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Quality Optimizing Teaching Decisions  
in Flipped Classrooms through Data-Driven Strategies

ABSTRACT
In the context of digitalized educational research, the rapid advancement of internet tech-
nologies and big data has catalyzed the transformation of traditional teaching models. The 
flipped classroom, recognized for its flexibility and efficiency, has garnered significant 
attention. However, the challenge of scientifically optimizing teaching decisions in flipped 
classrooms to maximize educational outcomes remains critical. Previous studies have 
achieved some progress in optimizing teaching decisions within flipped classrooms, yet they 
often suffer from a lack of methodological diversity, inadequate consideration of multi-level 
constraints, and struggle to adapt to dynamic teaching environments. Addressing these defi-
ciencies, this research introduces a hybrid evolutionary algorithm combining differential evo-
lution and greedy backtracking. Defined and classified constraints within flipped classroom 
teaching decisions, the construction of constraint networks, and the creation of multi-level 
decision spaces are transformed and solved through this hybrid algorithm, offering a sys-
tematic optimization strategy. Case analysis confirms the effectiveness and practicality of the 
proposed method, aiming to bolster decision-making in flipped classrooms and advance the 
development of digitalized teaching.

KEYWORDS
digitalized education, flipped classroom, teaching decision optimization, differential evolution, 
greedy backtracking, constraint satisfaction problem (CSP)

1	 INTRODUCTION

In the context of digitalized educational research, with the rapid develop-
ment of internet technology and the arrival of the big data era, traditional teach-
ing models are undergoing profound transformations [1–4]. As a new teaching 
model, the flipped classroom leverages the advantages of information technology 
to combine knowledge impartation with classroom interaction, offering students 
a more flexible and efficient learning experience [5–8]. However, how to 
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scientifically make teaching decisions and devise optimized teaching plans to 
maximize educational outcomes remains an urgent issue in the implementation 
of flipped classrooms.

The research on optimizing teaching decisions in flipped classrooms holds signif-
icant practical importance. On one hand, optimizing teaching decisions can enhance 
teaching quality and improve students’ learning effects and proactivity; on the other 
hand, decision optimization based on data analysis can provide more scientific and 
rational teaching plans, promote rational allocation and efficient utilization of teach-
ing resources, and advance the development and popularization of educational dig-
italization [9–11]. Furthermore, in-depth research into the optimization strategies 
of teaching decisions in flipped classrooms can also provide practical guidance for 
educational administrators and frontline teachers, helping them to implement and 
improve the flipped classroom teaching model.

Although existing research has achieved certain results in optimizing teaching 
decisions in flipped classrooms, there are still some deficiencies. Current methods 
often focus on single-dimensional optimization, lacking a systematic consideration 
of multi-level, multi-dimensional constraints [12–15]. Additionally, traditional opti-
mization methods often rely on static data, struggling to adapt to dynamically chang-
ing teaching environments, leading to suboptimal results [16–19]. Therefore, there 
is an urgent need for an optimization method that can comprehensively consider 
multi-level constraints and dynamically adapt to teaching environments to better 
guide teaching decisions in flipped classrooms.

This research primarily includes the following aspects: Firstly, classify and define 
the various constraints in flipped classroom teaching decision schemes, clarify-
ing the connotation and role of each type of constraint. Secondly, constructing a 
constraint network for flipped classroom teaching decision schemes will provide 
a structured model foundation for optimization decisions. Thirdly, based on the 
construction and transformation of a multi-level constraint-based flipped class-
room teaching decision space, ensuring the rationality and comprehensiveness of 
the decision space. Fourthly, propose a CSP-solving strategy based on differential 
evolution and greedy backtracking, combining global search and local optimization 
to enhance solution efficiency and optimization results. Lastly, through case analy-
sis, verify the effectiveness and practicality of the proposed strategy. This research 
aims to provide a scientific and systematic optimization method for teaching deci-
sions in flipped classrooms, promoting the in-depth development and application of 
digitalized teaching.

