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PAPER

A Hybrid-Transformer-Based Cyber-Attack Detection  
in IoT Networks

ABSTRACT
The concept of the Internet of Things (IoT) is significant in today’s world and opens up new 
opportunities for several organizations. IoT solutions are proliferating in fields such as 
self-driving cars, smart homes, transportation, and healthcare, and new services are con-
stantly being created. Over the previous decade, society has seen a significant expansion 
in IoT connectivity. In reality, IoT connectivity will expand in a variety of domains over the 
next few years. Various problems must be overcome to permit effective and secure operations. 
However, growing connections increase the potential for cyber-attacks since attackers can 
exploit the broad network of linked devices. Artificial intelligence (AI) detects and prevents 
cyber assaults by constantly developing and adjusting to new threats and weaknesses. In this 
study, we offer a novel cyber-detection model for IoT networks based on convolutional neural 
networks (CNN) transformers. The study aims to enhance the system’s ability to identify and 
detect cyberattacks, new and sophisticated assaults, and its performance. The experimental 
study findings, using a new cybersecurity CICIoT2023 dataset, show that the CNN-Transformer 
model can detect IoT hazards with an overall accuracy of 99.49%. In identifying hazardous 
activity, MLP accuracy is 99.39%, while XGBoost-pipeline accuracy is 99.40%.
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1	 INTRODUCTION

[1][2] Currently, the Internet of Things (IoT) plays a crucial role in society, offer-
ing new capabilities to various industries. IoT projects in transportation and health-
care are becoming increasingly popular, along with industrial systems, self-driving 
vehicles, smart sensors, mechanical systems, terminals, mechanisms, and innovative 
applications [1, 2]. However, these systems are vulnerable to a range of cyberat-
tacks and security vulnerabilities. Despite the benefits, several challenges need to 
be addressed to ensure effective and secure operations. Due to the vast amount of 
network traffic data in the IoT, the complex data characteristics, and the continuous 
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emergence of new types of cyberattacks, intrusion detection methods based on 
statistical analysis or pattern matching often result in a high false-positive rate and 
low detection efficiency. Ensuring the safe and reliable operation of the network 
is a significant challenge [3]. The extensive scale of IoT networks introduces new 
complexities, such as data security, privacy concerns, and other issues. Ensuring pri-
vacy, security, and user satisfaction is crucial for the widespread adoption of IoT 
technologies. Additionally, IoT systems create new vulnerabilities for potential attacks 
due to the interconnected nature of the systems. Cybersecurity experts frequently 
highlight this aspect, emphasizing that IoT expands the attack surface available to 
hackers. With advancements in artificial intelligence (AI) technology, deep learning 
has become increasingly popular in developing “intelligent autonomous” IoT secu-
rity systems due to its robust learning capabilities, flexibility, and portability [4, 5].  
Machine learning techniques such as convolutional neural networks (CNN) can be uti-
lized to automatically extract traffic attributes and identify traffic anomalies through 
categorization [6]. Temporal characteristics involve time series data between each 
traffic sample in the traffic sequence, and traffic anomalies are identified using time 
series analysis. Recurrent neural networks (RNN) are commonly used for time series 
problems, but their linear sequence structure leads to challenges with long-distance 
dependencies and limited parallel computing capabilities, restricting their use in 
real-time applications [7]. To overcome the limitations of RNN in sequence analy-
sis tasks, Google introduced the Transformer model, which relies on the attention 
mechanism to understand the contribution of each input in the sequence to the final 
outcome through an internal self-attention process. This model considers global infor-
mation [8]. Transformer has gained popularity in natural language processing [9],  
object recognition [10], and other fields due to its ability to capture long-distance 
features effectively and its parallel computing capabilities. To achieve intelligent and 
efficient identification of cyber-attack behaviors from network traffic data, we pro-
pose a cyber-attack detection model, CNN-Transformer, which combines CNN and 
transformer. The key contributions of this study are summarized as follows:

•	 We present a novel CNN-Transformer model for cyber-attack detection in IoT 
networks and compare it with the MLP and XGBoost pipelines.

•	 In experiments, we utilize the recently published extensive dataset, CICIoT2023, 
which contains a variety of threats and addresses a gap in the current dataset, 
to evaluate our model. We address the big data challenge using Spark.

•	 The CNN Transformer offers significantly better detection performance than 
other popular detection algorithms.

