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PAPER

Optimizing Electric Vehicle Charging Infrastructure 
through Machine Learning: A Study of Charging 
Patterns and Energy Consumption

ABSTRACT
The rapid adoption of electric vehicles (EVs) has created a pressing need for efficient charging 
infrastructure. but challenges such as inconsistent demand and poor placement remain. An effec-
tive distribution of sufficient EV charging stations (CSs) is one of the major obstacles preventing 
the market penetration of EVs and the realization of a sustainable transportation system in urban 
areas. In this paper, a new machine learning technique is proposed in order to optimize the place-
ment of EV charging stations (EVCSs) in metropolitan areas based on an energy consumption pre-
diction model. A dataset from 148,136 charging transactions in Boulder, Colorado, is used with 
the proposed model. Key algorithms such as KNeighborsRegressor and RandomForestRegressor 
were incorporated to solve the placement problem. The analysis revealed significant demand 
fluctuations during peak commute hours, with the KNeighborsRegressor model demonstrating 
superior prediction accuracy. These insights can guide more effective infrastructure planning 
and resource allocation, ultimately enhancing the efficiency and user experience of EV charging 
networks and promoting sustainable urban transportation.

KEYWORDS
electric vehicle (EV), charging station location analysis, machine learning (ML)

1	 INTRODUCTION

The rapid adoption of electric vehicles (EVs) necessitates a complementary 
expansion of charging infrastructure, particularly in major markets such as China, 
the EU, and the USA. Regional and city-level public policies are crucial for managing 
EV adoption and charging infrastructure. One significant challenge is the increas-
ing idle time when an EV is connected but not charging. This issue impacts infra-
structure size, costs, and availability. Accurate estimation and management of idle 
time through machine learning (ML) can provide valuable insights for EV users, 
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policymakers, and network owners, facilitating better infrastructure management 
and promoting EV adoption [1–4].

Electric vehicles are becoming integral to modern transportation, offering 
reduced greenhouse gas emissions and decreased reliance on fossil fuels. However, 
the success of EVs heavily depends on the availability and efficiency of charging 
infrastructure. Researchers have explored various ML approaches to understand 
EV charging behavior, predict charging demand, and optimize the deployment of 
charging stations (CSs). By analyzing large datasets from EV users and charging sta-
tions, significant advancements have been made in predicting charging patterns 
and improving the overall efficiency of the charging infrastructure [5, 6].

Global initiatives for sustainable urban transportation have driven the need for a 
reliable, worldwide EV charging network to new levels [7]. Governments and private 
entities are investing in the necessary charging infrastructure to accommodate the 
growing number of EVs. Research has shown that properly locating and ensuring 
access to EV charging facilities can greatly reduce range anxiety and enhance electric 
mobility’s viability [8, 9]. Effective EV management and deployment are important 
in supporting ongoing EV market growth [10].

Smart cities transform our lives as new digital technologies are integrated into 
our physical environment. In smart cities, big data and ICT enhance the efficiency 
and sustainability of urban systems and transportation [11]. This evolution requires 
developing smart charging networks for EVs responding to real-time user demand 
and grid conditions. Using data from multiple sources, smart city initiatives can 
inform where to deploy chargers and when to charge, reduce electricity costs for 
homeowners/tenants using public chargers, mitigate strain on the electricity grid 
system, and provide users with the best possible charging experience [12].

With many benefits associated with EVs and as a growing trend today, its environ-
mental impact is the most significant advantage of driving an EV. EVs can utilize elec-
tricity derived from renewable sources, further lowering their carbon footprint [13]. 
Charging infrastructure is available in public and private spaces, allowing all users to 
charge their vehicles. However, challenges such as long charging times, short ranges, 
and inadequate support infrastructure explain why the technology has not yet become 
mainstream [14]. Additionally, the exponential growth in EV adoption necessitates 
significant investments in electrical infrastructure to support the increased load [15].

The expansion of CSs introduces further complications. The increased number 
of stations can significantly strain the electricity network, particularly during peak 
usage. Space constraints in many regions and limited capacity for additional stations 
exacerbate these issues. These challenges can deter potential users, especially those 
concerned about long-distance travel, as they might worry about battery depletion, 
the distance to the nearest CS, and prolonged waiting times. Effective trip planning, 
including studying and understanding charging times, is crucial to mitigating these 
concerns and promoting the efficient use of EVs [16, 17].

1.1	 Contribution

Our study provided several contributions in the field of EV charging infrastruc-
ture; we can organize them as the following:

•	 Development of a machine learning-based framework for energy consumption 
prediction.

•	 Optimization of CS placement and load management.
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•	 Implementation of a user-centric recommendation system for enhanced charging 
experience.

2	 LITERATURE REVIEW

According to [18], their study investigates the integration of plug-in electric vehicles 
(PEVs) into a distribution-level microgrid, focusing on energy management complex-
ities and impacts on the grid and building load. The study analyzes charging char-
acteristics and assesses their effects on the infrastructure using real-time data from 
Level II and Level III chargers. It addresses a gap in the literature by exploring the 
micro-level impacts of PEV integration, revealing that even a 10% EV penetration can 
lead to a 75% increase in peak demand on the distribution feeder. Key findings indi-
cate significant increases in peak demand, particularly with Level III chargers. This 
study is relevant to our EV charging patterns and infrastructure planning research, 
providing empirical data on local impacts. However, the findings are specific to the 
UCR microgrid and do not extensively explore long-term solutions or economic effects.

In ref [19], they introduce a methodological framework for scheduling smart 
charging of PEVs by considering travel behavior uncertainties and battery 
degradation. The study uses a stochastic optimization approach, incorporating Monte 
Carlo simulation to model load, wind speed, electricity price, and travel behavior 
uncertainties. The study uses a 21-node sample distribution network with a wind 
turbine as a distributed generation unit for simulation. The identified research gap 
includes considering real-world travel behavior and battery degradation costs, often 
overlooked in previous models. Key findings indicate that smart grid-to-vehicle 
(G2V) and vehicle-to-grid (V2G) charging modes can optimize the cost and efficiency 
of PEV operations. Smart charging significantly reduces energy costs and power 
losses compared to uncoordinated charging, although V2G incurs higher battery 
degradation costs. This study is relevant to our study on optimizing EV charging 
infrastructure by demonstrating smart charging strategies’ economic and technical 
benefits. However, limitations include the reliance on simulated data and focusing 
on a specific network configuration, which may not generalize to other settings.

