walking and running, and local 
interaction activities, which encompass finer extremity movements linked to object 
manipulation. Furthermore, this survey provides a nuanced classification based on 
sensor types and their anatomical placement on the human body, including waist- 
and chest-mounted sensors. The authors delve into various techniques leveraging 
sensors such as gyroscopes, accelerometers, magnetometers, wearable cameras, and 
hybrid sensor systems.

In a parallel vein, Mijovic and Popovic [16] have modeled a two-link system 
mechanism. Their endeavor entails the estimation of motion trajectories, with a par-
ticular focus on the upper arm and forearm during vertical arm movements. This 
estimation relies on the measured angular accelerations utilizing dual-axis accel-
erometers. Notably, their work incorporates the utilization of a dataset comprising 
reaching synergies from able-bodied individuals, serving as the foundational data-
set for training a radial basis function artificial neural network with upper arm and 
forearm tangential angular accelerations.

The concluding point we intend to highlight within this related work is the inte-
gration of a diverse array of machine learning algorithms, along with the utilization 
of deep learning models. This approach, often referred to as ensemble learning or 
hybrid modeling, has become a prevalent strategy in the development of resilient 
and versatile AI systems. The primary objective behind this technique is to capitalize 
on the strengths of various algorithms, thereby enhancing overall performance, mit-
igating issues of overfitting, and augmenting the system’s capacity for generalization.

The selection of machine learning and deep learning models for integration is 
contingent on several factors, including the specific problem at hand, the availability 
of data, and computational resources, and the desired balance between accuracy 
and interpretability. Wang et al., [17] have underscored the significance of diverse 
deep learning strategies in the context of HAR using sensor data. Their research 
places particular emphasis on sensor modality, various deep model types, and appli-
cation domains. The crux of their investigation revolves around the implementation 
and fusion of an assortment of deep model architectures, encompassing discrimi-
native, generative, and hybrid models. Concerning application domains, their study 
delves into a spectrum of areas such as activities of daily living, sleep monitoring, 
sports analytics, and health-related applications.

In a study conducted by Jindong Wang and Yiqiang Chen in [18], the focal point 
is the latest advancements in deep learning techniques for sensor-based activity 
recognition. In contrast to traditional pattern recognition methods, deep learning 
significantly reduces the necessity for manually engineered feature extraction and 
achieves superior performance by automatically extracting high-level represen-
tations from sensor data. Moreover, Tai-hoon Kim and Debnath Bhattacharyya in 
[19] have set multiple objectives for their research. Firstly, they provide an exhaus-
tive examination of neural networks, with a special focus on the neural network 
family frequently employed for pattern classification tasks. Secondly, their article 
aims to showcase approaches for harnessing the fundamental attributes of neural 
networks and their potential for integration with other models. This includes their 
ability to comprehend complex nonlinear input-output relationships, their utili-
zation of sequential training techniques, and their adaptability to diverse sensor 
data sources.

https://online-journals.org/index.php/i-jim
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Table 1. Summary of the works presented for gesture recognition

Reference Sensor 
Type #Features #Subject #Activity Recognition Methods Varied Context 

Environment
Multiple Model 

Recognition

Chun Zhu & Weihua 
Sheng, 2011

A 3 – 8 Neural network, 
Hidden Markov model

No Yes

Atkins & Hong, 2013 A, T, Alt 13 5 9 SVM, Neural network No Yes

Nattawut & 
Choksuriwong, 2015

C, P, PIS, Ac Statistical – 6 Fuzzy logic Yes No

Mi-So Lee & Kyung-
Won Kim, 2016

A, G, M – 8 6 – No –

Joyeeta & Amarjit, 2016 C 44 – 40 NN, SVM, kNN No Yes

Jie Yang & Roman 
Kusche, 2017

A, EMG, MMG 2 6 4 SVM No No

Shuman & Duric, 2017 A, EMG 11 5 47 HMM, RF Yes Yes

Zuocai Wang & 
Bin Chen 2018

A, G, M 16 – 10 BP-NN No No

Oguntala et al., 2019 Rf – 4 12 Multi-variant Gaussian No No

Webber & Fernandez,  
2021

A, G 7 66, 19,  
10, 30

4 Bagging and Stacking No yes

Liron & Adi, 2023 EMG 2 8 8 Neural network No No

Yongfeng & Shuyan 
Chen, 2023

A, G 10 1 4 LSTM network No No

Notes: (A = accelerometer, Alt =	altimeter, Ac = Acoustic, M = magnetometer, G = gyroscope, C = camera, Rf = RFID tag, P = pressure, 
T = temperature sensor, PIS = passive infrared sensors, EMG = myoelectric, MMG = echanomyography).

3	 SYSTEM	AND	MATERIALS

To attain a more profound comprehension of ADL tasks, the implementation of the 
data fusion process, encompassing the amalgamation of diverse data sources, facil-
itates a more comprehensive and lucid conceptualization of the inherent character-
istics and properties of each physical movement. This scholarly article elucidates the 
systematic procedure commencing with the initial collection of physical data mea-
surements, advancing to the ultimate phase of artificial intelligence algorithm classi-
fication and prediction, all facilitated through an electronic data acquisition system.

3.1	 Sensors

The review of numerous study results reveals that a higher level of accuracy and 
reliability in HAR measurement and in-depth knowledge of human organ motion in 
six degrees of freedom (DOF) are achieved by incorporating both the features of a 
3-axis accelerometer and a gyroscope [20]. One of the most frequently used sensors 
in HAR is the accelerometer. This electromechanical tool can contemporaneously 
measure static and dynamic acceleration forces applied to the sensor, offering pre-
cise information to identify patterns of movement. Specifically, a 3-axis accelerom-
eter provides three-dimensional data along the X, Y, and Z axes, ensuring extensive 
examination of movements in all directions. This capability is key for capturing the 
complete range of human motion and recognizing various sorts of activities.

https://online-journals.org/index.php/i-jim
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Another vital sensor in HAR research is the gyroscope. It detects angular velocity, 
or the rate of rotation around the three axes (pitch, roll, and yaw) (see Figure 2), 
providing essential information about the orientation and rotational movements 
of body extremities. When combined with accelerometer data, the gyroscope’s 
measurements enable a comprehensive understanding of both linear and rota-
tional movements, increasing the overall precision and reliability of HAR systems. 
This combination of sensors allows for accurate tracking of complex activities and 
movements, making it an integral aspect of advanced HAR research and applications.

We have chosen to employ our accelerometer and gyroscope sensors in two types 
of placements according to the environmental context and activity specificity, as illus-
trated in Figure 3. For instance, for activities that depend on finger movements, such 
as handwriting or mouse clicking, we utilized dorsal finger sensing. Conversely, for 
activities that rely on hand orientation and rotation, such as car gearbox transmis-
sion, student engagement in classrooms, and certain kitchen activities, we employed 
surface hand sensing.

