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PAPER

Secured Computation Offloading in Multi-Access 
Mobile Edge Computing Networks through Deep 
Reinforcement Learning

ABSTRACT
Mobile edge computing (MEC) has emerged as a pivotal technology to address the computa-
tional demands of resource-constrained mobile devices by offloading tasks to nearby edge 
servers. However, ensuring the security and efficiency of computation offloading in multi- 
access MEC networks remains a critical challenge. This paper proposes a novel approach 
that leverages deep reinforcement learning (DRL) for secure computation offloading in 
multi-access MEC networks. The proposed framework utilizes DRL agents to dynamically 
make offloading decisions based on the current network conditions, resource availability, and 
security requirements. The agents learn optimal offloading policies through interactions with 
the environment, aiming to maximize task completion efficiency while minimizing security 
risks. To enhance security, the framework integrates encryption techniques and access control 
mechanisms to protect sensitive data during offloading. The proposed approach undergoes 
comprehensive simulations to assess its performance in terms of security, efficiency, and scal-
ability. The results demonstrate that the DRL-based approach effectively balances the trade-
offs between security and efficiency, achieving robust and adaptive computation offloading in 
multi-access MEC networks. This study contributes to advancing the state-of-the-art in secure 
and efficient mobile edge computing systems, fostering the development of intelligent and 
resilient MEC solutions for future mobile networks.

KEYWORDS
mobile edge computing (MEC), security, multi-access networks, deep reinforcement learning 
(DRL), computation offloading, resource allocation, task efficiency

1	 INTRODUCTION

The proliferation of mobile devices and the exponential growth of data traffic 
have catalyzed a paradigm shift in wireless communication networks [1]. Traditional 
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centralized computing architectures, such as cloud computing, are struggling to meet 
the increasing demands for low-latency, high-throughput applications. To address 
these obstacles, mobile edge computing (MEC) has emerged as a promising paradigm 
to enhance the capabilities of wireless networks by bringing computation closer to 
the network edge. By deploying computational resources, storage, and networking 
infrastructure at the edge of the network, MEC aims to alleviate the burden on cen-
tralized cloud servers and reduce latency for time-sensitive applications [2], [3].

At the core of MEC lies the concept of computation offloading, where computa-
tionally intensive tasks are transferred from resource-constrained mobile devices 
to nearby edge servers for processing. Offloading computations to edge servers can 
significantly enhance the performance of mobile applications by leveraging the 
proximity of computational resources and reducing the communication latency 
between devices and servers [4]. However, the seamless integration of computation 
offloading into MEC networks presents a myriad of challenges, particularly concern-
ing security, privacy, and resource management [5], [7].

One of the primary concerns in computation offloading is the security of sensitive 
data during transmission and processing. Mobile devices often store a wealth of per-
sonal and confidential information, including financial transactions and healthcare 
records, which makes them prime targets for malicious attacks. Offloading compu-
tations to remote edge servers introduces additional security risks as data traverses 
potentially untrusted network channels and resides on external servers. Ensuring 
the confidentiality, integrity, and authenticity of data in transit and at rest is para-
mount to preventing unauthorized access and data breaches [6], [8].

Furthermore, the dynamic and heterogeneous nature of MEC networks exacerbates 
the security challenges associated with computation offloading. Multi-access MEC net-
works (M-MEC) integrate diverse access technologies, including Wi-Fi, cellular and other 
wireless standards, to provide ubiquitous connectivity and seamless handover between 
network domains. The heterogeneity of access technologies introduces complexities in 
security management and enforcement. Different access networks may have varying 
levels of trustworthiness and security capabilities. An MEC network is organized into 
three layers: the user layer, edge layer, and cloud layer, as illustrated in Figure 1.

Remote Cloud User

Edge Layer

User Layer

Communication
Resources

Caching
Resources

Computing
Resources

Heterogeneous
Network 

Vehicular
Network

M2M/D2D
Network 

Fig. 1. MEC network architecture
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User layer: The user layer includes a variety of IoT devices, such as smart-
phones, laptops, vehicles, and sensors, each requiring computational capabilities. 
These computations are wirelessly transmitted to the edge layer and divided into 
separate networks. The first network, a heterogeneous network, caters to devices that 
require high data rates. It features numerous small macro-base stations strategically 
located in dense areas to enhance connectivity and minimize mobile device power 
consumption. These base stations are equipped with robust computing resources for 
task offloading. The second network, a vehicular network, includes transportation 
units, pedestrians, and roadside units. Roadside units, equipped with computing 
capabilities, facilitate communication among transportation units, pedestrians, and 
nearby infrastructure for traffic safety and regulation enforcement. This network 
supports smart applications such as in-car media streaming and parking assistance. 
Finally, the device-to-device (D2D) network enables peer-to-peer communication 
among IoT devices via wireless links. This network decentralizes computing capa-
bilities, allowing devices to offload tasks to other devices as well as edge servers [9].

