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PAPER

An Adaptive Framework for Classification and Detection 
of Android Malware

ABSTRACT
The hardware and software of a computer are controlled by its operating system (OS), which 
performs essential tasks such as input and output processing, file and memory management, 
and the management of peripheral devices such as disk drives and printers. Application 
software refers to programs designed for specific purposes, these applications, often freely 
available and open source, contribute to the rising number of downloads. In the third quarter 
of 2022, combined downloads from the Apple App Store and Google Play Reached an esti-
mated 35.3 billion. However, the prevalence of insecurity in these applications and technol-
ogies heightens the potential for cybercrimes. Protection against unauthorized intruders is 
crucial in identifying malicious applications. Machine learning (ML) serves as a promising 
avenue for detecting malware attacks, offering potential solutions to bolster cybersecurity 
measures. We propose a novel approach utilizing ML to enhance malware detection accuracy 
by segmenting datasets into distinct groups. Our research employs supervised ML techniques 
on the CICMaldroid2020 dataset, which includes comprehensive information such as intent 
actions, permissions, and sensitive APIs. The dataset was partitioned into four groups, each 
containing 150 features, and analyzed across four experiments to distinguish between attack 
and benign classes. Our proposed model demonstrated exceptional performance, with the 
random forest algorithm achieving an accuracy of 98.6% and a precision of 98.75%. These 
results highlight the effectiveness of our segmentation approach and its significant contribu-
tion to advancing malware detection in Android applications, offering a promising direction 
for future cybersecurity solutions.

KEYWORDS
Android operating system, machine learning (ML), malware, adware, banking, SMS malware, 
riskware, CICMaldroid2020, malware detection

1	 INTRODUCTION

In recent years, the use of Android phones and tablets has increased, which led to 
an increase in the volume of downloading applications. Some of these downloaded 
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applications could be malicious and pose risks to users, such as phishing, banking 
trojans, spyware, etc. The relationship between malware and anti-malware is an 
inverse relationship that has led to the evolution of malware makers and advocates 
of systems targeted by malware for decades. The major point of malware detection 
is how to identify malicious software so that you can take the appropriate action to 
deal with it. Detection methods are divided into signature-based, change-based, and 
skew-based [1]. The potential of machine learning (ML) for identifying and classify-
ing Android malware has been acknowledged. Particularly, the handcrafted features 
play a significant role in the typical ML-based Android malware identification tech-
niques [2]. These characteristics describe what computer security professionals view 
as the most important inherent traits of Android malware [3]. Most ML-based solu-
tions, however, rely heavily on the experience, level of competence, and breadth of 
subject knowledge of security specialists to manually define the traits that characterize 
Android malware [4].

The techniques for detecting malware on Android can be categorized as static, 
dynamic, or hybrid [5]. Static detection focuses on scrutinizing questionable code 
without the Android app. This approach achieves extensive code coverage but 
encounters various challenges, such as dynamic code loading and obfuscation. 
Conversely, dynamic identification involves executing the code to validate the soft-
ware application. This method exposes vulnerabilities that are difficult to identify 
using static analysis but can be detected dynamically with relatively limited com-
putational resources and time costs. Hybrid detection represents a technique for 
balancing detection performance and effectiveness by amalgamating dynamic and 
static detection [6].

Our study showed that the random forest technique outperformed other ML 
models tested, achieving a remarkable accuracy score of 98.6% in detecting Android 
malware. This algorithm’s remarkable accuracy highlights its potential as a trust-
worthy malware detection tool, which is important given how quickly threats in the 
Android ecosystem are evolving. By employing ensemble learning techniques, our 
approach improves detection performance and provides an acceptable answer to 
the persistent issues caused by malware on Android devices. The overarching goal 
is to develop a model that can identify malware and reduce the dangers associated 
with malicious applications. The rest of the paper is divided into sections as follows: 
The next section presents a literature review related to Android malware detection. 
Section 3 outlines our suggested way of operation, how the study’s findings arrived 
at, and how the model was constructed. Section 4 discusses and analyzes the results 
while Section 5 concludes the study with the direction of the contribution provided.