Fig. 2. 3-axis gyroscope and 3-axis accelerometer

Fig. 3. Strategic sensor placement

3.2	 Embedded	system:	PICO	microcontroller

Previously, computing systems for monitoring daily activities were created using 
a microprocessor combined with several peripheral chips. This required supple-
mentary components such as memory, input-output interfaces, timers, and inter-
rupt circuitry, leading to a complicated technological infrastructure and design that 
intensified power consumption. Consequently, this architecture restricted the effec-
tiveness and accuracy of HAR, and the analysis of activities of daily living (ADLs).

https://online-journals.org/index.php/i-jim
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On the other hand, our observations utilize the high-performance Raspberry Pi Pico 
microcontroller, purpose-built for physical computing. It is designed to execute single 
processes, making it ideal for rapid real-time control and monitoring applications.  
The Pico features a robust dual-core ARM Cortex-M0 + RP2040 chip with a clock 
speed up to 133 MHz, 2 MB of flash memory, and 264 KB of SRAM. It offers a substan-
tial number of GPIO pins and various peripheral interface modules (see Figure 4), 
including SPI, I2C, UART, PWM, and precision timing modules. The Raspberry Pi Pico 
stands out for its cost-effectiveness, expanded memory capacity, and precise timing 
modules, providing significant advantages over other microcontroller options.

Fig. 4. The Raspberry Pi Pico and the Inertial Measurement Unit (IMU) connection diagram

3.3	 Communication	protocol:	Interfacing	sensors	with	Raspberry	Pi	Pico

The Inter-Integrated Circuit (I2C) protocol serves as a straightforward and com-
monly employed communication mechanism within the sector of microcontroller- 
based sensor connectivity. It establishes a bidirectional bus that lends itself to 
straightforward implementation across various integrated circuit (IC) platforms. 
This bus architecture streamlines the overall connection process, minimizing both 
the quantity of connections required and the temporal demands associated with 
communication. In the I2C communication protocol, a master-slave framework is 
adopted. Within this hierarchy, the master entity assumes the role of bus controller, 
taking charge of addressing individual slave devices and facilitating the exchange of 
data with or from the registers located within these slave devices.

3.4	 Transmission	program

This section explains how to retrieve data from the accelerometer and gyroscope 
sensors on the Raspberry Pi Pico. The Pico has internal accelerometer and gyroscope 
sensors connected to pins known as Analog-to-Digital Converters (ADCs). The Pico 
addresses these sensors to acquire data by examining READ/WRITE instructions 
and receiving an acknowledgment bit from the sensors, indicating their readiness 
for data transmission. After acknowledgment, the sensor takes control of the Serial 
Data (SDA) line to send data to the microcontroller. The data is then transferred to a 
nearby computer via a COM port and stored in a CSV file. Initially, the Pico collects 
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the sensor data and sends it through the serial port to the PC. A Micro Python script 
on the PC reads and collates this serial data, specifying technical parameters like 
data acquisition frequency and duration, which will be detailed later. These gath-
ered values will be used for AI-based analysis and processing.

4	 RECOGNITION	SYSTEM	DESCRIPTION

Activities Recognition systems are an interdisciplinary field, continually evolving 
and submitting new challenges, including challenges related to scalability and adapt-
ability. As they continue to be integrated into various aspects of modern life, they hold 
the potential to revolutionize our interaction with data, offering heightened clarity and 
more effective decision-making support. The architectural design of a recognition sys-
tem capable of handling three distinct contexts of activities represents an innovative 
and complex challenge in the field of artificial intelligence and machine learning. Our 
architecture incorporates the development of an advanced model that can effectively 
recognize and differentiate activities within different environments (see Figure 5). These 
three context-specific domains, often characterized by unique features and challenges, 
encompass vehicle control tasks, kitchen-related behaviors, and educational activities.

Fig. 5. Proposed architecture

4.1	 Optimizing	vehicle	control:	The	role	of	recognition	activities

a) Data acquisition: Subjects and activities: To assess the effectiveness of the 
acquired signals in advancing research within the fields of human-machine 
interaction and transportation research. An experiment involving data collection 
was conducted with 10 participants in the age range of 20 and 40 years of diverse 
genders (five men and five women). Every participant was assigned the task of 
executing a predetermined sequence comprising 10 distinct gesture classes that 
are widely recognized and prevalent within the field of automobiles, as shown 
in Table 2. Each set of movements was meticulously recorded in a continuous 
manner. To maintain the independence of each action, a designated two-second 
interval was introduced between successive actions. The dual sensors employed 
consist of a 6-axis motion tracking device that integrates a tri-axial gyroscope 
and a tri-axial accelerometer. Subsequently, the files containing the recorded sig-
nals were subject to analysis and direct processing on the workstation, utilizing 
the MATLAB software library.

https://online-journals.org/index.php/i-jim
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Table 2. List of vehicle control gestures

Gesture ID Gestures Name Hand Position

1 1st Gear Standard

2 2st Gear Standard

3 3st Gear Standard

4 4st Gear Standard

5 5st Gear Standard

6 Reverse Gear Standard

7 Neutral Gear Standard

8 Steering wheel Left & right

9 Hand Break Enable & disable

10 No control Free hand & non-dominant hand

b) Signal pre-processing: A comprehensive scrutiny of the amassed acceleration 
signals transpired, wherein the acceleration data spanning the commencement 
and termination intervals of the respective gestures was systematically catego-
rized in accordance with the nomenclature assigned to each gesture. At a sam-
pling frequency of 10 Hz, discrete samples were acquired at a rate of one per 
100 milliseconds. Each participant contributed data encompassing a temporal 
extent ranging from 6000 to 6500 seconds, leading to an aggregate of 3,900,000 
three-dimensional acceleration and data samples.