2	 CLASSIFICATION	AND	DEFINITION	OF	CONSTRAINTS	IN	FLIPPED	
CLASSROOM	TEACHING	DECISION	SCHEMES

In the flipped classroom model, teaching plans need to meet the diverse learning 
needs and paces of different students. Traditional teaching plans cannot effectively 
adapt to individual differences among students, making optimization decisions 
complex. At the same time, with the development of educational technology, a large 
amount of student learning behavior and feedback data is available for analysis. 
Utilizing these data, key issues and optimization spaces in teaching can be more 
accurately identified. For this purpose, this paper employs a CSP approach to conduct 
effective searches and optimizations within the vast space of teaching plan design, 
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aiming to enhance teaching effectiveness and student satisfaction. Specifically, from 
the lifecycle perspective of flipped classrooms, this paper standardizes and describes 
different types of teaching design constraints, forming a constraint network. These 
constraints reflect the relationships between various stages and elements in the 
teaching process. Further, through the systematic integration of nodes in the con-
straint network with nodes in the teaching design space, a multi-level teaching 
design space based on constraints is constructed. The optimization process of flipped 
classroom teaching plans is transformed into a teaching design CSP, and key infor-
mation in the multi-level design space is extracted to form a CSP model. Finally, 
a hybrid evolutionary algorithm based on differential evolution and greedy back-
tracking search algorithms is proposed, with the optimization goals of maximizing 
student learning outcomes and teaching resource utilization, to make optimization 
decisions. Through the optimized search of the algorithm, the best flipped classroom 
teaching plan that meets the constraints is obtained.

Flipped classroom models need to meet the diverse learning needs and individ-
ual differences of students. By identifying and defining various constraints in teach-
ing, it is possible to better adapt to the different learning paces and needs of students. 
Modern teaching processes have accumulated a large amount of student learning 
data, and through data analysis, key issues and optimization opportunities in the 
teaching process can be identified. The method based on CSP can translate these 
data into specific teaching decision constraints, guiding optimization strategies. 
Clarifying various constraints in the teaching process (such as time, resources, 
learning outcomes, etc.) and optimizing them can significantly enhance teaching 
effectiveness and student satisfaction.

Fig. 1. Classification of teaching decision constraints in flipped classrooms

In the flipped classroom model, teaching design constraints can be divided 
into unit constraints and overall constraints. Unit constraints refer to teaching 
objectives, time schedules, resource configurations, etc., within specific courses or 
modules; overall constraints cover the entire semester or academic year’s teach-
ing plans, student learning progress, and outcome assessments. Specifically, teach-
ing constraints can be identified and defined in the following aspects: Learning 
time constraints refer to the allocation of learning time for each unit, including 
pre-class preparation, in-class activities, and post-class review; learning progress 
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constraints refer to the progress and outcomes of students at different time points, 
ensuring all students can complete learning tasks as planned; Associative con-
straints refer to the connectivity between different teaching modules, including 
prerequisite knowledge requirements and subsequent course connections, see 
Figure 1 for details.

Definition 1: Learning time constraint
Learning time constraint (Lt) represents the total amount of time required by 

students at each learning stage in a flipped classroom setting, which can be allo-
cated based on specific teaching principles and the results of data analysis. In 
other words, the learning time constraints for each learning unit or module are 
determined by the overall learning time constraint OCO and the time distribution 
coefficient zu. Generally, the size of OCO is determined by the teaching objectives 
and the course plan. This paper proposes a combined method of hierarchical 
analysis and data-driven analysis to obtain the time distribution coefficient zu  
by analyzing student learning behaviors and time investments at different learn-
ing stages.