Another study [20] offers a comprehensive analysis of various energy opti-
mization strategies for EV charging, particularly emphasizing battery longevity, 
optimization methods, and charging techniques. The study categorizes these 
charging approaches into centralized, distributed, and hybrid models, evaluating 
them against objectives such as minimizing peak load, reducing energy costs, and 
decreasing power losses while maximizing aggregate profits and integrating renew-
able energy sources. By employing a range of optimization techniques, including 
convex optimization, particle swarm optimization (PSO), genetic algorithms, and 
dynamic programming, the paper addresses the challenges of integrating EVs into 
existing power grids. It identifies a research gap in thoroughly exploring the com-
bined effects of different optimization strategies on EV charging methodologies. The 
key findings indicate that optimized EV charging enhances battery performance and 
supports grid stability and energy efficiency. This study is particularly relevant to 
our study as it underscores various optimization objectives and methodologies that 
could be leveraged to improve EV charging infrastructure. However, the study’s reli-
ance on theoretical models highlights a limitation, pointing to the need for practical 
implementation and validation in real-world scenarios.

[21] aims to predict EV charging durations using ensemble ML algorithms and 
Shapley additive explanations (SHAP). The researchers employed four ensemble ML 
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algorithms: Random Forest (RF), Extreme Gradient Boosting (XGBoost), Categorical 
Boosting (CatBoost), and Light Gradient Boosting Machine (LightGBM), analyzing 
two years of real-world charging data from 500 EVs in Japan. The research gap 
addressed includes the lack of real-world data for both normal and fast charging 
events for private and commercial vehicles and the absence of ML interpretation 
techniques in this context. Key findings indicate that the XGBoost model achieved 
the highest accuracy across various scenarios, demonstrating the effectiveness of 
ensemble models in predicting charging times. The study is particularly relevant 
to our study as it offers insights into optimizing EV charging predictions using 
advanced ML techniques. However, a limitation of the study is the absence of user 
socio-demographic data and its specific focus on the Japanese charging environment, 
which may not be generalized to other regions.

[22] proposes an optimized strategy for locating and sizing different types of EVCSs 
in the context of an active distribution network with the incorporation of photovoltaic 
(PV) generation. The study employs PSO to solve the non-linear problem of minimizing 
installation costs, system losses, and transformer loading based on a stochastic hourly 
EV load model estimated from real data. This study fills a research gap by optimizing 
a combination of Level 1, Level 2, and Level 3 chargers and studying their combined 
effects, which are typically ignored in previous studies. Specifically, the key findings 
show that the optimized combination of chargers allows for reduced costs and system 
losses compared to the single use of Level 3 chargers and contributes to a better volt-
age profile with PV generation. This work interests our study as it suggests effective 
mechanisms to integrate EV charging infrastructure that supports grid stability. On the 
other hand, some limitations present in the method, as a consequence of using data 
that simulates the operation of the NUST distribution network, may complicate the 
applicability to regions with different grid characteristics and potential user behaviors.

Similarly, [23] reviews various modeling approaches for planning EV charging 
infrastructure, focusing on optimization methods for location and sizing. It cat-
egorizes these methods into node-based, path-based, and tour-based approaches, 
assessing their effectiveness in minimizing costs, maximizing service coverage, 
and addressing user behavior and technical constraints. The research gap identi-
fied includes the need for models that integrate real-world data on user behavior 
and infrastructure deployment over time. Key findings suggest that node-based 
methods are suitable for residential areas, path-based methods are effective for high-
ways, and tour-based approaches offer the most comprehensive understanding of 
user needs but require extensive data. This paper is relevant to our study as it com-
pares different optimization strategies for EV infrastructure planning. Limitations 
include the lack of consideration for temporal deployment of infrastructure and the 
reliance on theoretical models, which may not fully capture real-world complexities.

3	 DATASET COLLECTION

The EVCSs Data, obtained from the City of Boulder Open Data Hub (Electric 
Vehicle Charging Station Data), consists of 148,136 rows and 17 columns. Each row 
represents a transaction at the city-owned EV charging stations. The dataset includes 
the following columns: ‘Station_Name,’ ‘Address,’ ‘City,’ ‘State_Province,’ ‘Zip_Postal_
Code,’ ‘Start_Date Time,’ ‘Start_Time_Zone,’

‘End_Date_Time,’ ‘End_Time_Zone,’ ‘Total_Duration_hh mm ss,’ ‘Charging_
Time_hh mm ss,’ ‘Energy_kWh,’ ‘GHG_Savings_kg,’ ‘Gasoline_Savings_gallons,’ 
‘Port_Type,’ and ‘ObjectID.’ These columns provide detailed information about each 
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charging transaction’s location, timing, duration, energy usage, and environmental 
impact. This comprehensive dataset enables stakeholders to analyze the utiliza-
tion and effectiveness of the EV charging infrastructure and supports informed 
decision-making for future planning and investment. Table 1 illustrates the 
above details.

Table 1. Overview of the electric vehicle charging station dataset

3.1	 Exploratory data analysis

Busy hours. The analysis of start and end hour counts for charging sessions at 
EV stations reveals variations in activity levels throughout the day (see Figure 1). 
During peak morning hours, from around six AM to 10 AM, there is a significant 
influx of EV users initiating their charging sessions, likely corresponding to commut-
ers charging their vehicles before starting their workday. Similarly, another surge in 
charging sessions is observed in the evening, starting from around four-five PM and 
peaking around 11 PM, suggesting users charge their vehicles before or after work 
hours. It is advisable to plan charging sessions during off-peak hours to avoid busy 
hours and potential delays at charging stations. Early morning hours before six AM 
and late evening hours after 10 PM generally exhibit lower activity levels, making 
them ideal for charging without delays. Additionally, midday hours, particularly 
between 12 PM and 3 PM, also show relatively lower counts of charging sessions, 
presenting another opportunity for convenient charging. Table 2 summarizes the 
activity levels during different periods.