	  The signal computed for each specific activity necessitates a preliminary win-
dowing procedure as a crucial step in readiness for subsequent processes related 
to feature extraction [21]. Following this, a classification decision will be synthe-
sized for each of these windows. As a direct consequence of this method, the sig-
nal was partitioned into two-second windows, each containing 20 samples, with 
an overlap of 10 samples.

c) Feature extraction and selection: In the pursuit of pattern recognition, a 
pivotal endeavor within this phase is the imperative differentiation of the key 
signal attributes embedded within the segmented data. This phase, situated 
within our project design, assumes a critical role in the endeavor to reduce the 
dimensionality of the data by purging superfluous information and discerning 
essential characteristics from the input data, thus concomitantly elevating the 
precision of the trained models. The features harnessed in this investigation 
emanate from the temporal domain. To elucidate our philosophy of feature 
extraction and provide a comprehensive understanding of our signal extraction 
prototype, we have focused on extracting a diverse set of measures. These 
measures are categorized into central tendency, dispersion, energy, and higher- 
order statistics, each offering unique insights into the characteristics of the 
signal, thus facilitating a holistic analysis. These parameters have been widely 
adopted in the realm of machine learning-based time series analysis [22].  
Following an exhaustive review and comparative analysis of numerous perti-
nent studies [23]–[24], the integration of accelerometer and gyroscope sensors 
was deployed to compile a feature vector comprising 10 statistical metrics, as 
elucidated in Table 3.
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	  After applying the necessary feature extraction processes to the accelerome-
ter and gyroscope sensor signals (Ax, Ay, Az for the accelerometer and Gx, Gy, 
Gz for the gyroscope), we obtained a feature matrix for each sensor dimension. 
Each matrix consists of vectors with 128 readings per window and 9014 obser-
vations. Finally, we constructed the final matrix of the extracted features, incor-
porating 60 variables from all sensor axes. The selection of these features can be 
facilitated by employing feature selection methods that predicate their choices 
on discriminative criteria that are largely disassociated from classification. 
Several methods encompass elementary correlation coefficients, while others 
encompass mutual information or statistical tests. In this particular investiga-
tion, we have opted to utilize ANOVA techniques as a method for selecting fea-
tures [25], an approach aimed at discerning the most salient features conducive 
to class differentiation and the elimination of superfluous attributes. From the 
initial set of 60 features, 49 were selected based on their high importance scores 
(> 70%) to determine the characterization of each activity window, as shown 
in Table 4.

Table 3. Summary of extracted features with their mathematical representations

Statistical Features Signification Mathematical Equation

Arithmetic mean-Mean The average measurement on 
every axis over a set time interval.

(m) = (Σxi)/n 
(m) is the average of the data points. Σxi represents the sum of all data points; 
n is the number of data points.

Root mean square-RMS To characterize the signal’s 
pattern and identify its most 
recurrent form.

RMS n xi� [( / ) ( )]1 *
2�   

n is the number of data points. Σ(xi2) represents the sum of the squares  
of individual data points (xi).

Standard 
deviation-STD

This variable represents the 
disparity between each signal 
window and its mean value.

( ) [(1/ )] * ( )2� �� �n xi�   
(σ) is the measure of the spread or variability of the data. n is the number  
of data points. Σ(xi - m)2 represents the sum of the squared differences between 
each data point (xi) and the mean (m).

Principal component 
analysis-PCA

To reduce the dimensionality of 
the information set and observe 
correlations.

m = (1/n) * Σxi
Σ = (1/n) * Σ(xi - m)(xi - m)T
Σ * v = λ * v
Σ is the covariance matrix; v is the eigenvector; λ is the eigenvalue.

Max & min-value Highest and lowest values within 
each window.

max = max(xi)
min = min(xi)

Minmax 
value-Minmax

This discrepancy between 
the max and min values.

–

Energy-VAR The fluctuation within a specified 
timeframe.

(Var) = (1/n) * Σ(xi - m)2

n is the number of data points. Σ(xi - i)2 represents the sum of the squared 
differences between each data point (xi) and the mean (m).

Kurtosis-Kurt To ascertain the weight 
distribution of tails.

(Kurt) = [(1/n) * Σ(xi - m)4]/s4 
Σ(xi - m)4 represents the sum of the fourth power of the differences between 
each data point (xi) and the mean (m). s is the sample standard deviation.

Skewness-Sk It assesses the symmetry of the 
distribution.

(Sk) = (1/n) * Σ(xi - m)3/s3

n is the number of data points. Σ(xi - m)3 represents the sum of the cubed 
differences between each data point (xi) and the mean (m). s is the sample 
standard deviation.
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Table 4. Summary of extraction and selection techniques

Type Methods Features Number Anova Discarded Features (< 70%)

Central 
tendency measures

Arithmetic 
mean (Mean)

6 Wmean_AZ
Wmean_GY

Root mean 
square (RMS)

6 0

Dispersion measures
central

Standard 
deviation (STD)

6 Wstd_AY

Minmax 
value (Minmax)

6 WPEAK2peak_AX
WPEAK2peak_GZ

Maximum and 
minimum value

12 MAX_AY/MAX_GX
MIN_AX/MIN_GX 

Higher-Order 
Statistics

Kurtosis (Kurt) 6 KURTOSIS_GZ

Skewness (Sk) 6 WSWEKNESS_AY
WSWEKNESS_GY

Energy Measures Energy (VAR) 6 0

Data transformation Principal component 
analysis (PCA)

6 0

d) Classification of data: The incorporation of supervised learning techniques 
in the construction of recognition models tailored for the identification of daily 
motion constitutes a substantial advancement within the fields of artificial intel-
ligence and machine learning. This methodology capitalizes on the utilization 
of meticulously labeled data, facilitating the precise annotation of daily activi-
ties and their corresponding sensor patterns. By applying supervised learning, 
these models can be refined to discriminate effectively among a diverse spec-
trum of activities, thereby achieving a notable level of precision. In our process 
of classification, we partitioned the signals into training and testing sets, aim-
ing to leverage artificial intelligence methodologies. A wide array of automated 
classification methods [26]–[28], comprising linear discriminant analysis (LDA), 
support vector machines (SVM), neural networks (NN), decision trees (DT), and 
the K-nearest neighbor algorithm (KNN), were examined within the scope of this 
investigation.

	  In this study, a neural network algorithm was customized with specific learn-
ing parameters and a normalization method. The dataset was divided into 70% 
for training and 30% for testing, ensuring robust model evaluation. The NN 
comprised three hidden layers with 30 neurons each, enabling the extraction of 
intricate patterns. A maximum of 100 iterations were set for training, balancing 
computational efficiency and convergence. For the remaining machine learning 
algorithms, a comprehensive summary of key techniques and configurations 
will be presented in Table 5. The focus predominantly lies on critical parameters 
such as the regularization parameter, iteration number, quality measure, and 
pertinent techniques employed in data analysis. This structured analysis aims to 
provide a comparative insight into the intricacies of each algorithm’s configura-
tion, facilitating a nuanced understanding of their respective methodologies and 
performance attributes.
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Table 5. Technical details of the five employed classifiers

 Algorithm Partitioning Normalization Learning Parameters

Neural Network

70% Train data
30% Test data

Min-Max 
Normalization

Maximum Number of Iteration: 100
Number of Hidden Layers: 3
Number of Hidden Neurons Per Layer: 30

Support Vector  
Machine

Kernel Type: Radial Basis Function (RBF)
Regularization Parameter (C): 1.0
Gamma (for RBF Kernel): 0.01

K Nearest Neighbor Number of Neighbors to Consider (k): 5

Decision Tree Quality Measure: Gini index
Minimum Number Records Per Node: 10000
Number Threads: 4

Linear Discriminant  
Analysis

Prior Probabilities: Estimated Priors
Solver Type: SVD (Singular value 
decomposition)
Number of Components: 9
Maximum Iterations: 1000
Shrinkage: Automatic

e) Performance metrics: This section outlines the accuracy metric of a classifi-
cation model, denoting the ratio of correct predictions made by the classifier 
among the total number of predictions. Subsequent to the training phase, a series 
of tests were conducted to evaluate the recognition performance of individual 
gestures. This involved the application of various classifiers to the compiled data-
set. A confusion matrix can be established for a binary dataset in order to scru-
tinize the performance of a classifier. This facilitates the assessment of critical 
performance metrics, encompassing the TPR (True Positive Rate) and FNR (False 
Negative Rate).