•	 We thoroughly evaluate our method with fresh datasets and performance 
metrics. The different experimental results illustrate our model’s durability and 
efficacy. This research article is organized as follows: We examine related work 
in Section 2. Section 3 describes the proposed CNN-Transformer paradigm and 
shows the process of each component. In Section 4, we evaluate public cyber 
detection benchmark datasets and present the data pretreatment procedure. 
In Section 5, we present experimental results to confirm the significance of the 
model. In Section 6, the conclusion and future work are discussed.

2	 RELATED	WORKS

To identify and prevent cyber assaults on networks, researchers have proposed a 
variety of network intrusion detection systems. This section presents the current model 
approaches for detecting transformer-based attacks. The authors of [11] developed 
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a transformer-based model based on the DDoS assault dataset, CICDDoS2019, com-
bining transformers with a CNN to identify DDoS attacks, with the maximum accu-
racy attained being 99.82%. Using the CIC-DDoS2019 and CICIDS2017 datasets,  
[12] proposes an intrusion detection system based on transformers that rebuild fea-
ture representations to achieve a balance between dimensionality reduction and 
feature retention, with a maximum accuracy of 98.58% and 98.45%, respectively. 
The authors of [13] present a transformer neural network-based intrusion detection 
system for IoT networks based on the MQTT-IoT-IDS2020 dataset, which achieves 
99.9% accuracy. In [14], they present a transformer-based and generative adversarial 
network (GAN) model for cyber threat-hunting in 6G-enabled IoT networks, using 
the Edge-IIoT dataset, with an overall accuracy of 95%. In [15], the authors offer a  
transformer-based intrusion detection system for learning the behaviors and impacts 
of assaults in a diverse IoT environment. The approach uses a self-attention mecha-
nism to acquire contextual embeddings for input network properties. Experiments 
using the ToN IoT dataset show an accuracy of 95.78% for multiple classifications 
and 97.95% for binary classification. The authors of [16] provide a transformer- 
based intrusion detection approach for analyzing the data features of intrusion 
behaviors in cloud security. Experimental findings utilizing the CIC-IDS 2018 dataset 
show that the model is 93% accurate. The authors of [17] offer the transformer-based 
autoencoder model for anomaly detection in IoT security systems. The model’s perfor-
mance on the DS2OS dataset is tested, with results showing a recall metric of 96.28%.  
The authors of [18] applied a transformer-based model for malware detection 
and categorization. The model was tested on the UNSW-NB15 and CIC-IOT23 data-
sets, with a focus on the payloads of UDP and TCP packets used as inputs. In the 
multi-classification exercise, UNSW-NB15 achieved an accuracy of 74.24%, whereas 
the CIC-IOT23 datasets achieved 69.25%. The authors of [19] present a model called 
BBO-CFAT, which combines the Biogeography-Based Optimization algorithm (BBO) 
for feature selection with an enhanced Transformer model for conserving context 
information and saving computational space. Experiments employing the NSL-KDD 
and CIC-IDS2017 datasets show 97.5% and 99.1% accuracy, respectively (see Table 1).

Table 1. Presents a summary of past investigations

Papers Years Dataset Accuracy (%) Description

Wang H. [11] 2021 CICDDoS2019 99.82 Developed a transformer-based model based on the DDoS assault dataset.
Wu Z. [12] 2022 CICIDS2017 98.45 Transformers are utilized in intrusion detection systems to create feature 

representations that balance dimensionality reduction with feature retention.CIC-DDoS2019 98.58
Ullah S. [13] 2023 IDS2020 99.9 A transformer neural network-based intrusion detection system for MQTT-enabled 

Internet of Things networks.
Ferrag M. [14] 2023 Edge-IIoT 95 A transformer-based and GAN model for cyber threat-hunting in IoT networks.
Wang M. [15] 2023 ToN IoT 95.78 A Transformer-based intrusion detection system for learning the behaviors and 

impacts of assaults in an IoT environment.
Long Z. [16] 2024 CIC-IDS 2018 93 Transformer-based intrusion detection to analyze the data features of intrusion 

behaviors in cloud security.
Saghir A. [17] 2023 DS2OS 96.28 Transformer-based autoencoder technique for anomaly detection in IoT 

security systems.
Stein K. [18] 2024 UNSW-NB15 74.24 A transformer-based model for malware detection and categorization.

CIC-IOT23 69.25
Jiang T. [19] 2024 NSL-KDD 97.5 Present a model BBO-CFAT, which combines the BBO for feature selection with 

an enhanced Transformer model for conserving context information and saving 
computational space.CIC-IDS2017 99.1
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In this study, we utilize CNN-Transformer to detect modern assaults on IoT 
networks. The approach combines CNN and Transformer methodologies (the hybrid 
CNN-Transformer algorithm) to identify cyber-attacks in IoT networks using the 
new CI-CIoT2023 database.