Table 2. Activity levels during different time periods

Time Period Activity Level

6 AM – 10 AM High

4 PM – 11 PM High

Before 6 AM Low

After 10 PM Low

12 PM – 3 PM Low
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Fig. 1. Busy hours for charging sessions

Top electric vehicle stations (power-consuming). Analyzing power consump-
tion data of EV stations provides valuable insights into EV users’ charging behav-
ior and preferences. According to Figure 2 the “BOULDER/BASELINE ST1” station 
stands out with a substantial power consumption of 1136.754 kWh, indicating its 
role as a key charging hub, potentially located in a high-traffic area or frequented 
by a large number of EV drivers due to its convenient location or amenities. The 
“COMM VITALITY/1000WALNUT1” station follows with 829.784 kWh, highlighting 
the significance of community vitality initiatives in promoting sustainable trans-
portation. Other notable stations include “BOULDER/JUNCTION ST1,” “BOULDER/
ALPINE ST1,” and “COMM VITALITY/1104 SPRUCE1,” all demonstrating significant 
power consumption and popularity within the community. In contrast, stations 
such as “BOULDER/ANNEX ST1” show minimal or no power consumption, which 
could be attributed to maintenance, location accessibility, or usage restrictions. 
These insights can guide decisions on resource allocation, infrastructure expansion, 
and service enhancements to better meet the needs of EV users and optimize the 
efficiency of the charging network. Table 3 lists the power consumption of the top 
EV stations.

Table 3. Power consumption of top EV stations

Station Power Consumption (kWh)

BOULDER/BASELINE ST1 1136.754

COMM VITALITY/1000WALNUT1 829.784

BOULDER/JUNCTION ST1 Significant

BOULDER/ALPINE ST1 Significant

COMM VITALITY/1104 SPRUCE1 Significant

BOULDER/ANNEX ST1 Minimal/No Consumption
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Fig. 2. Top charging stations by energy consumption

Area ZIP code by power consumption. Analyzing charging activity by ZIP Code 
provides further insights (see Figures 3 and 4):

•	 Zip Code 80301: This area experiences moderate charging activity throughout the 
day, with the busiest hours observed in the morning between 8 AM and 11 AM, 
peaking around 9 AM. A secondary peak occurs in the early evening, around 5 PM.

•	 Zip Code 80302: Charging sessions exhibit distinct peaks during the morning 
and early afternoon, with the highest demand between 9 AM and 1 PM, peaking 
around 11 AM. Evening hours show considerable activity but to a lesser extent 
than the morning peak.

•	 Zip Code 80304: Charging activity is relatively low compared to other ZIP codes, 
with sporadic daily sessions and no significant peaks. The overall activity remains 
constant, indicating a consistent but lower demand for charging services.

•	 Zip Code 80305: Similar to ZIP Code 80304, this area also experiences relatively 
low charging activity. Sessions are evenly distributed throughout the day, with no 
discernible peaks or valleys, suggesting a stable but modest demand for charging 
facilities.

Fig. 3. Charging sessions by ZIP Code and hour (bar chart)

https://online-journals.org/index.php/i-jim
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Fig. 4. Charging sessions by ZIP Code and hour (heatmap)

Table 4. Summarizes the charging activity by ZIP Code

ZIP Code Activity Level Peak Hours

80301 Moderate Morning (8 AM – 11 AM), Evening (5 PM)

80302 High Morning (9 AM – 1 PM), Evening

80304 Low No significant peaks

80305 Low No significant peaks

Figures 1–4 visually represent the busy hours, power consumption at top EV 
stations, and charging activity by ZIP code, respectively. These detailed analyses help 
in understanding the utilization patterns of EV CSs and can aid in optimizing the 
charging infrastructure to meet user demand efficiently. Table 4 summarizes the 
charging activity by ZIP code.

4	 METHODOLOGY

The methodology of this study involves multiple steps to analyze and pre-
dict energy consumption at EV CSs based on geographic coordinates. The process 
encompasses data collection, geocoding, visualization, and ML techniques to pro-
vide accurate and actionable insights. The flowchart in Figure 5 illustrates the entire 
methodology, from reading the CSV file to the recommendation of CSs based on 
energy left. Figure 5 begins with reading the CSV file containing the addresses of EV 
charging stations. The unique addresses are then identified and geocoded to obtain 
geographic coordinates. These coordinates are mapped back to the original dataset 
to enrich it with spatial information. Next, the available stations are visualized on 
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an interactive map using geographic visualization libraries. The data is then prepro-
cessed to handle missing values, convert data types, and scale features, preparing it 
for ML algorithms. The models are selected and trained to predict energy consump-
tion at specific locations. Finally, recommendations for CSs are made, considering 
both scenarios with and without energy left, to enhance the user experience and 
provide practical solutions for energy management and urban planning.

Fig. 5. Proposed methodology

4.1	 GPS locations

This step aims to better geocode EV charging station addresses to enable precise 
location identification and spatial elaboration on a map. Everything starts with read-
ing the CSV file with the data we need: charging station addresses. This methodology 
improves the geocoding efficiency by three significant steps:

1.	 Identifying unique addresses: The code first extracts unique addresses from 
the dataset. This step ensures each address is processed only once, eliminating 
redundancy and saving computational resources. By selecting unique addresses, 
the subsequent geocoding process is streamlined, preventing unnecessary 
repetition.

2.	 Output results in a list of unique addresses, and the code goes on to geocode 
each. Geocoding is converting addresses into geographic coordinates, typically lat-
itude and longitude values. It is because such transformation is really important 
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to identify locations exactly or precisely so that we can map or perform spatial 
analysis. It uses the OSM (OpenStreetMap) service, which allows searching for 
accurate coordinates by its extensive geographic database.

3.	 Mapping Coordinates: Once the unique addresses are geocoded and their 
corresponding coordinates obtained, these coordinates are mapped back to the 
original dataset. This mapping links the geocoded coordinates to their respective 
addresses in the original dataset. By doing so, the dataset is enriched with spa-
tial information, containing the original addresses and their precise geographic 
coordinates. This augmented dataset facilitates various analytical tasks, such as 
spatial visualization, proximity analysis, and route optimization.

This approach systematizes the geocoding of EV charging station addresses. The 
code improves spatial data handling workflow by extracting unique addresses, 
geocoding the addresses, and mapping the resulting coordinates back to the ini-
tial dataset. This allows for greater insight and better decision-making regarding 
EV infrastructure. Also, Figure 6 presents the Python code, which is used to extract 
addresses, geocode them, and map the coordinates back to the original dataset.

Fig. 6. Script for extracting unique addresses, geocoding, and mapping coordinates for EV charging stations
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4.2	 Show available stations

Plotting EV CSs on a map for spatial context and visualization outside the lim-
itations of tabular data. Its main goal is to provide a common point of reference for 
users and also for analysis by mapping the spatial distribution of charging stations. 
To do this, you need to plot data that contains location-specific information, such as 
GPS coordinates (latitude/longitude). This is typically done with a geographic visu-
alization library or tools, and Folium in Python is one such popular tool. You can 
create a map that is user-friendly and easy to navigate. Folium is built to work with 
the broader ecosystem of Python data libraries (pandas, geopandas, etc.), making it 
easy to visualize data manipulated in Python.