 TPR
TP

TP FN
��

�( )
 (1)

 FNR
FN

TP FN
�

�
 (2)

	  Where TP represents the count of true positives and FN denotes the count of 
false negatives.

f) Results and discussion: In this section, we elucidate the predominant metric 
for assessing the efficacy of the classification model, detailing the ratio of accurate 
predictions in relation to the overall predictions rendered by the classifier (refer 
to Table 6). Following the culmination of the training protocol, a series of tests 
were conducted to gauge the recognition effectiveness of each gesture. Various 
classifiers were applied to the amassed data. Notably, the neural network emerged 
as the foremost performer across all participants (refer to Table 7), exhibiting an 
admirable accuracy rate of 97.5%. Simultaneously, securing the second position 
in classification accuracy, SVM demonstrated a commendable rating with results 
that closely mirrored the leading outcome. In contrast, outcomes from alternative 
classifiers manifested a marginal disparity.
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Table 6. Classification accuracy for different participants with five classifiers

	Clasiffiers  Accuracy (%)

Neural Network 97.50%
Support Vector Machine 93.25%
K Nearest Neighbor 91.87%
Decison Tree 89.40%
Linear Discriminant Analysis 84.10%

Table 7. Performance metrics of different participants with neural network

Neural Network

TPR 97.54%
FNR 24.60%

The classifiers underwent training and assessment based on the derived features, 
employing a 10-fold cross-validation approach [29]. To enhance clarity, we have 
chosen to present the error rates of the NN using 10-fold cross-validation, as demon-
strated in Table 8. For our dataset containing 36,000 samples, we opted for 10-fold 
cross-validation with random sampling enabled. This method ensures that each fold 
accurately represents the entire dataset, thereby avoiding biases that may arise from 
sequential data splitting. This approach balances computational efficiency with reli-
able performance estimates. Consequently, we created 10 folds of 3,600 samples each, 
which allows the model to train on 32,400 samples and test on 3,600 samples in each 
iteration. The error rates for the neural network algorithm exhibit slight variability, 
ranging from 2.30% to 2.70%, corresponding to accuracy spanning from 97.30% to 
97.70%. This consistency across folds suggests uniform performance across diverse 
subsets of the dataset. Notably, the narrow range of error rates indicates stable model 
behavior. The observed low error rates and high accuracies underscore the algo-
rithm’s efficacy in classifying instances within the dataset. An average overall accu-
racy of approximately 97.43% further corroborates the model’s robust performance, 
highlighting its ability to accurately classify the majority of instances in the test sets.

Table 8. 10-fold cross-validation errors rate of neural network

 10-Fold ID  Error in %  Set Size of Test Set Error Count

1 2.40 3600 86
2 2.55 3600 92
3 2.35 3600 85
4 2.60 3600 94
5 2.50 3600 90
6 2.45 3600 88
7 2.70 3600 97
8 2.30 3600 83
9 2.55 3600 92

10 2.35 3600 85

In the conclusive phase of result validation, our emphasis is directed towards the 
exposition of the confusion matrix and the corresponding percentages of precise clas-
sification for each specific class, encompassing true positive rates and false negative 
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rates (refer to Table 9). This pursuit aims to facilitate the expeditious validation of 
results and to conduct a comprehensive analysis of the machine learning classifica-
tion performance. Gesture recognition poses a significant challenge when distinguish-
ing between hand gestures associated with these vehicle control gesture groups 
{1st Gear = FiG, 3st Gear = TG, 5st Gear = FG}, {2st Gear = SG, 4st Gear = FoG, Reverse 
Gear = RG} and {Steering wheel control = SWC, Steering wheel no control = SWnC}, as 
these gestures exhibit identical hand orientation and direction. The overlap in hand 
orientation and direction between these vehicle control tasks, along with the distinct 
muscle responses of our participants shaped by factors such as age, gender, physical 
condition, and emotional state, highlights the complexity of the gesture recognition 
problem. This complexity demands further adaptation and development in data collec-
tion and calibration protocols to ensure consistency and accuracy in the gathered data. 
Achieving this is crucial for reliable analysis and facilitates the application of sophis-
ticated machine learning approaches for accurate differentiation. Addressing these 
challenges is crucial for the seamless implementation of gesture-based control systems, 
particularly in scenarios where precise identification of gear positions is paramount.

The integration of our model gesture recognition system into automotive systems 
focuses on motion detection in real-world driving scenarios. This emphasis aims to 
enhance the system’s proficiency, enabling it to rectify, identify, and forecast behaviors 
exhibited by drivers. The implementation of gesture recognition holds promise for 
fortifying road safety and facilitating efficient traffic management. Simultaneously, 
in the realm of security, this intelligent model extends to the discernment and iden-
tification of aberrant behaviors. These functionalities are expected to significantly 
improve overall performance and safety in practical driving situations. For instance, 
the detection leads to conclusions regarding potential driver health challenges. In 
response to the aforementioned circumstances, our recognition mechanism can 
seamlessly integrate into forthcoming developments in human-machine interaction 
interfaces. This integration endeavors to cultivate an intuitive and easily comprehen-
sible interaction experience, amalgamating diverse modes to ensure adaptability and 
inclusivity for users possessing varied abilities and preferences. This improvement 
is achieved by processing real gestures and comparing them with typical actions 
related to wheel steering control and gear transmission. It culminates in assessing 
the similarity of activities and delivering guidance to enhance proficiency and vari-
ous aspects of car-driving actions. This holistic approach significantly contributes to 
overall driving quality and the maintenance of the vehicle’s mechanical status.