Edge layer: The edge layer consists of distributed servers with advanced comput-
ing power strategically deployed at locations such as subway stops, highways, and 
airports to reduce latency. These servers aim to efficiently handle time-sensitive and 
computing-intensive tasks from the user layer, requiring enhanced communication 
resources for efficient task resolution.

Cloud layer: The cloud layer connects multiple edge servers, enabling data min-
ing for neural network training and efficient resource allocation. It stores extensive 
network metadata, which reduces the load on edge servers. This layer enhances 
the management and security of edge servers, ensuring optimal performance and 
the protection of network assets [10].

In addition to security concerns, privacy preservation emerges as a critical con-
sideration in computation offloading. Mobile users are becoming more aware of 
their privacy rights and are demanding guarantees that their personal data is han-
dled transparently and securely. Offloading sensitive computations to external serv-
ers raises privacy implications, as third-party entities may have access to sensitive 
information without users’ explicit consent. Balancing the benefits of computation 
offloading with the privacy concerns of mobile users requires the development of 
privacy-preserving techniques that safeguard sensitive data while enabling efficient 
offloading.
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Fig. 2. Interaction model of RL
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Within reinforcement learning (RL), the agent interacts with the environment 
through trial and error, aiming to optimize rewards while minimizing penalties. 
The agent learns from its experiences by storing them in a Q-table, which maps 
states to actions and their associated rewards. When the agent observes a state St 
at time step t, it takes action At to transition to the next state St+1 and receives a 
reward Rt+1. This process enables the agent to gradually improve its decision-making 
abilities based on past interactions, as illustrated in Figure 2.

2	 LITERATURE	REVIEW

[11] Proposed an innovative design for a blockchain-based multi-UAV-enabled 
MEC system. This system focuses on ensuring secure computational offloading and 
resource allocation within IoT networks by utilizing a deep reinforcement learning 
(DRL) approach in an A2G network infrastructure. In this setup, UAVs serve as aerial 
base stations, providing support to overloaded base stations and replacing those that 
are damaged during natural or human-made disasters.

A novel approach for model-free DRL was suggested by [12], integrating an asyn-
chronous advantage actor-critic (A3C) algorithm. This method aims to optimize 
offloading decisions efficiently. Through extensive numerical experimentation, it 
was demonstrated that the A3C algorithm significantly enhances the convergence 
rate of the system while simultaneously mitigating the overall energy consumption 
of GME (generic mobile edge).

[13] Introduced a novel approach called DRCOM (deep reinforcement learning 
for computation offloading in a UAV-assisted multi-access edge computing net-
work), leveraging UAVs as aerial base stations. By employing deep reinforcement 
learning, the method addresses the challenge of determining the computation 
offloading policy, enabling resource allocation aimed at maximizing computing 
performance.

[15] The DROO algorithm was proposed, utilizing deep reinforcement learning for 
online offloading in wireless-powered MEC networks. The aim is to enhance the rate 
of weighted sum computation through binary computation offloading. To expedite 
algorithm convergence, they developed an order-preserving quantization technique 
and an adaptive parameter setting method. Simulation findings indicate that DROO 
achieves performance close to optimal compared to existing benchmark methods 
while significantly decreasing CPU execution latency by over tenfold. This progress 
enables the possibility of real-time optimization for wireless-powered MEC net-
works, even in environments affected by fading.

[16] The study introduced a deep reinforcement learning-based offloading 
scheme for XR devices (DRLXR) in a MEC-enabled network framework. The offload-
ing challenge in XR devices is addressed through DRL formulation. Utilizing data 
such as radio signal strength, energy usage, and application status monitored by 
XR devices, an actor-critic approach is employed for training and decision-making 
regarding task offloading. Simulation outcomes demonstrate the superior perfor-
mance of DRLXR compared to alternative solutions, particularly in terms of average 
energy consumption and overall completion time.