The mapping process starts with the assumption that the GPS coordinates of the 
charging points are in the DataFrame (df). The first thing the code does is get all 
the unique GPS coordinates in the dataset so that the map does not have multiple 
markers at the same point. This step is necessary to avoid clutter and provide a 
clear visual representation of the data. Following that, you create a Folium map 
centered around the average latitude and longitude of the distinct GPS locations. 
This ensures that the map is centered so all markers are visible and allows the 
map to zoom optimally to view the entire area of interest—the folium. A map 
function is used to create the map, where the initial view is set by specifying the 
initial geographic viewpoint of the map using center coordinates and the initial 
zoom level.

It then takes unique GPS locations and places markers on the map. Having a 
marker means you can very clearly see the location of charging stations. These 
markers are created using Folium’s Marker class, allowing customization and pop-
ups to display more information. This interactivity provides an enriched user expe-
rience as it helps to render more information about each charging station directly 
onto the map. This loop iterates over all unique GPS coordinates, and for each of 
those locations, a Folium marker is placed on the map. Other markers may show 
some secondary data, such as popups with information about the charging station, 
which also helps to offer a better user experience. The final map is an interactive 
map for viewers to explore, use at various levels, and discover the density of EV CSs 
along the routes.

Mapping locations can aid in many types of analysis, such as grouping, trend, 
and pattern discovery of geographical data, as well as those decisions that corre-
spond with spatial relationships. For example, it can help identify where the satura-
tion of charge points is high or where infrastructure may need to be added to drive 
EV uptake. The Python code for visualizing the geographic locations of EV CSs on an 
interactive map is depicted in Figure 7, and the subsequent map showing the CSs in 
the City of Boulder is demonstrated.
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Fig. 7. Geographic distribution of EV charging stations with Python and Folium

4.3	 Recommend station without energy left (KM)

The methodology employed in the provided code aims to predict energy consump-
tion at a specific location based on geographic coordinates. This task is essential in 
various domains, such as energy management, urban planning, and environmental 
sustainability. By accurately predicting energy consumption, stakeholders can make 
informed decisions regarding resource allocation, infrastructure development, and 
energy efficiency initiatives. A ML approach is adopted to achieve this goal, lever-
aging various regression algorithms to model the relationship between geographic 
coordinates and energy consumption. The choice of regression algorithms, including 
KNeighborsRegressor, RandomForestRegressor, Linear Regression, Support Vector 
Regressor (SVR), and Gradient Boosting Regressor, reflects a systematic exploration of 
different modeling techniques to identify the most suitable approach for the given task.
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Throughout the methodology, careful consideration is given to data preprocess-
ing steps, including handling missing values, converting data types, and scaling 
features. These preprocessing steps ensure the data’s quality and compatibility with 
the chosen ML. Figure 8 illustrates the Python code used to recommend a charging 
station based on predicted energy consumption and the resulting map displaying 
the recommended station in the City of Boulder.

Fig. 8. Python code and resulting map for recommending a charging station based on predicted energy consumption

4.4	 Recommend station with energy left (KM)

This step aims to predict energy consumption at a specific location based on geo-
graphic coordinates. This task holds significance across various domains, including 
energy management, urban planning, and environmental sustainability. Accurate 
energy consumption predictions enable stakeholders to decide on resource alloca-
tion, infrastructure development, and energy efficiency initiatives. A ML approach is 
adopted to achieve this objective, leveraging various regression algorithms to model the 
relationship between geographic coordinates and energy consumption. The choice of 
regression algorithms, including KNeighborsRegressor, RandomForestRegressor, Linear 
Regression, Support Vector Regressor (SVR), and Gradient Boosting Regressor, demon-
strates a systematic exploration of different modeling techniques to identify the most 
suitable approach for the given task. Additionally, including deep learning, specifically 
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through TensorFlow’s Keras API, showcases a more advanced modeling strategy. Deep 
learning models, with their ability to capture complex patterns in data, offer the poten-
tial to improve prediction accuracy, especially in scenarios with high-dimensional input 
features or nonlinear relationships. Figure 9 illustrates the Python code used to rec-
ommend a charging station based on predicted energy consumption, along with the 
resulting map displaying the recommended station in the City of Boulder.

Fig. 9. Interactive map displaying recommended EV charging stations based on energy predictions and geographic proximity

4.5	 ML models used

The following ML models are employed to predict energy consumption based on 
geographic coordinates:

1.	 K-neighbors regressor: This model uses the k-nearest neighbors’ algorithm to 
predict the target variable based on the average value of the k-nearest data points 
in the feature space. It is beneficial for capturing local patterns in the data.

2.	 Random forest regressor: An ensemble learning method that uses multiple 
decision trees to improve prediction accuracy and control overfitting. Each tree is 
trained on a random subset of the data, and the final prediction is the average of 
all the trees’ predictions.
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3.	 Linear regression: A statistical method that models the relationship between 
the dependent variable and one or more independent variables by fitting a linear 
equation to the observed data. It is straightforward and interpretable but may not 
capture complex patterns in the data.

4.	 Support vector regressor (SVR): A support vector machine that uses a lin-
ear model in a high-dimensional space to predict the target variable. It is effec-
tive in high-dimensional spaces and with a clear margin of separation between 
different classes.

5.	 Gradient boosting regressor: An ensemble technique that builds models 
sequentially, each correcting the errors of its predecessor. It combines the pre-
dictions of multiple weak learners (typically decision trees) to produce a strong 
learner with improved accuracy.

4.6	 Evaluation metrics

The performance of the ML models is evaluated using the following metrics:

1.	 Mean absolute error (MAE): This metric measures the average magnitude of 
the errors in a set of predictions, without considering their direction. It is calcu-
lated as the average absolute difference between the predicted and actual values. 
A lower MAE indicates better model performance.
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of the errors. It is more sensitive to outliers than MAE because the errors are 
squared, giving more weight to larger errors. A lower MSE indicates better model 
performance.
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3.	 R-squared (R2) score: This metric indicates the proportion of the variance 
in the dependent variable that is predictable from the independent variables. 
It provides an indication of the goodness of fit of the model. An R2 score closer to 
1 indicates a better fit.
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Evaluating each model using these metrics provides quantitative insights into 
their performance. By comparing the performance of different models, informed 
decisions can be made regarding selecting the most effective approach for predicting 
energy consumption based on geographic coordinates.
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5	 RESULTS

This section presents the results obtained from predicting energy consumption at 
the location of EV CSs based on geographic coordinates. Different models of ML per-
formed predictions; in this case, the KNeighborsRegressor model has shown excellent 
results. The section contains a detailed analysis of the model’s accuracy indicators 
and individual predictions. Also, in the beginning, the address â Junction Pl Boulder, 
Colorado 80301 â and the coordinates relative to this address: the latitude is 40.0258, 
the longitude is −105.2510 reflect which place the prediction was given. The predic-
tion time was selected around midnight, which means that the prediction was made 
at night. The results show that predictions using coordinate data are effective and 
practical, especially the KNeighborsRegressor model for prediction, allowing various 
calculations for energy management, urban planning, and all green projects.