Table 9. Confusion matrix of the neural network classifier for ‘All participants’

 Predicted Class TPR 
%

FNR 
%FiG SG TG FoG FG RG NG HB SWC SWnC

FiG 884 10 7 7 97.4 2.6
SG 888 4 6 2 98.7 1.3
TG 11 883 6 98.1 1.9

FoG 12 878 10 97.6 2.4
FG 3 13 884 98.2 1.8
RG 6 9 881 4 97.9 2.1
NG 7 4 4 870 8 7 96.7 3.3
HB 7 8 3 873 9 97 3

SWC 9 2 881 8 97.9 2.1
SWnC 3 2 5 5 10 12 869 95.5 4.1
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4.2	 Kitchen	related	behaviors:	Analyzing	related	behaviors	for	performance	
improvements

Activity recognition in the kitchen, an appealing and dynamically evolving field, 
places emphasis on leveraging the latest advancements in technology to compre-
hensively understand and analyze human actions, particularly within the intricate 
domains of eating and food preparation. As modern scientific advances keep rede-
fining several aspects of our daily lives, it becomes increasingly evident that the 
kitchen, as a pivotal space for human sustenance and cultural expression, is not 
insulated from this ground-breaking wave [30], [31].

Deep learning architecture. The widespread implementation of machine learn-
ing techniques, especially multi-layer perceptron’s (MLPs), in the field of HAR holds 
immense relevance, with an exclusive focus on activities that involve the kitchen [32]. 
Recognizing human behaviors in kitchen-related activities is vital for enhancing 
various aspects of daily life, including health monitoring, lifestyle analysis, and 
assisted living. MLPs, representing a subtype of feedforward NN, exhibit the capac-
ity to identify intricate patterns and correlations within data, making them particu-
larly well-suited for discerning nuanced activities within kitchen settings [33]. They 
are especially recommended for interpreting acceleration and rotation data cap-
tured by accelerometers and gyroscopes and prove profitable in pattern recognition 
endeavors [34]. The present study delves into the importance of employing MLPs in 
HAR, elucidating their potential to unravel and recognize the complicated nature of 
kitchen-related behaviors, thereby contributing to advancements in human-centric 
analytics, behavioral biometrics, and real-time feedback mechanisms.

a) MLP feedforward network: learning configurations summary: This study 
presents the development and evaluation of a multi-layer perceptron (MLP) 
feedforward network designed to process data generated by accelerometer and 
gyroscope sensors. The experiment involved collecting sensor data from twenty 
participants at a sampling frequency of 50 Hz, resulting in samples acquired every 
20 milliseconds. The proposed MLP architecture incorporates six distinct shape 
features {Ax, Ay, Az, Gx, Gy, Gz} as inputs to the network’s input layer, captur-
ing nuanced patterns derived from accelerometer and gyroscope measurements. 
These patterns are crucial for recognizing activities depicted in Figure 6, such as 
eating, drinking, kitchen-specific gestures, and knife recognition activities.

Fig. 6. Participants engage in kitchen-related activities

Before discussing the technical details (refer to Table 10) of our neural network (see 
Figure 7), it’s important to highlight the significance of the data-preprocessing phase.  
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We have implemented Z-score normalization as a crucial step to standardize and 
center the distribution of our input features. This statistical method ensures that every 
measure has a mean of zero and a standard deviation of one, supporting a more con-
sistent and comparable scale across all features. By subtracting the mean and divid-
ing by the standard deviation for each data point, we appropriately transform our 
input data into a standardized form. The execution of Z-score normalization is aimed 
at upgrading the convergence and success rate of our NN during training [35], as well 
as promoting a more dependable and regenerative learning process across different 
features. The complex and lengthy data generated by accelerometer and gyroscope 
sensors, along with the imperative to capture targeted and nuanced patterns inherent 
in human activities, required an advanced model design [36]. To optimize the perfor-
mance of the MLP feedforward network for processing the collected data, a thorough 
investigation into hidden layer configurations was carried out. Initial experiments 
using one and two hidden layers demonstrated a shortfall in achieving the desired 
classification accuracy. The decision to utilize three hidden layers proved pivotal in 
rectifying the deficiencies identified in earlier configurations. The heightened model 
depth facilitated a more nuanced representation of intricate patterns within the 
data [37], resulting in a significant enhancement in classification accuracy. The intri-
cate nature of the accelerometer and gyroscope data, inherently characterized by 
complex dimensions and spatial dependencies, necessitated a deeper network archi-
tecture to aptly capture and learn the underlying features. Incorporating the Rectified 
Linear Unit (ReLU) activation function into our network’s hidden layers plays a cru-
cial role in enhancing its capacity to learn and represent complex patterns in the data. 
By introducing non-linearity through ReLU, our model gains the ability to capture 
sophisticated connections between input and output data, which is essential for the 
successful processing of accelerometer and gyroscope-generated data.

The simplicity and computational efficiency of ReLU contribute to the effective-
ness of our network. It replaces negative values in the input with zero, addressing 
some famous phenomena, including the vanishing gradient problem, and fostering 
faster convergence during training [38]. Another benefit is that ReLU promotes the 
sparsity of activations, optimizing computational resources and improving the effi-
ciency of our network. Incorporating the Softmax activation function into the output 
layer of our neural network is fundamental for converting the raw model outputs 
into valuable probability distributions, mostly in cases requiring multiclass classifi-
cation [39]. This activation function transforms the network’s final layer into a set of 
probabilities, granting a clear indication of the likelihood of each class. The Softmax 
activation ensures that the sum of these probabilities across all classes equals 1, 
making the output interpretable as a probability distribution. Mathematically, for 
each class i, the Softmax function is expressed as:

 s xi
e

e

xi

j

n

xj

( ) �

�� 1

 (3)

exi represents the exponential function applied to the raw output score for class i, 
and the denominator is the sum of the exponential values for all classes.

This mathematical transformation ensures that the output probabilities are well 
calibrated and provides a reliable basis for decision-making in multiclass classifi-
cation operations. By adopting Softmax in the output layer, our network is fitted to 
deliver coherent and adjusted probability predictions, boosting the interpretability 
and convenience of the model’s outputs in scenarios where class probabilities serve 
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as critical for decision-making. The inclusion of the categorical cross-entropy loss 
function in the training of our NN is mandatory for optimizing its performance in 
multiclass classification processes. By taking advantage of this loss function, we pro-
vide the network with a clearly defined goal: to minimize the dissimilarity between 
its predicted probability distributions and the true probability distributions corre-
sponding to the actual class labels. Mathematically, for a single training example, the 
categorical cross-entropy loss is given by:

 L y y y log y
i ii

( , ) ( )ˆ ˆ�� � � � (4)

L is the categorical cross-entropy loss, yi represents the true probability of class ŷ
i
 

represents the predicted probability of class i as output by the neural network.
During the training process, our NN dynamically refines its parameters by 

exploiting the Adam optimization algorithm, a strategic choice made to reduce the 
categorical cross-entropy loss across all training examples. The iterative process of 
this optimization, assisted by Adam’s adaptive learning rates and momentum mech-
anisms, plays a prominent role in directing the network to acquire durable and pre-
cise models of the input data [40]. This is particularly applicable in scenarios where 
each input correlates with precisely one class, as the flexible architecture of Adam 
contributes to the network’s adaptability as well as accuracy in refining its parame-
ters for greatest effectiveness in multiclass classification tasks.