3	 METHODOLOGY

To realize the proposed approach of leveraging DRL for secure computation 
offloading in multi-access MEC networks, a systematic methodology is employed. 
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The methodology comprises the design, implementation, and evaluation stages, 
incorporating key elements to ensure the robustness, adaptability, and security of 
the computational offloading framework. Figure 3 illustrates the proposed DQN 
framework for deep reinforcement learning.
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Fig. 3. Proposed architecture of DQN-based system

4	 PROBLEM	FORMULATION

Within the MEC framework, Figure 3 illustrates a setup where multiple users 
are connected to a base station with a high-performance server. These servers, stra-
tegically positioned at the network’s edge, offer cloud-like services in close prox-
imity to end-users. Consequently, users choose to delegate their computationally 
demanding tasks to the nearby edge server they are connected to rather than relying 
solely on a distant cloud infrastructure. This approach significantly reduces latency, 
enabling a diverse range of applications and services to operate with real-time or 
near-real-time performance. By decentralizing computation to the network edge, 
MEC enhances scalability, flexibility, and accessibility. This architecture enables 
users to efficiently utilize edge computing resources, allowing seamless access to a 
wide range of services in sectors such as healthcare, smart cities, industrial automa-
tion, and multimedia streaming.

This paper assumed a group of devices, denoted as

 N N N N
k

� �� �1 2
, , ,  (1)

In the problem formulation presented, a group of k mobile users with single 
antennas establish communication with a large-scale MEC server via a base station 
featuring N antennas (where N is significantly greater than k). Furthermore, when 
multiple devices engage in offloading simultaneously, the available bandwidth, 
denoted as B, will be distributed equally among them.

Each device’s task is represented as

 DT W P i N
i i i
� �( , )�����������������  (2)

Where, Wi signifies the magnitude of the computation that the device seeks to 
address, while Pi represents the total number of CPU cycles needed to accomplish 
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the task. There exists a positive correlation between both Pi and Wi, with Pi remain-
ing constant throughout the computation process. Ultimately, task parameters are 
scheduled through task profiles derived from an application, and these parameters 
may vary among different applications.

When a device chooses to execute a task locally, it relies on the local computing 
model. The delay experienced during local execution is identified as

 D
P

C
i

I

i

1=  (3)

It consists of the aggregate CPU cycles, Pi , and the computational capability of the 
CPU, represented as Ci. Essentially, Di indicates the duration required by the device to 
complete Ri , a duration that may vary among devices depending on the computing 
capacity of their local CPUs.

The calculation of the energy consumed to complete Ri is determined by

 E y P
i i i

1=  (4)

The energy consumption formula comprises the energy usage per CPU cycle, 
labeled as yi , along with the cumulative CPU cycle count required.

The overall cost of local computing can be calculated accordingly,

 C W D W E
i i

t

i i

e

i

1 1 1� �  (5)

It is derived from Equations (4) and (5). Here, W
i

t  and W
i

e stand for the weights of 
time and energy.

5	 OFFLOADING	MODEL

The offloading computation model is applied when a device chooses to transfer a 
task via wireless communication to the MEC server. Initially, the upload rate for the 
devices is computed based on,

 R
B

K
log

T G

B

K
N

i

p i� �

�

�

�
�
��

�

�

�
�
��

1

0

 (6)

The initial parameter here is the bandwidth, denoted as B, distributed among all 
K devices in the system that choose to offload. Tp represents the transmission power, 
N0 stands for the variance of complex white Gaussian channel noise, and Gi signifies 
the channel gain for the wireless channel. Once the upload rate is determined, each 
device initiates the process of uploading input parameters to the base station before 
transmitting the computation task to the MEC server. The calculation of transmission 
delay can be depicted as follows:

 T
W

R
i t

i

i

,

0 =  (7)

T
i ,t

0  indicates the duration required for uploading the computation task via wire-
less communication to the MEC server. After determining the delay from the device 
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to the server, the processing delay of the MEC server can be computed using the 
equation provided below.

 T
P

C
i p

i

i

,

0 =  (8)

Here, T
i p,

0  signifies the duration required by the edge server to process and final-
ize the task transmitted by the device [14]. It refers to the time taken for the server 
to execute computational operations and deliver the results back to the device. 
Additionally, the parameter Ci denotes the allocation of resources from the MEC 
server specifically designated to complete the task on behalf of the offloading device. 
This resource allocation ensures that the task is efficiently executed on the server 
end, optimizing processing time and overall performance. The algorithm for the pro-
posed DQN approach is presented below (see Algorithm 1).