5.1	 Model performance metrics

To evaluate the performance of the ML models, several metrics were used, includ-
ing MAE, MSE, and R-squared (R2) score. These metrics provide quantitative insights 
into the accuracy and effectiveness of each model in predicting energy consumption. 
Table 5 summarizes the performance metrics for each model:

Table 5. Model performance metrics for energy consumption prediction

Model MAE MSE R-Squared (R2)

KNeighborsRegressor 0.0054 0.0025 0.99996

RandomForestRegressor 0.0105 0.0058 0.99850

Linear Regression 0.0150 0.0072 0.99700

Support Vector Regressor (SVR) 0.0125 0.0063 0.99780

Gradient Boosting Regressor 0.0090 0.0042 0.99900

Table 5 shows that the KNeighborsRegressor model outperforms the other models 
with the lowest MAE and MSE and the highest R-squared score. The low MAE and 
MSE values indicate that the predictions made by the KNeighborsRegressor are very 
close to the actual values. At the same time, the high R-squared score suggests that 
the model explains almost all the variance in the energy consumption data. The 
RandomForestRegressor also shows strong performance, with reasonably low error 
metrics and a high R-squared score, making it a robust alternative. While still effec-
tive, linear regression, SVR, and gradient-boosting regressor models show slightly 
higher error metrics and lower R-squared scores compared to KNeighborsRegressor 
and RandomForestRegressor.

5.2	 Model performance metrics

The specific prediction results for energy consumption at the provided address 
are summarized in the Table 6 below. These results highlight the accuracy of the 
KNeighborsRegressor model in predicting energy consumption based on geographic 
coordinates.
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Table 6. Prediction results for energy consumption

Parameter Value

Address Junction Pl, Boulder, Colorado 80301

Latitude 40.0258

Longitude −105.2510

Time of Prediction Around Midnight

Predicted Energy Consumption 0.0054 (MAE)

The prediction is for node “Junction Pl, Boulder, Colorado 80301” (latitude 40.0258, 
longitude −105.2510). The above prediction around midnight then indicates that this 
model can show good estimates of energy consumption at different times of the day. 
Results reveal the accuracy of the KNeighborsRegressor model in predicting energy 
consumption using localities. Such a model with high accuracy and low error metrics 
can be used as a reliable tool in different applications such as energy management, 
urban planning, and sustainability studies. These predictions help stakeholders 
make data-driven decisions about resource management, infrastructure planning, 
and energy efficiency, which ultimately contributes to smart and green cities.

5.3	 Model performance metrics

The comparative analysis of various studies on EV charging infrastructure pro-
vides a comprehensive understanding of this field’s different approaches, meth-
odologies, and findings. This section synthesizes the insights from six key studies, 
highlighting their objectives, methods, research gaps, key findings, and limitations, 
as shown in Table 7.

Table 7. Comparative analysis of EV charging infrastructure studies

Study Objective and Scope Methods and 
Techniques Used Research Gap Key Findings 

and Results Limitations

[18] Investigates PEV 
integration into a 
microgrid, focusing on 
energy management 
and grid impacts.

Real-time data analysis 
from Level II and III 
chargers, impact assessment 
on grid and building load.

Micro-level impacts of 
PEV integration on local 
infrastructure.

10% EV penetration 
can lead to a 75% 
increase in peak 
demand on the 
distribution feeder.

Specific to UCR 
microgrid, does 
not explore long 
term solutions or 
economic impacts.

[19] Framework for 
scheduling smart PEV 
charging conside ring 
travel behavior and 
battery degradation.

Stochastic optimization, 
Monte Carlo simulation, 
21-node sample distribution 
network, wind turbine 
generation unit.

Real-world travel 
behavior and battery 
degradation costs are 
often overlooked.

Smart G2V and V2G 
charging modes 
optimize cost and 
efficiency, smart mode 
reduces energy costs 
and power losses, V2G 
incurs higher battery 
degradation costs.

Reliance on 
simulated data and 
specific network 
configuration, may 
not generalize to 
other settings.

[20] Comprehensive 
analysis of energy 
optimization 
approaches for EV 
charging, focusing 
on battery life and 
optimization methods.

Various optimization 
techniques like convex 
optimization, particle 
swarm optimization, 
genetic algorithms, and 
dynamic programming.

Detailed exploration 
of combined effects of 
different optimization 
approaches on EV 
charging strategies.

Optimized EV 
charging enhances 
battery performance 
and contributes to 
grid stability and 
energy efficiency.

Reliance on the 
critical models, 
need for practical 
implementation and 
validation in real 
world scenarios.

(Continued)

https://online-journals.org/index.php/i-jim


	 166	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 21 (2024)

Alsarhan et al.

Study Objective and Scope Methods and 
Techniques Used Research Gap Key Findings 

and Results Limitations

[21] Predicts EV charging 
duration using 
ensemble machine 
learning algorithms.

Ensemble machine learning 
algorithms: Random 
Forest, XGBoost, CatBoost, 
LightGBM, using two years 
of real-world data.

Lack of real-world data 
for normal and fast 
charging events and 
absence of machine 
learning interpretation 
techniques.

XGBoost model 
provided highest 
accuracy in predicting 
charging times, 
demonstrating the 
effectiveness of 
ensemble models.

Absence of user 
sociodemographic 
data, specific focus 
on Japanese charging 
environment, may 
not generalize to 
other regions.

[23] Optimized strategy 
for placing and sizing 
different EV charging 
stations in an active 
distribution network 
with PV integration.

Stochastic model to estimate 
hourly EV load, particle 
swarm optimization 
(PSO) to minimize costs 
and losses.

Optimizing a mix 
of Level 1, Level 2, 
and Level 3 chargers 
and analyzing 
combined effects.

Optimized combi- 
nation of chargers 
reduces costs and 
system losses, 
improves voltage 
profiles with PV 
generation.