2	 LITERATURE REVIEW

Android is considered the most popular operating system. Despite the pandemic, 
its popularity continues to grow, as it has penetrated most nations, including Turkey, 
Iran, Indonesia, India, and Brazil [7]. The potential of ML for identifying and clas-
sifying Android malware has been acknowledged. The design of various tools and 
approaches still heavily relies on human intelligence, even though numerous ML 
techniques have been put out. Particularly, the handcrafted features play a signif-
icant role in the typical ML-based Android malware identification techniques [2]. 
This section will mention some research that uses ML to detect Android malware.

The authors in [8] present an innovative combination of convolutional neural 
networks (CNN) and long short-term memory (LSTM) to detect and predict Android 
malware. To address the issue of imbalanced datasets, a unique ML strategy is 
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proposed to improve the performance of the method and alleviate concerns of 
over- and under-fitting during classification. By extracting both temporal and spatial 
features from the dataset, the suggested model effectively identifies Android mal-
ware. Empirical results show that the hybrid ConvLSTM model achieves exceptional 
performance, with an accuracy, sensitivity, and AUC of 0.99 each. This model sur-
passes traditional ML algorithms and provides a promising framework for real-time 
Android malware detection. However, the evaluation’s reliance on the Drebin dataset 
may limit the generalizability of the findings to other datasets or real-world scenar-
ios. Furthermore, the paper lacks a discussion on potential challenges or limitations 
in implementing the proposed ML strategy for handling imbalanced datasets, neces-
sitating further research to assess its effectiveness across different contexts.

Unlike previous publications, this one [9] provides a full summary of the data 
pretreatment approach, the current feature subset selection patterns, the deficien-
cies, and difficulties in Android malware detection, as well as the problems. The 
Android OS mechanism and threat categorization techniques are also briefly intro-
duced. a comprehensive examination of current improvements in feature extraction 
and malware detection methods.

[10] This paper presents a novel machine-learning strategy based on classifiers 
for the identification of Android malware. Applying 27 criteria from the CICMalDroid 
2020 Dataset, the researchers in this system evaluate each Android APK to identify 
whether it is legitimate software or malicious malware. Each APK is submitted to a 
blacklisting tool that has been pre-selected. The app will be classified as potentially 
hazardous if it is discovered there; otherwise, it will be submitted to 4 l ML classi-
fication algorithms for classification: RF, NB, J48, and IBK (KNN). The classification 
metrics of recall, precision, and accuracy utilizing the confusion matrix were used 
by the researchers to assess each classifier’s accuracy in detecting malware. The 
results demonstrate that the random forest classifier outperforms the rivals in rates 
of malware identification, with an accuracy rate of 98.6%.

Zhu et al. [11] suggested an ensemble classifier stacking technique for malware 
identification. The suggested method begins by employing static analysis to retrieve 
properties. To ensure individual diversity, the training dataset of the model is divided 
into subgroups, and each subgroup is subsequently submitted to principal compo-
nent evaluation. The architecture for the stacking ensemble learner has two tiers. 
Multilayer perceptrons are classifiers that serve as the base learners in the first tier, 
and SVM is employed in the second layer to create prediction accuracy. Applying two 
sets of data, the authors evaluated the model’s performance. The model’s accuracy 
was 87.89% for the initial sample, which was an actual sample with multi-level char-
acteristics, and 97.04% for the second dataset.

In [12], the CICMALDroid2020 dataset was utilized. For classifying Android mal-
ware, the researchers proposed a semi-supervised deep neural network approach. 
Pseudo-labels that included both unlabeled sample and labeled sample instances 
were used to train the model. The need to include unlabeled samples in the detection 
methods was highlighted by this since they are more accessible and less expensive. 
Their approach has a maximum detection performance of 0.967 after being tested 
with numerous hidden nodes and hidden neuron counts.

2.1	 Background

In this section, we present the Android system and explain how it works, and the 
architecture of the system Android.

https://online-journals.org/index.php/i-jim
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Android architecture. The architecture of Android OS remains largely 
unchanged, although it is being updated frequently. The Android architecture can 
be divided into different layers, namely the modified Linux kernel layer, libraries, 
system runtime library layer, and application framework layer [9]. Figure 1 illus-
trates these layers.

Fig. 1. Architecture of an Android OS

Based on the technique of feature extraction using static features and dynamic 
features mobile malware detection technology may be split into dynamic analysis, 
static analysis, and hybrid analysis.