Table 10. Summary of neural network learning configurations

Input Layers Hidden Layers Size of Output Layer Activation of 
Output Layer

Optimization 
Function

Shape = 6  
(All Accelerometer 
and Gyroscope 
features: AX, AY, AZ, 
GX, GY, GZ)

3 layer: 
– First Layer:  

Units = 16
– Second Layer:  

Units = 16
– Third Layer  

Units = 16

Unit = 7
•	 Eating (1)
•	 Drinking (1)
•	 Kitchen specific 

gestures (2)
•	 Knife recognition 

activity (3)

SOFTMAX ADAM

Fig. 7. MLP feedforward network architecture
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b) MLP feedforward network: Results and examinations
i)	 Training progress: In the evaluation of the MLP Feedforward Network’s per-

formance, notable metrics were obtained during the learning process. The 
accuracy achieved on the training dataset reached 98% (see Figure 8), indi-
cating the model’s proficiency in categorizing instances within this set. The 
corresponding loss function value, a crucial indicator of the disparity between 
predicted and real values, demonstrated a minimal value of 0.05% (see  
Figure 9), affirming the network’s effectiveness in minimizing prediction errors.

	 	 The training process spanned 20 epochs, reflecting the number of com-
plete passes through the entire training dataset. Implementing a batch size of 
100 instances per iteration, the network iteratively updated its parameters to 
optimize performance. With a total of 3600 batches executed during training, 
each batch comprising 100 instances, it is noteworthy that the learning rate 
exhibited a significant increase, especially from batch 250. This increase in the 
learning rate contributed to an enhanced adaptation of the model’s param-
eters. Notably, the learning rate stabilized beyond batch 500, showcasing a 
refined and enduring learning process. These metrics collectively highlight 
the fruitful convergence and learning quality of our MLP feedforward net-
work during the training phase. The high accuracy, accompanied by a low 
loss function value, attests to the model’s ability to capture complicated shapes 
within the data and make precise projections. The aforementioned suited 
configurations attributed to the number of epochs and batch size lead to a 
comprehensive assessment of the network’s learning dynamics, providing 
relevant inferences into its training progression and reliability.

Fig. 8. MLP learning process accuracy

Fig. 9. MLP loss function

ii)	 Test results and confusion matrix analysis: The confusion matrix of our 
MLP feedforward network presents valuable insights into the model’s perfor-
mance across various classes (refer to Table 11). Notably, some noteworthy 
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observations emerge from the matrix, shedding light on specific challenges 
encountered by the network in recognizing certain activities. One noteworthy 
aspect is the slight confusion observed between the classes of eating and 
drinking. This can be attributed to the similarity in the vertical direction of 
hand movements involved in these activities. The network may encounter 
challenges in distinguishing these actions, particularly when they share 
common characteristics of hand motion. This limitation is inherent in accel-
erometer and gyroscope sensors. To address this, the inclusion of additional 
sensors is necessary. Specifically, incorporating electromyography (EMG) sig-
nals can help interpret finger movements, while pressure sensors are able 
to supply specific information about the force and pressure exerted by the 
hand during these activities, which are abilities beyond the scope of acceler-
ation and rotation sensors. Addressing the confusion between atypical knife 
activity and other gestures, like successive cutting and stirring, presents a 
challenge; the model faces difficulties in distinguishing these actions due to 
the nuanced nature of movement. Variations in hand movements linked to 
knife-related actions, including diverse techniques and movement velocity, 
pose obstacles for accurate detection. Wearable sensors, while useful, may 
be uncomfortable and restrict natural movements, resulting in a variety of 
motion patterns and occasional misclassifications. Overcoming these limita-
tions requires future adjustments in scale factor and cross-axis sensitivity to 
accurately capture rapid and precise movements. Additionally, there is a slight 
confusion between stirring clockwise and stirring counter-clockwise. This 
ambiguity may arise from the symmetrical nature of stirring motions, making 
it challenging for the network to consistently discern the specific direction of 
stirring. To further strengthen the performance evaluation, we implemented a 
comprehensive set of accuracy statistics, as illustrated in Table 12, across mul-
tiple experimental activities. The key performance metrics assessed include 
true positives, false positives, true negatives, false negatives, recall, precision, 
specificity, F-measure, accuracy, and Cohen’s kappa. The model displays dis-
tinguished results, with high values in key parameters like precision, recall, 
specificity, and F-measure. These metrics prove the model’s impact in accu-
rately identifying both positive and negative cases with minimal errors. The 
considerable accuracy score additionally confirms the model’s overall ability 
to perform classification tasks. On top of that, Cohen’s Kappa points out power-
ful agreement between the model’s predictions and actual findings, clarifying 
the model’s reliability beyond coincidence.

	 	 This study in deep learning aims to advance the field of gesture recogni-
tion, with a specific focus on actions inherent in daily kitchen activities. 
Consequently, through the analysis of hand-to-mouth motions, our activity 
recognition model can discern eating and drinking habits. This information 
proves valuable for individuals’ seeking insights into their dietary patterns 
or for health professionals monitoring nutritional intake [41]. Moreover, the 
recognition of kitchen-specific activities plays a pivotal role in the develop-
ment of intelligent assistive technologies and contributes significantly to the 
broader field of HCI. The system we propose can be trained to identify atypi-
cal knife activities, such as unsafe cutting practices or irregular motions. This 
is particularly crucial for ensuring kitchen safety, as it enables the system to 
provide real-time alerts or warnings when unusual behaviors are detected. 
This functionality allows for the development of adaptive assistance systems, 
which can guide users in correcting their techniques, preventing accidents, 

https://online-journals.org/index.php/i-jim


iJIM | Vol. 18 No. 24 (2024) International Journal of Interactive Mobile Technologies (iJIM) 71

Multi-Approach Learning with Embedded Sensors Application in Gesture Recognition

and promoting safer cooking practices [42]. Furthermore, our exploration of 
activity recognition extends beyond the general to the realm of specific ges-
tures, including actions like stirring clockwise or counter-clockwise. The impli-
cations are far-reaching, particularly in the context of smart kitchen devices 
equipped with sensors [43]. These devices can interpret such gestures, pro-
viding a seamless, hands-free control mechanism for various kitchen appli-
ances. Overall, our neural network aims to contribute valuable insights to the 
intersection of deep learning and human activity recognition, with practical 
applications extending to diverse domains for the enhancement of daily life. 
This includes real-time feedback mechanisms, behavioral biometrics, and 
context-aware systems [44]. It outperforms other studies presented in Table 13 
by correctly identifying seven distinct actions, whereas those studies typically 
only distinguish two or three activities. Our approach achieves an impressive 
98% accuracy rate, significantly higher than the typical 88% to 94% accuracy 
range seen in other works. This exceptional performance can be attributed 
to several factors discussed in previous sections, including data preprocess-
ing techniques, optimization strategies, and network configurations. Despite 
facing challenges in identifying a broad range of activities, our algorithm 
demonstrates remarkable efficacy and reliability.