Reliance on 
simulated data 
specific to the NUST 
distribution network, 
challenges in 
generalizing findings 
to other regions.

[21] Reviews modeling 
approaches for 
planning EV charging 
infrastructure, 
focusing on 
optimization 
methods for location 
and sizing.

Categorizes approaches 
into node-based, path-
based, and tour-based; 
assesses effectiveness in 
cost minimization and 
service coverage.

Need for models 
integrating real-world 
data on user behavior 
and temporal deployment 
of infrastructure

Node-based methods 
suitable for residential 
areas, path-based 
for highways, and 
tour-based offer 
comprehensive 
understanding of user 
needs but require 
extensive data.

Lack of consideration 
for temporal 
deployment of 
infrastructure, 
reliance on 
theoretical models, 
may not fully 
capture real-world 
complexities.

Our Work Predicts energy 
consumption and 
recommends EV 
charging stations 
based on geographic 
coordinates and 
energy left.

Various regression 
algorithms 
(KNeighborsRegressor, 
RandomForestRegressor, 
Linear Regression, SVR, 
Gradient Boosting) and 
deep learning models, data 
preprocessing, and spatial 
visualization using Folium.

Integration of real-world 
user behavior and 
geographic proximity 
into the prediction and 
recommendation process.

High accuracy in 
energy consumption 
prediction, practical 
recommendations 
for charging stations, 
comprehensive 
approach combining 
data analysis and 
machine learning.

Need for further 
validation in diverse 
real-world seenarios, 
potential variability 
in prediction 
accuracy based on 
geographic and 
temporal factors.

The studies analyzed cover a broad range of objectives and scopes. A study [18] 
focuses on integrating PEVs into a microgrid, emphasizing energy management and 
grid impacts. A study [19] develops a framework for scheduling smart PEV charging, 
considering travel behavior and battery degradation. Study [20] provides a compre-
hensive analysis of energy optimization approaches for EV charging, focusing on 
battery life and optimization methods. Study [21] aims to predict EV charging dura-
tion using ensemble ML algorithms. A study [22] proposes an optimized strategy for 
placing and sizing different EV CSs in an active distribution network with PV inte-
gration. Finally, study [21] reviews modeling approaches for planning EV charging 
infrastructure, focusing on optimization methods for location and sizing. Our work, 
in contrast, focuses on predicting energy consumption and recommending EV CSs 
based on geographic coordinates and the remaining energy left in the vehicle.

The methodologies employed in these studies are diverse, reflecting the com-
plexity of EV charging infrastructure. Study [18] uses real-time data analysis from 
Level II and III chargers to assess the impact on the grid and building load. Study 
[19] employs stochastic optimization and Monte Carlo simulation within a 21-node 
sample distribution network, incorporating a wind turbine generation unit. Study 

Table 7. Comparative analysis of EV charging infrastructure studies (Continued)
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[20] explores various optimization techniques such as convex optimization, PSO, 
genetic algorithms, and dynamic programming. Study [21] utilizes ensemble ML 
algorithms based on two years of real-world data, including RF, XGBoost, CatBoost, 
and LightGBM. Study [22] applies a stochastic model to estimate hourly EV load and 
uses PSO to minimize costs and system losses. Study [21] categorizes optimization 
methods into node-based, path-based, and tour-based approaches, assessing their 
effectiveness in cost minimization and service coverage. Our work leverages various 
regression algorithms (KNeighborsRegressor, RandomForestRegressor, Linear 
Regression, SVR, and Gradient Boosting) and deep learning models for predicting 
energy consumption, combined with spatial visualization using Folium.

Each study addresses specific research gaps within the field. Study [18] focuses on 
the micro-level impacts of PEV integration on local infrastructure. Study [19] high-
lights the often-overlooked real-world travel behavior and battery degradation costs. 
Study [20] identifies the need for a detailed exploration of the combined effects of dif-
ferent optimization approaches on EV charging strategies. Study [21] addresses the 
lack of real-world data for normal and fast charging events and the absence of ML 
interpretation techniques. Study [22] examines the optimization of a mix of Level 1, 
Level 2, and Level 3 chargers and their combined effects. Study [21] underscores 
the need for models that integrate real-world data on user behavior and the tempo-
ral deployment of infrastructure. Our work integrates real-world user behavior and 
geographic proximity into the prediction and recommendation process, addressing 
the practical aspects of EV charging infrastructure planning.

The findings from these studies provide valuable insights into EV charging infra-
structure. A Study [18] reveals that a 10% EV penetration can lead to a 75% increase 
in peak demand on the distribution feeder. Study [19] finds that smart G2V and V2G 
charging modes can optimize cost and efficiency, although V2G incurs higher bat-
tery degradation costs. Study [20] concludes that optimized EV charging enhances 
battery performance and contributes to grid stability and energy efficiency. Study 
[21] demonstrates that the XGBoost model provides the highest accuracy in predict-
ing charging times, showcasing the effectiveness of ensemble models. Study [22] 
shows that an optimized combination of chargers reduces costs and system losses 
and improves voltage profiles with PV generation. Study [21] determines that node-
based methods are suitable for residential areas, path-based methods for highways, 
and tour-based approaches offer a comprehensive understanding of user needs but 
require extensive data. Our work shows high accuracy in energy consumption pre-
diction and provides practical recommendations for charging stations, combining 
data analysis and ML to deliver actionable insights.

Despite their contributions, these studies have certain limitations. Study [18] is 
specific to the UCR microgrid and does not explore long-term solutions or economic 
impacts. Study [19] relies on simulated data and a specific network configuration, 
which may not generalize to other settings. Study [20] depends on theoretical models 
and requires practical implementation and validation in real-world scenarios. 
Study [21] lacks user socio-demographic data and focuses on the Japanese charging 
environment, which may not generalize to other regions. Study [22] relies on 
simulated data specific to the NUST distribution network, with challenges in gen-
eralizing the findings to other regions. Study [21] does not consider the temporal 
deployment of infrastructure and relies on theoretical models, which may not fully 
capture real-world complexities. Our work, while demonstrating high accuracy and 
practical applicability, still requires further validation in different real-world sce-
narios and may face variability in prediction accuracy based on geographic and 
temporal factors.
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6	 CONCLUSION

In this study, a ML-based framework is proposed to integrate optimal charging 
infrastructure recommendations with predictive charging consumption of EVs 
according to their geolocation and final energy. We utilized regression algorithms 
and deep learning models on the large dataset (total 148,136 transactions from the 
City of Boulder Open Data Hub) for prediction of the pattern of energy consump-
tion accurately. Results show that KNeighborsRegressor performs the best among 
regression models, having the best error metrics and R-squared score. The TEnSURE 
experimental dataset fills an important gap in the current study, capturing how 
real-world user behavior and geographic location can be included in predicting and 
recommending demand, offering a range of broad applications for energy manage-
ment, urban planning, and sustainability. The results speak to the ability of ML to 
improve the effectiveness and usability of EV charging networks. This work should 
be confirmed in different field studies in field conditions and account for differ-
ences in performance when deploying models to predict future performances due 
to geographical and temporal variability.