•	 Dynamic analysis involves monitoring the data flow of an application while it is 
being executed [13].
•	 Static analysis, conversely, involves extracting data from Android files such as 

opcode sequences, API calls, and requested permissions [9].
•	 Hybrid analysis combines both dynamic and static analysis to improve the 

accuracy and efficiency of Android malware detection [9].

Malware. Malware is classified based on how it spreads and its actions once it 
infects a machine [14]. The classification of malware includes rooted or group malware, 
which aims to cause as much harm as possible to victim PCs and is relatively easier to 
guard against. On the other hand, targeted or clever malware, also known as advanced 
persistent threats (APTs), employs advanced cyber-security techniques and persistently 
attempts to gain access while causing serious harm to the intended victim [15].

2.2	 Android malware detection

The three phases of Android malware detection include data gathering, threat 
intelligence, and malware detection. For effective virus identification, Android apps 
with a balance of good and bad instances should be gathered. The data collection 
should include examples of the different malware families observed in the field. 
The Android OS supports programs packaged as Android application package (APK). 
In our work, ML will be used to classify malicious and benign programs with many 
famous algorithms such as RF, DT, KNN, etc. [16].
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3	 METHODOLOGY

Due to the increase of malware on devices running the Android OS, this study is 
intended to help reduce such malware by detecting it and helping to prevent such 
attacks. Figure 2 presents the methodology followed in this study.

Fig. 2. The proposed methodology

3.1	 Dataset

In our research endeavor, we utilized the CICMalDroid 2020 dataset [12] [17], 
which is a novel, sufficiently extensive, and diverse compilation of data aimed at 
facilitating the detection of malware. The researchers were able to procure over 
17, 341 Android samples from various sources, including the virus total service, 
Contagion’s security blog, AMD, MalDozer, and other datasets. The time frame for 
data collection spanned from December 2017 to December 2018, resulting in a total 
of 11,598 instances and 471 features. The dataset is categorized into five distinct 
groups, namely riskware, adware, SMS malware, banking malware, and Benign 
[12]. The researchers acquired samples that encompassed comprehensive static and 
dynamic features. This cybersecurity dataset serves as a ranking mechanism for 
Android applications in terms of their susceptibility to malware and provides viable 
strategies for countermeasures and mitigation techniques.

•	 Adware: Mobile adware refers to advertisements that are clandestinely embed-
ded within genuine applications that have been infected with malware.

•	 Banking malware: Mobile banking malware is an intricately designed form of 
malware that mimics authentic banking programs or banking websites to gain 
unauthorized access to a user’s online banking accounts.
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•	 SMS malware: SMS malware intercepts SMS payloads and utilizes the SMS service 
as a conduit for executing attacks. Before linking the SMS to the malware, attack-
ers upload it to their hosting sites.

•	 Mobile riskware: Riskware is a term denoting legitimate software that can be 
exploited by malicious users.

•	 Benign: Applications that do not fall within any of the categories are deemed 
benign, indicating their non-malicious nature.

3.2	 Dataset pre-processing

The preprocessing steps of the data encompassed an initial screening for noise, 
which revealed the absence of any noisy data, thereby eliminating the necessity 
for further noise removal techniques. The dataset was subsequently normalized. 
However, it was observed that there existed an inherent imbalance between the 
benign and malicious apps, which prompted the application of preprocessing tech-
niques to enhance accuracy. After the implementation of feature selection, the 
SMOTE (synthetic minority oversampling technique) was utilized to address the class 
imbalance. The selection of SMOTE was based on its extensive usage and its straight-
forward algorithm for generating synthetic data samples. Consequently, the balance 
of the dataset improved, with the number of cases rising from 11,598 to 17,926 after 
balancing. These steps played a crucial role in ensuring the effectiveness of the ML 
models applied to the dataset. By dividing the data into four segments based on the 
malware category and treating each segment as an independent dataset, we are 
essentially tailoring the analysis to the distinctive characteristics of each type of mal-
ware. This enables a more focused and potentially more effective application of the 
model to each subset of data, thereby enhancing the overall strength and accuracy 
of the analysis. It exemplifies a well-thought-out and systematic approach to dealing 
with different types of malwares within the dataset, which can contribute to the 
advancement of methodologies for detecting and classifying malware.