3	 PROPOSED	MODEL

Transformer is a groundbreaking deep-learning approach that was initially devel-
oped to address sequence issues and long-term dependencies. It uses a self-attentive 
strategy to enable effective parallel processing, thereby enhancing the learning process. 
The transformer manages both the encoding and decoding processes. While encoding 
encodes one language, decoding calculates the likelihood of another language based on 
the past output. In the context of cyber-attack detection, this paper utilized a combina-
tion of CNN and transformer to create a hybrid model that surpasses traditional hybrid 
models. Figure 1 illustrates a structural schematic of the CNN-transformer model.

Fig. 1. CNN-transformer architecture

The input to our CNN-Transformer model is a batch of 46 features that are fed 
into the CNN block. These features represent the input, and the transformer block 
consists of three blocks. The output of the transformer block serves as the input 
to the Softmax activation function. The ultimate output consists of eight classes of 
attacks: DDoS, Recon, DoS, Benign, Web-based, Spoofing, Brute Force, and Mirai.

The suggested CNN processes the input shape, as shown in Figure 2. The CNN 
layer consists of three batch normalizations, three 1D CNNs with filters (64, 128, 256, 
and kernel 3), three max pooling layers, flattening, three dense layers (with units 
256, 128, and 64), and three dropout layers. Our model utilizes the Selu function, 
which is defined as:
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Where λ and α constants with values: λ ≈ 1.0505 and α ≈ 1.6732.
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Fig. 2. CNN block

The transformer design includes an encoder block and dense layers (softmax). 
Figure 3 depicts the encoder block, which consists of a multi-head attention layer, two 
one-dimensional convolutional layers, two normalization layers, and a feed-forward 
network. The feed-forward network has a linear layer and SeLU activation func-
tion, which processes each embedding vector individually with equal weights. 
Consequently, each embedding vector undergoes a position-wise feed-forward layer 
before further transformation. Additionally, multi-head attention is utilized to deter-
mine the importance of each head, represented as a one-dimensional vector. A skip 
connection is then applied to each, involving a simple element-wise addition.

 x + Sublayer (x) (2)

The sub-layer might be either multi-head attention or a feed-forward network. 
Skip connections and transfer prior embeddings to succeeding layers. As a result, the 
encoder blocks enrich the embedding vectors with extra information obtained via 
multi-head self-attention computations and feed-forward networks. Each skip con-
nection is followed by layer normalization to mitigate the effect of the covariate shift.

 LayerNorm(x + Sublayer (x)) (3)

The key component of the transformer encoder is the multi-head attention layer. 
This layer allows the model to flexibly learn information from the embedding rep-
resentations of different features. The multi-head attention layer consists of multiple 
heads of self-attention, also referred to as “scaled dot-product attention.”

 multi head attention (Q, V, K) = Concat (h1, …, hi) Wo (4)

https://online-journals.org/index.php/i-jim
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Where h_i is computed as

 h Atten QW KW VW
i i

Q
i
K

i
V= ( , ,� )  (5)

In this work, we utilized three heads of multi-head attention layers, eight embed-
ding dimensions, a 0.05 post-attention dropout ratio, and a feed-forward multi-layer 
factor of [3, 2, 1]. (N-times) represents several blocks (see Figure 3).

• Dropout layer (Dropout_rate)

• Layer Normalize ()
• Dense (MLP_factor, Activation function = gelu)

• 3 Embedding_dim as input

Fig. 3. Encoder transformer

For further experiments on the same database, we utilized multilayer perceptron 
(MLP) and XGBoost, comparing them with CNN-Transformer. The structure of the 
MLP model is illustrated in Figure 4.