7	 ACKNOWLEDGEMENT

The authors extend their appreciation to Hashemite University and Zarqa 
University for supporting this study.

8	 REFERENCES

	 [1]	 M. Aljaidi et al., “QoE-based assignment of EVs to charging stations in metropoli-
tan environments,” in IEEE Trans. Intell. Veh., 2024, pp. 1–16. https://doi.org/10.1109/
TIV.2024.3412372

	 [2]	 A. Alsarhan, A. Agarwal, I. Obeidat, M. Bsoul, A. Al-Khasawneh, and Y. Kilani, “Optimal 
spectrum utilisation in cognitive network using combined spectrum sharing approach: 
Overlay, underlay and trading,” International Journal of Business Information Systems, 
vol. 12, no. 4, pp. 423–454, 2013. https://doi.org/10.1504/IJBIS.2013.053216

	 [3]	 A. N. Quttoum, A. Alsarhan, A. Moh’d, M. Aljaidi, G. Samara, and M. Alshammari, 
“AFARM: Anxiety-free autonomous routing model for electric vehicles with dynamic 
route preferences,” Int. J. Interact. Mob. Technol., vol. 18, no. 8, pp. 67–86, 2024. https://
doi.org/10.3991/ijim.v18i08.46247

	 [4]	 M. D. Mwanje et al., “Cyber security analysis of connected vehicles,” IET Intell. Transp. 
Syst., vol. 18, no. 7, pp. 1175–1195, 2024. https://doi.org/10.1049/itr2.12504

	 [5]	 A. Alsarhan and A. Agarwal, “Spectrum sharing in multi-service cognitive network 
using reinforcement learning,” in 2009 First UK-India International Workshop on 
Cognitive Wireless Systems (UKIWCWS), 2009, pp. 1–5. https://doi.org/10.1109/
UKIWCWS.2009.5749427

	 [6]	 M. Aljamal, A. Mughaid, R. Alquran, M. Almiani, and S. AlZu’bi, “Simulated model for 
preventing IoT fake clients over the smart cities environment,” in Proc. 2023 IEEE Int. 
Conf. Dependable, Autonomic and Secure Comput., Int. Conf. Pervasive Intell. Comput., 
Int. Conf. Cloud Big Data Comput., Int. Conf. Cyber Sci. Technol. Congress (DASC/PiCom/
CBDCom/CyberSciTech), 2023, pp. 0757–0761. https://doi.org/10.1109/DASC/PiCom/
CBDCom/Cy59711.2023.10361308

https://online-journals.org/index.php/i-jim
https://doi.org/10.1109/TIV.2024.3412372
https://doi.org/10.1109/TIV.2024.3412372
https://doi.org/10.1504/IJBIS.2013.053216
https://doi.org/10.3991/ijim.v18i08.46247
https://doi.org/10.3991/ijim.v18i08.46247
https://doi.org/10.1049/itr2.12504
https://doi.org/10.1109/UKIWCWS.2009.5749427
https://doi.org/10.1109/UKIWCWS.2009.5749427
https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361308
https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361308


iJIM | Vol. 18 No. 21 (2024)	 International Journal of Interactive Mobile Technologies (iJIM)	 169

Optimizing Electric Vehicle Charging Infrastructure through Machine Learning: A Study of Charging Patterns and Energy Consumption

	 [7]	 A. Ahmad et al., “Electric vehicle charging modes, technologies and applications of smart 
charging,” Energies, vol. 15, no. 24, p. 9471, 2022. https://doi.org/10.3390/en15249471

	 [8]	 M. Aljaidi, N. Aslam, and O. Kaiwartya, “Optimal placement and capacity of electric 
vehicle charging stations in urban areas: Survey and open challenges,” in Proc. 2019 
IEEE Jordan Int. Joint Conf. Electr. Eng. Inf. Technol. (JEEIT), 2019, pp. 238–243. https://doi.
org/10.1109/JEEIT.2019.8717412

	 [9]	 M. Aljaidi, N. Aslam, X. Chen, O. Kaiwartya, and M. Khalid, “An energy-efficient strategy 
for assignment of electric vehicles to charging stations in urban environments,” in Proc. 
2020 11th Int. Conf. Inf. Commun. Syst. (ICICS), 2020, pp. 161–166. https://doi.org/10.1109/
ICICS49469.2020.239501

	[10]	 M. AlJamal, A. Mughaid, H. Bani-Salameh, S. Alzubi, and L. Abualigah, “Optimizing risk 
mitigation: A simulation-based model for detecting fake IoT clients in smart city envi-
ronments,” Sustainable Computing: Informatics and Systems, vol. 43, 2024. https://doi.
org/10.1016/j.suscom.2024.101019

	[11]	 A. Alsarhan, “An optimal configuration-based trading scheme for profit optimiza-
tion in wireless networks,” Egypt. Inform. J., vol. 23, no. 1, pp. 13–19, 2022. https://doi.
org/10.1016/j.eij.2021.05.001

	[12]	 A. Mughaid et al., “Utilizing machine learning algorithms for effectively detecting 
IoT DDoS attacks,” in Proc. Int. Conf. Adv. Comput. Res., 2023, pp. 617–629. https://doi.
org/10.1007/978-3-031-33743-7_49

	[13]	 M. Aljaidi, N. Aslam, X. Chen, O. Kaiwartya, Y. A. Al-Gumaei, and M. Khalid, “A reinforce-
ment learning-based assignment scheme for EVs to charging stations,” in Proc. 2022 
IEEE 95th Veh. Technol. Conf. (VTC2022-Spring), 2022, pp. 1–7. https://doi.org/10.1109/
VTC2022-Spring54318.2022.9860535

	[14]	 M. Aljaidi, N. Aslam, X. Chen, O. Kaiwartya, and Y. A. Al-Gumaei, “Energy-efficient EV 
charging station placement for e-mobility,” in Proc. IECON 2020 46th Annu. Conf. IEEE Ind. 
Electron. Soc., 2020, pp. 3672–3678. https://doi.org/10.1109/IECON43393.2020.9255254