3.3	 Dataset training and testing

The experimental results were examined using the K-fold cross-validation tech-
nique, which separates the examples into several subgroups where the variable K 
defines the number of folds. In this study, the K parameter was set to 10.

3.4	 Evaluation measures

Evaluation measures, alternatively referred to as performance metrics, are 
employed to evaluate the efficacy and precision of a model or system in resolving 
a specific task [18]. Accuracy is a commonly used statistic for evaluating model per-
formance. However, it is not always a reliable predictor of performance. It mea-
sures the proportion of correct predictions to total predictions. Recall, also known 
as sensitivity or true positive rate, is the percentage of actual positive instances cor-
rectly identified by the model. Precision, also known as positive predictive value. 
F-measure is the harmonic mean of precision and recall. It is a measure of overall 
model performance, with a higher F1 score indicating better performance. If either 
precision or recall is low, the F1 score will decrease significantly. Therefore, a model 
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with accurate positive predictions and a low number of missed positive cases (recall) 
performs well in terms of the F1 score.

4	 EXPERIMENT AND RESULTS

In this section of our study, we designed our experiments to assess the effective-
ness of our approach in detecting malware. The experiments were categorized based 
on the types of malicious programs, resulting in four distinct sets of experiments that 
included both malicious and benign programs. Our objective was to compare the 
performance of our model across different types of malwares by applying the same 
algorithms in all experiments. Once these experiments are executed and the results 
are obtained, we will thoroughly analyze and present our findings.

Additionally, we explain the environment utilized for conducting these exper-
iments. Our experimentation relied on the usage of the Waikato environment for 
knowledge analysis (Weka) version 3.8.6, which spanned a period from 1999 to 
2022. The computational setup consisted of a 64-bit OS running on an x64-based 
processor, specifically Windows 10 Pro version 21H1 with OS build 19043.1889. The 
hardware configuration included an Intel Core i5-3230M CPU operating at 2.60GHz 
and 6 GB of random access memory (RAM). These details provide a comprehensive 
understanding of the computational resources employed in our experimentation 
and offer context for the interpretation of our results.

4.1	 Results of adware experiment

In this experiment, we assessed the performance of various ML algorithms in 
the classification of Adware malware and benign instances. The outcomes, which 
are summarized in Table 1 and depicted in Figure 3, reveal noteworthy dispari-
ties in accuracy, precision, recall, and F-measure across the algorithms. random 
forest achieved the highest accuracy, attaining a rate of 98.788%, while the naive 
bayes (NB) algorithm produced the lowest accuracy at 87.77%. Similarly, random 
forest also exhibited superior precision (98.8%), with NB falling behind at 88.3%. 
Concerning recall, random forest outperformed NB, accomplishing a rate of 98.8% 
compared to NB’s 87.8%. Furthermore, random forest excelled in F-measure, regis-
tering a percentage of 98.8%, while NB lagged with 87.7%. These results emphasize 
the efficacy of random forest in precisely classifying Adware malware instances, 
highlighting its potential for robust malware detection.

Table 1. Adware result

Algorithms Accuracy Precision Recall F-Measure

RF 98.7884 0.988 0.988 0.988

J48 96.9428 0.969 0.969 0.969

DT 96.7033 0.967 0.967 0.967

KNN 94.9281 0.95 0.949 0.949

SVM 90.0958 0.912 0.901 0.9

NB 87.7712 0.883 0.878 0.877
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Fig. 3. Adware result

4.2	 Results of banking experiment

In this experiment, we investigated the performance of ML algorithms in classi-
fying banking malware and benign instances. The results, depicted in Table 2 and 
illustrated in Figure 4, demonstrate varying levels of accuracy, precision, recall, and 
F-measure across the algorithms. Notably, the random forest algorithm achieved the 
highest accuracy at 98.2878%, while the NB algorithm yielded the lowest accuracy of 
87.2374%. Regarding precision, random forest again emerged as the top performer 
with a precision of 98.3%, contrasting with NB’s precision of 88%. Similarly, random 
forest exhibited superior recall (98.3%) compared to NB’s 87.2%. Moreover, random 
forest excelled in F-measure, registering a percentage of 98.3%, while NB lagged 
with 87.2%. These findings highlight the efficacy of the random forest algorithm 
in accurately classifying banking malware instances, suggesting its potential as a 
robust tool for malware detection.