1. Obtaining subjective weights through the analytic hierarchy process (AHP)
	  First, an AHP model is constructed, breaking down the time distribution issue 

of flipped classroom teaching into multiple levels. Specifically, courses can be 
divided into several learning units or modules, and the importance of each 
learning unit is evaluated based on teaching objectives and the significance of 
the learning content. Teaching experts or experienced teachers are invited to 
score these learning units. By constructing a judgment matrix and performing 
a consistency test, the importance weights of each learning unit are calculated. 
These weights represent the impact of subjective factors on the distribution of 
learning time. Specifically, a judgment matrix ZMA1 is constructed, setting the 
number of evaluation indicators to l and the number of configuration schemes 
for zu to v.

 ZMA1 = (xuk)l×l u, k = 1, 2, … , l; (1)

	  ZMA1 is normalized column-wise, and the weight of each indicator, βu, is further 
calculated using the following formula:
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	  The maximum eigenvalue is calculated based on the following formula:
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2. Obtaining objective weights through the entropy method
	  Next, collect data on student learning in different units, including time spent 

on pre-class preparation, in-class participation, and post-class review. Using this 
data, the time distribution weights for each learning unit are calculated through 
the entropy method. First, the collected learning time data is standardized to elim-
inate dimensional effects. Further, a standardized decision matrix, ZMA2 = (yuk)vl 
is obtained:

	  For teaching input indicators:
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	  For teaching effectiveness indicators:
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	  Then, calculate the information entropy of the time distribution data for each 
learning unit to measure its uncertainty. The entropy value for the k-th indicator 
can be calculated using the following formula:

 r j y U y
k uk v uk

u

v

� � � �
�
� ( )

1

 (7)

	  Based on the magnitude of the information entropy, calculate the objective 
weights for each learning unit. The greater the entropy, the smaller the weight, 
and vice versa. The weight for each indicator, αu, can be obtained through the 
following calculation:
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3. By integrating weights obtained from the AHP and the entropy method, the learn-
ing time distribution coefficient zu is generated:

	  Ultimately, subjective and objective weights are integrated to produce a com-
bined weight. Based on this, the learning time constraint corresponding to the 
learning phase can be expressed as Mzu = OCO.zu.
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	  Definition 2: Learning progress constraints (Tz)
	  Learning progress constraints are meant to ensure that students complete 

their course studies within the stipulated time, which is typically represented 
by inequalities. For example, to ensure that students complete the course on 
time, the completion time for each learning unit is restricted. Learning progress 
constraints can be determined by analyzing student learning data and teaching 
objectives, identifying the content and learning objectives that must be com-
pleted within a specific time frame for each learning unit.
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	  where STu,k is the k-th learning progress information in the u-th learning stage, 
and SMAX is the maximum threshold value of STu,k information.

	  Definition 3: Prerequisite knowledge requirements constraint (Ro) and subse-
quent course connection constraint (Rz)

	  The prerequisite knowledge requirements constraint ensures that students 
have mastered the necessary foundational knowledge before learning new con-
tent, arranging the learning content sequentially. For instance, before studying 
an advanced programming course, one must complete the basic programming 
course. The subsequent course connection constraint ensures that students can 
smoothly transition to subsequent courses after completing the current course, 
arranging the learning content accordingly. For example, to smoothly advance 
to advanced courses, one must achieve a certain grade in the basic course. 
Prerequisite knowledge requirements and subsequent course connection 
constraints are represented by a directed graph, defined as follows:

 Ro = {Vu, Vk, 1OR0} (11)

 Rz = {Vu, Vk, −1OR0} (12)

	  Where the arrangement order of knowledge node Vu preceding knowledge 
node Vk is represented by 1, −1 indicates there is no preceding or subsequent 
associative constraint between Vu and Vk, and 0 indicates no constraints on the 
knowledge node.

Fig. 2. Expression of inheritance constraint relationships

	  Definition 4: Inheritance constraints (Rt)
	  Inheritance constraints (Rt) represent the association and dependency rela-

tionships between different learning units in a flipped classroom model, mainly 
including “AND” constraints and “OR” constraints, as shown in Figure 2. For exam-
ple, a complex learning objective can be decomposed into multiple sub-objectives; 
the complex learning objective is achieved only when all sub-objectives are met; 
alternatively, the complex learning objective can be partially achieved when any 
one of the sub-objectives is met. Assume the upper learning unit is represented 
by Vi; the lower learning unit is represented by Vm; and the “AND” and “OR” 
inheritance constraints are represented by Rt-AND and Rt-OR, respectively.