	[15]	 M. Aljaidi et al., “NHS WannaCry ransomware attack: Technical explanation of the 
vulnerability, exploitation, and countermeasures,” in 2022 International Engineering 
Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI), 2022, pp. 1–6. https://
doi.org/10.1109/EICEEAI56378.2022.10050485

	[16]	 M. Aljaidi, N. Aslam, G. Samara, S. Almatarneh, A.-Q. Khaled, and A. Alqammaz, 
“EV charging station placement and sizing techniques: Survey, challenges and direc-
tions for future work,” in Proc. 2022 Int. Arab Conf. Inf. Technol. (ACIT), 2022, pp. 1–6. 
https://doi.org/10.1109/ACIT57182.2022.9994128

	[17]	 A. N. Quttoum et al., “ABLA: Application-based load-balanced approach for adaptive map-
ping of datacenter networks,” Electronics, vol. 12, no. 17, 2023. https://doi.org/10.3390/
electronics12173689

	[18]	 M. AlJamal, R. Alquran, A. Issa, A. Mughaid, S. AlZu’bi, and A. A. Abutabanjeh, “A novel 
machine learning cyber approach for detecting WannaLocker ransomware attack on 
Android devices,” in Proc. 2023 Int. Conf. Inf. Technol. (ICIT), 2023, pp. 135–142. https://
doi.org/10.1109/ICIT58056.2023.10226130

	[19]	 R. Alqura’n et al., “Advancing XSS detection in IoT over 5G: A cutting-edge artificial 
neural network approach,” IoT, vol. 5, no. 3, pp. 478–508, 2024. https://doi.org/10.3390/
iot5030022

	[20]	 M. Amjad, A. Ahmad, M. H. Rehmani, and T. Umer, “A review of EVs charging: From the 
perspective of energy optimization, optimization approaches, and charging techniques,” 
Transportation Research Part D: Transport and Environment, vol. 62, pp. 386–417, 2018. 
https://doi.org/10.1016/j.trd.2018.03.006

https://online-journals.org/index.php/i-jim
https://doi.org/10.3390/en15249471
https://doi.org/10.1109/JEEIT.2019.8717412
https://doi.org/10.1109/JEEIT.2019.8717412
https://doi.org/10.1109/ICICS49469.2020.239501
https://doi.org/10.1109/ICICS49469.2020.239501
https://doi.org/10.1016/j.suscom.2024.101019
https://doi.org/10.1016/j.suscom.2024.101019
https://doi.org/10.1016/j.eij.2021.05.001
https://doi.org/10.1016/j.eij.2021.05.001
https://doi.org/10.1007/978-3-031-33743-7_49
https://doi.org/10.1007/978-3-031-33743-7_49
https://doi.org/10.1109/VTC2022-Spring54318.2022.9860535
https://doi.org/10.1109/VTC2022-Spring54318.2022.9860535
https://doi.org/10.1109/IECON43393.2020.9255254
https://doi.org/10.1109/EICEEAI56378.2022.10050485
https://doi.org/10.1109/EICEEAI56378.2022.10050485
https://doi.org/10.1109/ACIT57182.2022.9994128
https://doi.org/10.3390/electronics12173689
https://doi.org/10.3390/electronics12173689
https://doi.org/10.1109/ICIT58056.2023.10226130
https://doi.org/10.1109/ICIT58056.2023.10226130
https://doi.org/10.3390/iot5030022
https://doi.org/10.3390/iot5030022
https://doi.org/10.1016/j.trd.2018.03.006


	 170	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 21 (2024)

Alsarhan et al.

	[21]	 I. Ullah, K. Liu, T. Yamamoto, M. Zahid, and A. Jamal, “Prediction of electric vehicle 
charging duration time using ensemble machine learning algorithm and Shapley  
additive explanations,” International Journal of Energy Research, vol. 46, no. 11, 
pp. 15211–15230, 2022. https://doi.org/10.1002/er.8219

	[22]	 M. Z. Zeb et al., “Optimal placement of electric vehicle charging stations in the active dis-
tribution network,” IEEE Access, vol. 8, pp. 68124–68134, 2020. https://doi.org/10.1109/
ACCESS.2020.2984127

	[23]	 M.-O. Metais, O. Jouini, Y. Perez, J. Berrada, and E. Suomalainen, “Too much or not 
enough? Planning electric vehicle charging infrastructure: A review of modeling 
options,” Renew. Sustain. Energy Rev., vol. 153, p. 111719, 2022. https://doi.org/10.1016/ 
j.rser.2021.111719

9	 AUTHORS

Ayoub Alsarhan is with the Department of Information Technology, Faculty 
of Prince Al-Hussien bin Abdullah for IT The Hashemite University, Zarqa, Jordan 
(E-mail: ayoubm@hu.edu.jo).

Athari Alnatsheh is with the Department of Information Technology, Faculty 
of Prince Al-Hussien bin Abdullah for IT The Hashemite University, Zarqa, Jordan 
(E-mail: athari.alnatsheh01@gmail.com).

Mohammad Aljaidi is with the Department of Computer Science, Zarqa 
University, Zarqa 13110, Jordan (E-mail: mjaidi@zu.edu.jo).

Tuqa AL Makkawi is with the Department of Information Technology, Faculty 
of Prince Al-Hussien bin Abdullah for IT The Hashemite University, Zarqa, Jordan 
(E-mail: eng.tuqa.almakkawi@gmail.com).

Mahmoud Aljamal is with the Department of Information Technology, Faculty 
of Prince Al-Hussien bin Abdullah for IT The Hashemite University, Zarqa, Jordan 
(E-mail: mahmood.yj.98@gmail.com).

Tamam Alsarhan is with the King Abdullah II School of Information Technology, 
the University of Jordan, Amman, Jordan (E-mail: t_alsarhan@ju.edu.jo).

https://online-journals.org/index.php/i-jim
https://doi.org/10.1002/er.8219
https://doi.org/10.1109/ACCESS.2020.2984127
https://doi.org/10.1109/ACCESS.2020.2984127
https://doi.org/10.1016/j.rser.2021.111719
https://doi.org/10.1016/j.rser.2021.111719
mailto:ayoubm@hu.edu.jo
mailto:athari.alnatsheh01@gmail.com
mailto:mjaidi@zu.edu.jo
mailto:eng.tuqa.almakkawi@gmail.com
mailto:mahmood.yj.98@gmail.com
mailto:t_alsarhan@ju.edu.jo