Dense (units = 64,
activation function = ReLU)

Batch Normalization

Dense (units = 128,
activation function = ReLU)

Dense (units = 64,
activation function = ReLU)

Batch Normalization

Batch Normalization

Dense (units = 32,
activation function = ReLU)

Batch Normalization

Dense (8_classes,
activation function = softmax)

Fig. 4. MLP model
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4	 EXPERIMENTAL	DESIGNS

4.1	 CICIoT2023	datasets

The Canadian Institute for Cybersecurity (CIC) has established an innovative and 
comprehensive IoT threat dataset to promote the development of security analysis 
applications in real-world IoT deployments [20]. Thirty-three attacks were conducted 
on an IoT network consisting of 105 devices. These attacks are categorized into 
seven types (DDoS, Recon, DoS, Web-based, spoofing, brute force, and Mirai), with 
46,179,314 typical attack statistics. The training set has a shape of 37,349,263, the 
test set has a shape of 8,830,051, and the dataset includes 46 features. All attacks are 
carried out by malicious IoT devices targeting other IoT devices. The attacks directly 
impacted 67 IoT devices, with an additional 38 Z-Wave and Zigbee devices intercon-
nected to five hubs. Smart home devices, sensors, cameras, and microcontrollers are 
connected and configured to enable multiple attacks to be executed while captur-
ing the resulting attack traffic. Network activity is monitored using Wireshark and 
stored in pcap format. Since two data streams are stored, mergecap is used to merge 
the pcap files for each experiment. The dataset was generated using IoT devices such 
as audio devices, cameras, hubs, power outlets, home automation systems, lighting, 
sensors, and NextGen devices. Table 2 provides a summary of the number of attacks 
and recordings.

Table 2. Types and amounts of records in the CICIoT2023 dataset, as well as the testing and training sets

Type of Event Data Record Train Set Test Set

DDoS 33,984,560

37,349,263 8,830,051

DoS 8,090,738

Mirai 2,634,124

Benign 1,098,195

Spoofing 486,504

Recon 354,565

Web 24,829

BruteForce 13,064

Total 46,179,314

4.2	 Features	preprocessing

When we started working on this paper, the first challenge we encountered was 
obtaining enough big data to train and test our model. To address this challenge, 
we divided the data into 169 CSV files and consolidated the 34 classes into eight 
classes. Each file was processed independently, with 80% allocated for training and 
20% for testing. This approach helped mitigate the risk of overfitting and facilitated 
comprehensive model performance monitoring across the entire dataset. We also 
ensured that the classes were stratified for both training and testing. Subsequently, 
we stored the data in separate directories using Spark for training and testing pur-
poses. Additionally, we developed a Spark pipeline to normalize the dataset through 
MinMax normalization, trained it using the data from the training directory, and 
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then applied the model to both the training and testing directories before saving 
the results. The dataset comprised 46 features and classes, including Benign, Brute 
Force, Mirai, DDoS, Spoofing, DoS, Recon, and Web-based.

In the original dataset paper, it was noted that the protocol type feature is an 
integer representing the type of protocol. However, we discovered that it is stored 
as a float.

4.3	 Metrics	for	evaluation

We evaluated our proposed model using various indicators, such as accuracy, 
recall rate, precision, and F1 score. Additionally, we conducted a systematic bench-
mark comparison with other relevant approaches. These indicators are commonly 
used in intrusion detection systems, where true positives (TP) and true negatives (TN) 
represent accurately predicted values. False positives (FP) and false negatives (FN) 
indicate incorrectly classified occurrences [21, 22].

Accuracy: The percentage of samples and applications properly categorized in a 
dataset. A higher accuracy number indicates that the classifier is precise.

 Accuracy = (TN + TP)/(FN + TP + TN + FP) (6)

Precision refers to the number of accurately detected benign and positive samples 
and applications in the dataset. A classifier with a higher accuracy value outper-
forms others and is preferred.

 Precision = TP/(TP + FP) (7)

F1-Score: The F1 score is calculated by taking the harmonic mean of a classifier’s 
recall and precision.

 F1-score = 2.(Recall * Precision)/(Recall + Precision) (8)

Recall: This metric calculates the proportion of true positive predictions out of all 
possible positive predictions.

 Recall = TP/TP + FN (9)

5	 EXPERIMENTAL	RESULTS

This experiment evaluated the effectiveness of the CNN-Transformer model in 
detecting cyberattacks using the new CICIoT2023 datasets. The datasets included 
37,349,263 training data, 8,830,051 test data, and 46 features for analysis. Four met-
rics were employed based on various classes: accuracy, recall, F1 score, and preci-
sion. The highest accuracy achieved was 99.47%, with precision at 94.21%, recall 
at 75.76%, and F1 score at 79.55%, as depicted in Figure 5. The figure shows the pro-
portion of accurately predicted attacks for the eight classes of the confusion matrix 
displayed in Figure 6. Each metric was computed individually using a learning rate 
of 0.00005, a batch size of 1024, 50 epochs, and a dropout rate of 0.05. Adam was 
used as the optimizer for this experiment.

https://online-journals.org/index.php/i-jim
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75
Bening Bruteforce DDoS DoS Mirai Recon Spoofing Web-Based

80
85
90
95

100
105

Accuracy
99.47

CICIoT2023 datasets

Precision
94.21

F1-score
79.55

Total  Result
75.76

Recall

Fig. 5. CICIoT2023 dataset’s multi-class classification and CNN-Transformer findings

Fig. 6. The confusion matrix displaying the performance of the CNN-Transformer validation  
for eight classes: Benign, DDoS, BruteForce, DoS, Mirai, Spoofing, Recon, and Web-based  

(The values in the matrix range from 97 to 31.)