 Rt = {Vi, Vm, Rt − AND, Rt − OR} (13)
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3	 SCP	SOLVING	STRATEGY	BASED	ON	DIFFERENTIAL	EVOLUTION	
AND	GREEDY	BACKTRACKING

To find the optimal teaching plan within the multi-level teaching design space, 
this paper employs a hybrid evolutionary algorithm combining differential evolu-
tion and greedy backtracking search algorithms. Differential evolution, as a type of 
stochastic direct search and global optimization algorithm, features robustness and 
the capability of global optimization. This algorithm, by conducting a global search 
across the design space, effectively explores multiple potential solutions, avoiding 
local optima. Especially in the context of complex teaching design issues, differen-
tial evolution can rapidly identify teaching plans that satisfy all constraints through 
random mutation and selection operations. This global optimization capability is 
particularly important for addressing teaching design issues involving numerous 
constraints and multi-level variables. Meanwhile, the greedy backtracking search 
algorithm, as a major method of informed search, utilizes heuristic information 
to conduct systematic and leaping searches of the design space. During the design 
of teaching plans, the greedy backtracking search algorithm can employ a depth-
first strategy to search each teaching node according to priority. If a choice fails to 
meet the constraints or achieve the objectives, the algorithm activates a backtrack-
ing mechanism to revert to the previous step, or even several steps back, to select 
alternative paths. This effectively prevents repeated failures and enhances solving 
efficiency. Additionally, the greedy backtracking search algorithm can quickly find 
compliant teaching plans in large-scale design spaces, adapting to the dynamic 
adjustment needs of teaching plans.

The hybrid evolutionary algorithm primarily consists of two parts: (1) employ-
ing differential evolution to iterate populations for solving large-scale optimization 
problems; and (2) utilizing greedy backtracking search to check whether individuals 
in the population meet teaching design constraints. Initially, the differential evolu-
tion algorithm generates a new population through mutation, crossover, and selec-
tion operations, where each individual represents a teaching plan. This algorithm, 
through random mutation and selection, can effectively explore multiple potential 
solutions, avoiding local optima and ensuring the identification of the optimal solu-
tion in complex teaching design spaces. The global search capability of differential 
evolution enables it to handle teaching design issues containing numerous con-
straints and multi-level variables. Secondly, during the optimization process, the 
greedy backtracking search algorithm is used to check whether individuals in the 
population meet teaching design constraints. Variable ordering is considered an 
important preprocessing technique, with the order of variable instantiation being 
crucial for the solving process. This paper employs a greedy algorithm based on 
minimum remaining value ordering, prioritizing teaching variables with numer-
ous constraints. This ordering method effectively reduces the complexity of solving 
enhances search efficiency. The specific process involves selecting teaching vari-
ables with the most constraints from all levels of the teaching plan, unfolding con-
straint checks, and, if a teaching variable is assigned, applying forward checking to 
handle all variables and constraints, determining whether the teaching plan meets 
the constraints. Through this method, teaching plans that fail to meet constraints 
can be detected and removed early, effectively enhancing the search efficiency of 
the plan. Moreover, to supplement the population needed for the next iteration, a 
random population generator is established. This generator ensures that there are 

https://online-journals.org/index.php/i-jim


iJIM | Vol. 18 No. 16 (2024) International Journal of Interactive Mobile Technologies (iJIM) 45

Quality Optimizing Teaching Decisions in Flipped Classrooms through Data-Driven Strategies

sufficient individuals for the differential evolution algorithm to operate on in each 
iteration, maintaining the diversity and stability of the algorithm.