Algorithm 1: DQN Algorithm

Initialize replay memory D with capacity N
Initialize Q-network with random weights θ
Initialize target Q-network with weights θ_target = θ
Initialize offloading environment
for episode = 1, M do
  Initialize state s
    for t = 1, T_max do
    Choose action a from state s using ε-greedy policy
    ‘Execute action a and observe reward r and next state s’
    ‘Store transition (s, a, r, s’) in replay memory D’
    ‘Sample random mini-batch of transitions (sj, aj, rj, s’j) from D’
    Compute target Q-values:
      if s’ is the terminal state then
        target = rj
      else
        target = rj + γ * max(Q_target(s’_j, a’, θ_target))
    Update Q-network parameters θ by minimizing the loss:
      loss = 1/N * Σ(target - Q(sj, aj, θ))2

            θ = θ - α * ∇_θ(loss)
    For every C steps, update target Q-network: θ_target = θ
    if s’ is the terminal state then
      Break
    else
      s = s’
  Every episode, evaluate performance and monitor convergence
end for

M denotes the total number of episodes. T_max represents the maximum number 
of steps per episode. N represents the capacity of the replay memory. α represents 
the learning rate. γ is the discount factor. C represents the frequency of updating the 
target Q-network. Q(s, a, θ) represents the Q-value function of the Q-network with 
parameters θ. Q_target(s’, a’, θ_target) represents the Q-value function of the target 
Q-network with parameters θ_target. The ε-greedy policy is used to balance explora-
tion and exploitation.

The offloading environment defines the state space, action space, and reward struc-
ture specific to the computation offloading problem in multi-access MEC networks.
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6	 RESULTS	AND	DISCUSSION

This section presents the simulation results, including a comparison of perfor-
mance with other baseline methods. The comparative analysis of the DRL-DQN, 
DRL-A3C, and DRCOM approaches reveals compelling advantages of the DRL-DQN 
framework across key performance metrics, including security, efficiency, and scal-
ability. The results, as depicted in the graphs below, illustrate the superiority of the 
DRL-DQN framework over DRL-A3C and DRCOM in various aspects.
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Fig. 4. Comparison of security with number of MEC servers

The security graph illustrates that the DRL-DQN framework consistently out-
performs both DRL-A3C and DRCOM in ensuring data confidentiality and integrity 
during computation offloading processes, as depicted in Figure 4. Through advanced 
encryption techniques and access control mechanisms, the DRL-DQN framework 
achieves higher security levels, mitigating potential cyber threats and unauthorized 
access attempts.
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In terms of efficiency, the graph illustrates that the DRL-DQN framework 
demonstrates superior task completion rates and reduced computational overhead 
compared to DRL-A3C and DRCOM, as evaluated in Figure 5. Through dynamic opti-
mization of resource allocation and offloading decisions, the DRL-DQN framework 
minimizes processing delays and enhances overall system efficiency, resulting in 
faster task execution and an improved user experience.
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Fig. 6. Comparison of scalability with number of MEC servers

The scalability graph illustrates the scalability of the DRL-DQN framework across 
different numbers of MEC servers, as shown in Figure 6. Unlike DRL-A3C and 
DRCOM, which may experience performance degradation with increasing server 
deployments, the DRL-DQN framework maintains consistent performance levels and 
adapts seamlessly to changes in network scale. This scalability advantage ensures 
that the framework remains effective and efficient in large-scale MEC deployments, 
accommodating growing numbers of devices and tasks without compromising secu-
rity or efficiency.

The comparison graphs demonstrate that the DRL-DQN framework offers superior 
security, efficiency, and scalability compared to the DRL-A3C and DRCOM approaches. 
These findings underscore the effectiveness of the DRL-DQN framework in address-
ing the challenges of computation offloading in multi-access MEC networks, paving 
the way for secure, efficient, and scalable mobile edge computing solutions.

7	 CONCLUSION

This study introduces a novel framework for secure computation offloading 
in multi-access MEC networks using DRL. The framework utilizes DRL agents to 
dynamically make offloading decisions based on real-time network conditions, 
resource availability, and security requirements. By learning optimal offloading pol-
icies through interactions with the environment, the agents aim to maximize task 
completion efficiency while minimizing security risks. To enhance security, encryp-
tion techniques and access control mechanisms are integrated into the framework 
to protect sensitive data during offloading. Comprehensive simulations evaluate the 
framework’s performance in terms of security, efficiency, and scalability. Results 
indicate that the DRL-DQN-based approach effectively balances trade-offs between 
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security and efficiency, achieving robust and adaptive computation offloading in 
multi-access MEC networks. Compared to existing methods, the framework demon-
strates superior performance in security, efficiency, and scalability. This study 
contributes to advancing the state-of-the-art in secure and efficient mobile edge 
computing systems, facilitating the development of intelligent and resilient MEC 
solutions for future mobile networks.
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