Table 11. Confusion matrix of the MLP feedforward network

Act/Pred Eating Drinking Cutting Successive  
Cutting

Atypical 
Knife Activity

Stirring  
Clockwise

Stirring 
Counter-Clockwise TPR %

Eating 762 3 0 0 0 0 0 99.6

Drinking 3 808 0 0 1 0 0 99.5

Cutting 0 0 762 0 0 0 0 100

Succ Cutting 0 0 1 831 3 0 0 99.5

Atyp Knife Activity 1 4 3 15 739 10 17 93.6

Stirring CW 0 0 0 0 2 821 10 98.5

Stirring CCW 0 0 3 0 5 13 783 97.3

Table 12. Accuracy statistics

Activities TP FP TN FN Recall Precision Specificity F 
Measure Accuracy Cohen’s 

Kappa

Eating 762 4 4831 3 99% 99% 99% 99%

Drinking 808 7 4781 4 99% 99% 99% 99%

Cutting 762 6 4832 0 100% 99% 99% 99%

Succ cutting 831 15 4750 4 99% 98% 99% 98%

Atyp knife  
activity

739 11 4800 50 93% 98% 99% 96%

Stirring  
CW

821 24 4743 12 98% 97% 99% 97%

Stirring  
CCW

783 27 4769 21 97% 96% 99% 97%

Overall 98% 98%
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Table 13. Comparison with existing state-of-the-art

Team Year Activities Recognized Methods Sensors Accuracy

Schrader 
and Vargas 

2020 Eating, Drinking Supervised  
Learning 

Inertial Sensors
Stationary cameras

90.5%

Kimiaki  
Shirahama

2021 Cutting, Wiping LSTM Inertial Sensors, 
Gravity Sensors

88.9%

Cunyi and Xiren 2022 Eating-habits
Washing
Cleaning

Deep Learning  
Methods

Infrared Array  
Sensor

92.4%

Yang and Guanci 2023 Cleaning Maintenance
Food-Prepa

CNN Inertial Sensors 87.9%

Patrica and arza 2024 Cutting, Stirring
Washing
Cleaning

Ensemble  
Learning 

Cameras, 
Force Sensors

91.5%

4.3	 Educational	activities:	Enhancing	activity	recognition		
with	ensemble	learning

This segment explores the implementation of activity recognition systems in 
educational environments, specifically focusing on classrooms. The integration of 
sensors into educational processes has opened new avenues for understanding 
and refining learning practices. Traditionally centered on artificial intelligence and 
signal processing, activity recognition holds the potential to revolutionize learning 
methodologies and enhance student engagement. Using sensor technology, machine 
learning, and data analytics, educators and researchers have the opportunity 
to gather insights into the dynamics of the learning environment. This, in turn, 
facilitates the evolution of tailored and adaptive educational strategies [45], [46].

Data collection and methodology. In the pursuit of comprehending and enhanc-
ing educational interactions and processes, this study initiates a comprehensive data 
collection phase involving 30 participants. During this phase of our study, sensor data 
were collected at a sampling frequency of 100 Hz, with each sample acquired at inter-
vals of 10 milliseconds. This setup enabled the detailed capture of movements and 
activities with high temporal resolution. Employing cutting-edge sensor technologies, 
specifically accelerometers and gyroscopes, participants are equipped with wearable 
devices tailored to capture diverse hand movements within the educational context. 
This comprehensive methodology endeavors to unveil the intricacies of activities 
within educational routines. It spans diverse elements (see Figure 10), including 
interactions between students and teachers, writing activities undertaken by both 
educators and students, levels of engagement, mouse control, and practices linked to 
the utilization of the blackboard. The study aspires to contribute to a holistic under-
standing of the dynamic interactions and practices inherent in educational environ-
ments, paving the way for informed improvements and targeted interventions.

Fig. 10. Teachers and students carry out educational activities
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Ensemble learning and machine learning methods. Ensemble learning, a 
method that integrates predictions from multiple models, holds considerable signif-
icance in enhancing the recognition of activities within educational environments. 
Its importance lies in its capacity to overcome the inherent limitations of individual 
models [47], resulting in heightened accuracy, robustness, and adaptability. Within 
educational contexts, ensemble learning excels at capturing intricate patterns such as 
student-teacher interactions, writing activities, and engagement forms. The method’s 
flexibility is crucial for handling the dynamic properties of classrooms, while its abil-
ity to filter data irregularities and noise contributes to more reliable outcomes [48].  
Ultimately, ensemble learning stands as a transformative approach to activity rec-
ognition within the learning environment, offering valuable perspectives for edu-
cators to develop unique interventions and enhance the learning experience. In 
the implementation of activity recognition within an educational context, we will 
apply the same combination of classifiers utilized in the initial chapter. Following 
this, a comparative analysis of the results will be conducted, elucidating outcomes 
relevant to this initial phase. In the subsequent stage of our study, our objective 
is to showcase the effectiveness of the bagging technique in enhancing algorithm 
performance. This involves presenting necessary comparisons and highlighting all 
observed improvements across all classifiers. In the final stage of our investigation, 
maintaining a persistent focus on enhancing model classification accuracy, we will 
employ stacking techniques. The presentation will feature combinations of classifi-
ers that yield optimal outcomes, thereby demonstrating the potential for improved 
accuracy through advanced ensemble methodologies.

•	 Experience 1: The section elucidates the outcomes derived from employing 
the aforementioned five learning methods (DT, KNN, LDA, MLP, and SVM) sep-
arately. The primary performance metrics scrutinized in this investigation are 
classification accuracy. Additionally, the computed error metrics, which comprise 
accuracy, precision, recall, and the F1 score, are listed in Table 14.