Fig. 3. Flowchart of the hybrid evolutionary algorithm

Figure 3 provides a flowchart for the hybrid evolutionary algorithm. The follow-
ing are the detailed solution steps:

Step 1: Initialize the population. Set the initial iteration stage to s = 1, extracting a 
subset of teaching plans that satisfy constraints from the multi-level constraint-based 
teaching design space to form the initial population O0. Each teaching plan is repre-
sented by a multi-level model. Mutation and crossover operators’ ratio factors are set 
as D and ze respectively.

Step 2: Fitness function calculation. Use data analysis methods to estimate the 
effectiveness of each teaching plan, aiming for optimization of student learning 
outcomes in subsequent iterative optimization processes.

Step 3: Differential mutation and crossover. Implement individual mutation 
using a differential mutation strategy and perform crossover operations with the 
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population and its mutant intermediates to form a new population. This step aims to 
increase the diversity of teaching plans through mutation and crossover operations, 
exploring more potential optimization options.

Step 4: Check the teaching constraints. Convert each individual in the obtained 
population into a CSP model and implement a greedy backtracking search algorithm 
based on minimum remaining values ordering to check if the design nodes in each 
teaching plan of the population satisfy the teaching constraints. Constraints include 
teaching time, resource allocation, student needs, etc.

Step 5: Selection operation. Eliminate teaching plans that do not meet constraints 
through selection operations; only individuals that satisfy the constraint conditions 
are retained for the next generation. Additionally, generate new individuals through 
a random population generator to supplement the number of individuals for the 
next iteration, ensuring the diversity and stability of the population.

Step 6: Stop the condition. Repeat the evolutionary operations from Steps 2 to 5 
for each selected individual in every iteration until all termination conditions are 
satisfied. These termination conditions can be either reaching a predetermined 
number of iterations or achieving the expected standard of optimization effects in 
the teaching plans.

Step 7: Output the best results. Generate the best-optimized teaching plan within 
the teaching design space to be implemented as the optimal teaching plan under the 
flipped classroom model.

4	 CASE	ANALYSIS	OF	OPTIMIZED	TEACHING	PLAN		
DECISIONS	FOR	FLIPPED	CLASSROOMS

This study conducts a detailed analysis of the changes in teaching effectiveness 
under the flipped classroom model by comparing the indicator data of the original 
and optimized teaching plans, thereby validating the effectiveness of data-driven 
teaching decision optimization. As shown in Figure 4, in the optimized plan, student 
engagement increased by 90, student autonomy in learning increased by 75, and 
the quality of classroom interaction increased by 80. This indicates that the opti-
mized flipped classroom teaching plan significantly enhanced student participation 
and enthusiasm for autonomous learning, while also making classroom interac-
tions more frequent and effective. Student satisfaction increased from 40 to 70, an 
increase of 30, indicating greater student approval and satisfaction with the new 
teaching plan. The level of knowledge mastery decreased from 55 to 50, a reduction 
of 5, which is due to students not yet fully adapting to the new teaching model during 
the transition phase. Teamwork ability increased from 75 to 90, an increase of 15, 
showing that the flipped classroom has a significant effect on promoting student 
teamwork. Learning pressure decreased by 80 and learning anxiety by 85, demon-
strating that the optimized plan effectively reduced student learning pressure and 
anxiety, helping to create a more relaxed learning environment. Classroom silence 
time, teacher preparation time, ambiguity of knowledge points, traditional lectur-
ing time, and classroom discipline issues all decreased. These reductions indicate 
that the optimized plan improved classroom efficiency, reduced ineffective time, 
and also lightened the teacher’s workload, improving classroom discipline. The rate 
of knowledge forgetting increased from 80 to 130, an increase of 50, due to the need 
for further strengthening of knowledge review and consolidation under the flipped 
classroom model.
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a) Original Teaching Plan Indicator Information

b) Optimized Teaching Plan Indicator Information

Fig. 4. Comparative analysis of indicator information between original and optimized teaching plans