Table 3. Performance of the CICIoT2023 dataset on IoT network data for eight classes

Class Type Precision Recall F1-Score

Benign 0.90 0.97 0.93

BruteForce 0.94 0.18 0.30

DDoS 1.00 1.00 1.00

DoS 1.00 1.00 1.00

Mirai 1.00 1.00 1.00

Recon 0.86 0.78 0.82

Spoofing 0.86 0.83 0.84

Web-based 0.98 0.31 0.48

Accuracy 0.99

Macro Avg 0.94 0.76 0.80

Weighted Avg 0.99 0.99 0.99
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In our tests, we also utilized the multi-layer perceptron (MLP) and XGBoost pipe-
line algorithms to evaluate the performance of the CICIoT2023 dataset with con-
sistent training and testing values and the original features. The results indicated 
the CNN-transformer model’s accuracy convergence with both MLP and XGBoost, as 
illustrated in Table 4. With MLP, the accuracy reached 99.39%, precision was 94.66%, 
recall stood at 75.72%, and the F1 score was 80.11%. The hyperparameters included 
a learning rate of 0.0002, a batch size of 1024, 100 epochs, and a dropout rate of 0.05.  
The optimizer used for this experiment was Adam. For the XGBoost pipeline, the 
dataset of 169 was split into 2 directories initially, allocating 80% (1) of the CSV files 
to the train directory and 20% (15 CSV files) to the test directory. The data was then 
mapped from 34 classes to 8 classes, normalized using MinMax normalization, and 
an XGBoost classifier stage was added to the pipeline. The accuracy was 99.40%, 
precision was 90.93%, recall was 75.70%, and the F1-score was 79.26%.

Table 4. Comparison of CNN-Transformers model with previous studies based on eight classes

Paper Model Accuracy (%)

Neto EC. [20] Random Forest 99.43

Jony AI. [23] LSTM 98.75

Wang Z. [24] DL-BiLSTM 93.13

Gheni HQ. [25] MLP 97.47

Our model CNN-Transformers 99.47

MLP 99.39

XGBoost 99.40

Table 4 compares our results to the original using the same database but a dif-
ferent model, the CNN-Transformers model. The CNN-Transformers model outper-
formed the other models, achieving an accuracy of 99.47%, precision of 94.21%, 
f1-score of 79.55%, and recall of 75.76%.

The results demonstrate that, despite the heterogeneity of the IoT data, our tech-
nique can extract useful information to enhance classification performance. These 
findings show that our technique can outperform the latest pure network data from 
CICIOT2023. In terms of all accuracy criteria, our solution exceeds the most advanced 
machine learning algorithm for IoT network data.

6	 CONCLUSION	AND	FUTURE	WORK

Nowadays, the IoT is becoming increasingly crucial to society. In this setting, 
developing security solutions is critical to allowing efficient, safe, and reliable IoT 
operations. This study developed a CNN-Transformer model to identify IoT assaults, 
with the goal of encouraging the development of security analytics applications in 
real-world IoT operations and eventually improving the identification of anoma-
lous activities and traffic violations in IoT networks. Furthermore, we tested the per-
formance of CNN-Transformer, MLP, and XGBoost-pipeline on the new CICIoT2023 
datasets. The CNN-Transformer we presented achieved an accuracy of 99.49%, MLP 
had an accuracy of 99.39%, and XGBoost had an accuracy of 99.40%. The experimen-
tal findings show that our model outperforms the mainstream conventional and 
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deep learning intrusion detection algorithms used in other IDSs. These accuracies 
were achieved using the Adam optimizer. Our future research will focus on acceler-
ating the transformer algorithm for a quick-response intrusion detection system to 
significantly reduce the harm caused by abnormal events. We also aim to apply our 
idea to more challenging scenarios, such as edge cloud systems. These decentralized 
systems present specific challenges that our approach must address.
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