Table 14. Error metrics: Accuracy, Precision, Recall, and F1-Score based on ML algorithms  
(DT, KNN, LDA, MLP, and SVM)

Classifiers Accuracy (%) Precision (%) Recall (%) F1 Score (%)

DT 94.67% 95.07% 95.78% 95.01%

KNN 61.78% 83.70% 61.53% 62.72%

LDA 65.13% 68.76% 95.62% 65.23%

MLP 96.47% 96.68% 98.69% 96.27%

SVM 85.01% 92.18% 89.52% 95.30%

Upon scrutinizing the overall statistics presented in Table 15, it becomes apparent 
that three classifiers emerged prominently: DT, MLP, and SVM. Notably, MLP demon-
strated superiority, correctly classifying 3782 out of 3995 testing samples, resulting 
in an accuracy rate of 96.27%. A mere 141 samples were misclassified, correspond-
ing to a classification error rate of 3.53%. Conversely, DT and SVM achieved accuracy 
rates of 94.67% and 85.01%, respectively, indicating satisfactory performance. In 
contrast, KNN and LDA yielded less favorable outcomes in terms of classification 
accuracy. For instance, KNN correctly classified 2468 out of 3995 samples, yielding 
an accuracy rate of 61.78% with a corresponding misclassification rate of 38.22%. 
LDA exhibited somewhat similar results.
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Table 15. Overall statistics

Classifiers Overall Accuracy Overall Error Correctly	Classified Incorrectly	Classified

DT 94.67% 5.33% 3782 213

KNN 61.78% 38.22% 2468 1527

LDA 65.13% 34.87% 2602 1393

MLP 96.47% 3.53% 3854 141

SVM 85.01% 14.99% 3396 599

•	 Experience 2: To enhance the outcomes of the previous experience, both bag-
ging and stacking bolster ensemble learning by capitalizing on the cognitive capa-
bilities of multiple models [49], thereby yielding heightened predictive accuracy 
and adaptability. Bagging entails training numerous iterations of the identical 
learning algorithm on diverse subsets of the training dataset. These subsets are 
generated using bootstrapping, which involves sampling with replacement. A 
multitude of models are trained independently based on these constructed sam-
ples, and their predictions are merged for regression or classification tasks [50].  
We explored the potential of bagging techniques to improve estimation per-
formance according to our experimental results. Figure 11 demonstrates the 
enhancement in accuracy for certain classifiers through bagging. In this regard, 
SVM improved from 85.01% to 87.54%, while notably, KNN and LDA saw 
increases from 61.78% to 86.21% and 65.13% to 88.92%, respectively. MLP and 
the remaining classifiers experienced only marginal improvements, maintaining 
their accuracy at similar levels.

Fig. 11. The precision of different methods employing the bagging approach

In the continuous pursuit of reaching the most effective method to discern human 
activities, stacking introduces a higher level of model diversity and a meta-model to 
optimize the combination of individual model outputs [51]. These techniques have 
proven effective in various machine learning applications, including activity recog-
nition within educational environments [52]. Utilizing stacking in our study entails 
the integration of multiple aforementioned techniques, employing logistic regres-
sion as an aggregation approach. Table 16 illustrates that the highest accuracy is 
attained through the combination of DT, MLP, and SVM (98.75%).
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Table 16. The results achieved through the application of the stacking method

Classifiers Accuracy (%)

DT – KNN – LDA 82.31%

DT – KNN – MLP 91.66%

DT – KNN – SVM 89.83%

MLP – LDA – DT 92.42%

SVM – LDA – DT 87.37%

DT – MLP – SVM 98.75%

LDA – KNN – MLP 85.39%

KNN – LDA – SVM 80.89%

KNN – MLP – SVM 86.66%

LDA – MLP – SVM 88.77%

The experimental results show that among the tested classifiers, MLP achieved 
the highest accuracy at 96.47%, while KNN had the lowest accuracy at 61.78%. 
Following the implementation of bagging, KNN and LDA demonstrated the most 
substantial improvement, with accuracies of 86.21%, and 88.92% respectively, 
highlighting their superior enhancement through the use of the bagging technique. 
Additionally, our stacking approach validated that a combination of DT, MLP, and 
SVM yielded the highest accuracy, scoring 98.75%. These findings underscore the 
potential of ensemble techniques for enhancing classification performance in large, 
sensitive, and complex datasets.

5	 FUTURE	WORK

In our future research directions, driven by our aspiration to address specific 
challenges in real-world deployment, we aim to make significant contributions to 
the medical field, particularly in remote surgeries employing bionic hands. By pro-
posing new prototypes and technical improvements in human-robot interaction 
and the development of control systems for bionic hands, we seek to enhance the 
present state of the art. To achieve the aforementioned goals, we recognize the key 
importance of incorporating additional sensor modalities. Following an extensive 
review of numerous research projects, we have elected to focus on EMG signals 
[53]–[55], which are essential for assessing and interpreting the electrical activity 
generated by skeletal muscles [56]. A scrutinized diagnostic procedure accompanied 
by these signals should be adopted to measure the state of the muscles and motor 
neurons that send electrical signals inducing muscle contractions and convert these 
electrical responses into graphs, sounds, or numerical data for specialists to analyze. 
By incorporating EMG signals into our ongoing research, we intend to enhance the 
performance, intelligence, and adaptability of prosthetic devices. Additionally, this 
integration will assist physicians in conducting complex surgeries remotely by lever-
aging hand motion, rotation, and EMG signals. This approach, described in Figure 12, 
is designed to ensure that these devices more closely align with the natural hand and 
finger movements and intentions of their users.
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Fig. 12. Multi-modal prototype for future bionic hand control

6	 CONCLUSION

In summary, our investigation into human gesture recognition spanning 
diverse contexts such as driving cars, kitchen-related tasks, and educational envi-
ronments has produced encouraging results. By leveraging all technical processes 
and communication protocols between the Raspberry Pi Pico and accelerometers 
and gyroscopes, the meticulous data collection process engaged the active involve-
ment of 60 volunteers, thereby securing precise and dependable datasets for anal-
ysis. Through the utilization of hybrid models that blend supervised learning, deep 
learning, and ensemble learning techniques, our study has attained commendable 
accuracy rates across the spectrum of contexts explored, with models consistently 
achieving an average accuracy of 96% and 98% across all datasets. These findings 
underscore the potential of gesture recognition technology to enhance safety, effi-
ciency, and interaction across a diverse spectrum of applications. The implications 
of this study extend widely, encompassing enhancements in automotive safety, facil-
itation of educational interactions, and automation of kitchen tasks. Moreover, the 
success of the hybrid model approach underscores the significance of harnessing 
diverse learning methodologies to address intricate real-world challenges and cre-
ating more functional and responsive assistive devices for individuals with limb 
differences. Looking forward, the incorporation of signals such as EMG in conjunc-
tion with existing accelerometer and gyroscope data presents a promising avenue 
for advancing the sophistication of activity recognition models. Integration of EMG 
signals in future endeavors stands to enhance precision and complexity, thereby 
paving the way for more seamless and intuitive control of bionic hands.
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