Table 1. Combination configuration of time distribution coefficient zu

No

Time	Distribution	Coefficient	zu

Teaching	
Effectiveness

Pre-Class 
Preparation  

Phase

Class	Activity	 
Phase

Review	and	
Consolidation	 

Phase

Assessment	and	
Improvement	 

Phase

1 0.3985 0.5687 0.0006 0.0301 1421.52

2 0.3654 0.6012 0.0006 0.0301 1503.23

3 0.4895 0.4751 0.0006 0.0301 1548.54

4 0.3985 0.6023 0.0002 0.0006 1687.24

5 0.3956 0.5784 0.0002 0.0305 1456.21

6 0.4215 0.5762 0.0002 0.0006 1628.35
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This paper examines the impact of the combination configuration of time dis-
tribution coefficients on flipped classroom teaching effectiveness, verifying the 
effectiveness of the data-driven teaching decision optimization strategy. From 
Table 1, it can be seen that the pre-class preparation phase and the class activ-
ity phase occupy the majority of the time allocation. Among the various config-
uration schemes, the time distribution coefficients for the pre-class preparation 
phase range from 0.3654 to 0.4895 and for the class activity phase from 0.4751 to 
0.6023. The time distribution coefficients for the review and consolidation phase 
and the assessment and improvement phase are lower, generally maintained 
between 0.0002 and 0.0305. Configuration scheme 4 (0.3985, 0.6023, 0.0002, 
0.0006) achieved the highest teaching effectiveness at 1687.24. This indicates that 
the best teaching outcomes are achieved when more time is allocated to the pre-
class preparation and class activity phases (pre-class preparation 0.3985, class 
activity 0.6023). Configuration scheme 6 (0.4215, 0.5762, 0.0002, 0.0006) also had 
a high teaching effectiveness of 1628.35. This scheme’s time allocation for the pre-
class preparation and class activity phases is close to that of scheme 4, with slight 
adjustments to the proportions, still achieving good results. Configuration schemes 
1 (0.3985, 0.5687, 0.0006, 0.0301) and 5 (0.3956, 0.5784, 0.0002, 0.0305) had lower 
teaching effectiveness, at 1421.52 and 1456.21, respectively. Although these two 
schemes also had higher time allocations for the pre-class preparation and class 
activity phases, allocating more time to the review and consolidation phase and 
the assessment and improvement phase actually decreased the overall teaching 
effectiveness.

This paper analyzes the teaching effectiveness of flipped classrooms under dif-
ferent constraint configurations to validate the effectiveness of the data-driven 
teaching decision optimization strategy. As seen in Figure 5, the pre-class prepa-
ration phase and the classroom activity phase occupy the majority of the time 
allocation. In each configuration scheme, the time allocation for the pre-class 
preparation phase ranges from 400 to 750 minutes and for the classroom activity 
phase from 700 to 1000 minutes. The time allocated for the review and consol-
idation phase is 0 minutes, and for the assessment and improvement phase, it 
ranges from 50 to 100 minutes. Configuration scheme 4 (650 minutes of pre-class 
preparation, 1000 minutes of classroom activity, and 50 minutes of assessment 
and improvement) achieved the highest teaching effectiveness of 1687.24. This 
indicates that the best teaching results are obtained when more time is allocated 
to the pre-class preparation and classroom activity phases (650 minutes for pre-
class preparation, 1000 minutes for classroom activity). Configuration scheme 6 
(700 minutes of pre-class preparation, 700 minutes of classroom activity, 50 min-
utes of assessment and improvement) also had high teaching effectiveness, with 
a score of 1628.35. This scheme allocated more time to the pre-class preparation 
phase, with slightly less for classroom activity, but still achieved good results. 
Configuration schemes 1 (600 minutes of pre-class preparation, 700 minutes of 
classroom activity, 50 minutes of assessment and improvement) and 5 (600 min-
utes of pre-class preparation, 700 minutes of classroom activity, 100 minutes of 
assessment and improvement) had lower teaching effectiveness, with scores of 
1421.52 and 1456.21, respectively. Although these two schemes allocated consid-
erable time to the pre-class preparation and classroom activity phases, the longer 
duration allocated to the assessment and improvement phase actually decreased 
the overall teaching effectiveness.
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Fig. 5. Analysis of teaching effectiveness under different constraint configurations