Table 2. Banking result

Algorithms Accuracy Precision Recall F-Measure

RF 98.2878 0.983 0.983 0.983

J48 96.5612 0.966 0.966 0.966

DT 95.9137 0.959 0.959 0.959

KNN 95.9281 0.959 0.959 0.959

SVM 88.3022 0.894 0.883 0.883

NB 87.2374 0.88 0.872 0.872
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Fig. 4. Banking result

4.3	 Results of riskware experiment

In this experiment, we investigated the performance of ML algorithms in the clas-
sification of riskware malware and benign instances. The outcomes, presented in 
Table 3 and illustrated in Figure 5, demonstrate diverse levels of accuracy, precision, 
recall, and F-measure across the algorithms. Notably, the random forest algorithm 
achieved the highest level of accuracy at 97.9312%, while the NB algorithm pro-
duced the lowest level of accuracy, amounting to 82.8488%. Concerning precision, 
random forest once again emerged as the top performer, exhibiting a precision of 
97.7%, in contrast to NB’s precision of 83.3%. Likewise, random forest demonstrated 
superior recall (97.7%) compared to NB’s recall of 82.8%. Furthermore, random for-
est excelled in F-measure, registering a percentage of 97.7%, while NB lagged at 
82.8%. These findings highlight the effectiveness of the random forest algorithm in 
accurately classifying instances of riskware malware, suggesting its potential as a 
robust tool for the detection of malware in this category.

Table 3. Riskware result

Algorithms Accuracy Precision Recall F-Measure

RF 97.9312 0.979 0.979 0.979

J48 96.2259 0.962 0.962 0.962

DT 95.3313 0.953 0.953 0.953

KNN 94.7582 0.948 0.948 0.948

SVM 87.4616 0.875 0.875 0.875

NB 82.8488 0.833 0.828 0.828
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Fig. 5. Riskware result

4.4	 Results of SMS malware experiment

In this experiment, an investigation was conducted on the performance of ML 
algorithms in the classification of SMS malware and benign instances. The outcomes, 
which are outlined in Table 4 and depicted in Figure 6, highlight significant dispari-
ties in accuracy, precision, recall, and F-measure among the algorithms. Remarkably, 
the random forest algorithm attained the highest level of accuracy, achieving a 
remarkable 99.3251%, while the NB algorithm exhibited the lowest accuracy at 
93.1%. It is worth noting that random forest also demonstrated superior precision 
with a precision of 99.3% in comparison to NB’s precision of 93.6%. Furthermore, 
random forest displayed a higher recall of 99.3% as opposed to NB’s 93.1%. In addi-
tion, random forest excelled in F-measure, registering a percentage of 99.3%, while 
NB lagged behind at 93.1%. These observations emphasize the effectiveness of the 
random forest algorithm in accurately classifying SMS malware instances, thus sug-
gesting its potential as a robust tool for SMS malware detection.

Table 4. SMS malware result

Algorithms Accuracy Precision Recall F-Measure

RF 99.3251 0.993 0.993 0.993

J48 98.9685 0.99 0.99 0.99

DT 98.5993 0.986 0.986 0.986

KNN 98.7648 0.988 0.988 0.988

SVM 93.6457 0.941 0.936 0.936

NB 93.1109 0.936 0.931 0.931
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Fig. 6. SMS malware result

4.5	 Results of averaged for all experiment

In this extensive analysis, we have consolidated the outcomes from all experi-
ments involving adware, banking, riskware, SMS malware, and benign instances. 
The findings, which are presented in Table 5 and illustrated in Figure 7, provide 
valuable insights into the overall performance of ML algorithms across a range of 
malware categories.

Table 5. Average of all results

Algorithms Accuracy Precision Recall F-Measure

RF 98.58 98.75 98.75 98.75

J48 97.17 97.17 97.17 97.17

DT 96.63 96.6 96.6 96.6

KNN 96.1 96.1 96.1 96.1

SVM 89.87 90.55 89.87 89.85

NB 87.74 88.3 87.7 87.7
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Fig. 7. Averaged all result

The random forest algorithm emerged as the leading performer in terms of over-
all accuracy, achieving an impressive accuracy rate of 99.3251%. Conversely, the NB 
algorithm displayed the lowest overall accuracy at 93.1109%. This significant differ-
ence highlights the superior capability of random forest in accurately categorizing 
malware instances across multiple categories.

Furthermore, when examining precision, random forest once again demonstrated 
superiority with an overall precision rate of 99.3%, while NB lagged behind with a 
precision rate of 93.6%. This indicates that random forest is more effective in min-
imizing false positives, thereby enhancing the reliability of malware classification.

Similarly, random forest exhibited a higher overall recall rate (99.3%) compared 
to NB’s 93.1%, indicating its ability to capture a greater proportion of true positives 
across various malware types. This implies that random forest is more skilled at 
identifying malicious instances, making it a more suitable choice for robust mal-
ware detection.

Moreover, when evaluating the overall F-measure, random forest outperformed 
NB with a score of 99.3% compared to NB’s 93.1%. The F-measure provides a bal-
anced assessment of both precision and recall, highlighting random forest’s supe-
riority in achieving a harmonious balance between these metrics across different 
malware categories.

To summarize, the consolidated results emphasize the effectiveness of the ran-
dom forest algorithm in accurately classifying malware instances across diverse 
categories, showcasing its potential as a powerful tool for comprehensive malware 
detection and classification.

4.6	 Comparing our approach with previous works

This section presents the results of our comparison analysis with previous studies 
on Android OS malware detection. Similarities and differences in dataset utilization 
and performance across different methodologies were assessed in the comparison, 
which is outlined in Table 6. Our approach, utilizing the random forest algorithm, 
achieved an accuracy of 98.6%, aligning closely with the findings of [10]. However, 
our approach surpassed [10] in precision, achieving a higher precision of 98.75%. 
Notably, our approach exhibited the best accuracy among all compared works, 
highlighting its efficacy in accurately detecting malware in Android systems.
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Table 6. Comparing with previous works

Reference
RF J48

AC PR Recall F-M AC PR Recall F-M

[10] 98.6051 98.6 98.6 X 96.9207 96.9 96.9 X

[19] 97.5 97.5 97 97 X X X X

[20] X X X X X X X X

Our Approach 98.6 98.75 98.75 98.75 97.17 97.17 97.17 97.17

Reference
DT KNN

AC PR Recall F-M AC PR Recall F-M

[10] X X X X 92.6097 92.7 92.6 X

[19] X X X X 84 81 80 80

[20] 88 80 92.4 75.2 85 82.2 82.8 82.6

Our approach 96.63 96.6 96.6 96.6 96.1 96.1 96.1 96.1

Reference
SVM NB

AC PR Recall F-M AC PR Recall F-M

[10] X X X X 50.658 58.9 50.7 X

[19] 45 62 34 31 53 44 57 45

[20] 86.6 91.6 88.2 X X X X

Our approach 89.87 90.55 89.87 89.85 87.74 88.3 87.7 87.7

In contrast, when considering the support vector machine (SVM) algorithm, the 
accuracy achieved by [19] was notably lower at 45% compared to our approach, 
which achieved an accuracy of 89.87%. This substantial difference underscores the 
superiority of our approach in leveraging the SVM algorithm for malware detection.

Similarly, when evaluating the NB algorithm, our approach outperformed the 
findings of [10], achieving an accuracy of 87.74% compared to their accuracy of 
50.658%. This significant difference further highlights the effectiveness of our 
approach in utilizing the NB algorithm for malware detection.

Overall, our approach demonstrates superior performance across various algo-
rithms compared to previous works, showcasing its potential as an advanced and 
effective solution for malware detection in Android OS.

5	 CONCLUSION AND FUTURE WORK

In conclusion, this study offers a thorough analysis of the use of ML techniques 
for malware detection in Android OS. We have shown via thorough experimenta-
tion and analysis that our approach is effective in correctly classifying both benign 
and malicious instances of a variety of malware, including Adware, banking mal-
ware, riskware, and SMS malware.

Our results show that the random forest method is the best at obtaining high recall, 
accuracy, precision, and F-measure for all types of malwares. This demonstrates ran-
dom forest’s ability to reliably identify and classify malware cases, which makes it 
the recommended option for malware detection tasks. Moreover, our comparison 
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analysis with earlier works demonstrates the advancements achieved with our 
approach, with superior outcomes seen in many algorithms when compared to past 
research. This confirms that our approach is effective in handling an evolving vari-
ety of malware threats on Android devices.
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