This paper analyzes the teaching effectiveness of flipped classrooms under dif-
ferent constraint configurations to validate the effectiveness of the data-driven 
teaching decision optimization strategy. As shown in Figure 6, the pre-class prepa-
ration phase and classroom activity phase occupy the majority of the time alloca-
tion. In each configuration scheme, the time allocation for the pre-class preparation 
phase ranges from 380 to 780 minutes and for the classroom activity phase from 
660 to 1060 minutes. The time allocated for the review and consolidation phase 
is 0 minutes, and for the assessment and improvement phase, it ranges from 60 
to 130 minutes. Configuration scheme 4 (600 minutes of pre-class preparation, 
1060 minutes of classroom activity, and 70 minutes of assessment and improve-
ment) achieved the highest teaching effectiveness of 1687.24. This indicates that 
the best teaching results are obtained when more time is allocated to the pre-class 
preparation and classroom activity phases (600 minutes for pre-class preparation, 
1060 minutes for classroom activity). Configuration scheme 6 (780 minutes of pre-
class preparation, 840 minutes of classroom activity, and 60 minutes of assessment 
and improvement) also had high teaching effectiveness, with a score of 1628.35. 
This scheme allocated more time to the pre-class preparation phase, with slightly 
less for classroom activity, but still achieved good results. Configuration schemes 1 
(560 minutes of pre-class preparation, 800 minutes of classroom activity, 80 min-
utes of assessment and improvement) and 5 (550 minutes of pre-class preparation, 
840 minutes of classroom activity, 130 minutes of assessment and improvement) 
had lower teaching effectiveness, with scores of 1421.52 and 1456.21, respec-
tively. Although these two schemes also allocated considerable time to the pre-
class preparation and classroom activity phases, the longer duration allocated to 
the assessment and improvement phase actually decreased the overall teaching 
effectiveness.
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Fig. 6. Analysis of teaching effectiveness at different stages of flipped classroom teaching decision plans

By analyzing the teaching effectiveness under different time distribution coeffi-
cient combination configurations, this paper validates the effectiveness of the CSP-
solving strategy based on differential evolution and greedy backtracking in optimizing 
flipped classroom teaching decisions. It can be concluded that rational allocation of 
time for pre-class preparation and classroom activities is key to enhancing the teach-
ing effectiveness of flipped classrooms. The best configuration, scheme 4, shows that 
allocating 600 minutes for pre-class preparation and 1060 minutes for classroom 
activities is the optimal combination for improving teaching outcomes. Through 
data analysis, the optimized time distribution strategy significantly enhanced teach-
ing effectiveness, reaching a peak of 1687.24, thus validating the effectiveness of 
the data-driven teaching decision optimization strategy proposed in this paper. It is 
evident that the constructed constraint network and multi-level decision space for 
flipped classroom teaching decision plans provide a structured model foundation 
for optimization decisions, ensuring the rationality and comprehensiveness of the 
decision space.

5	 CONCLUSION

This paper primarily focuses on optimizing teaching decision schemes for 
flipped classrooms, covering four key areas. Firstly, it classifies and defines the 
various constraints involved in flipped classroom teaching decisions, providing a 
clear framework for subsequent optimization. Secondly, it constructs a constraint 
network for flipped classroom teaching decisions, offering a structured model foun-
dation that enhances the intuitive and systematic handling of various constraints. 
Thirdly, it builds and transforms a multi-level flipped classroom teaching decision 
space, ensuring the rationality and comprehensiveness of the decision space, thus 
safeguarding the effectiveness and coverage of the decisions. Lastly, it introduces 
a problem-solving strategy based on differential evolution and greedy backtrack-
ing that combines global search with local optimization, improving the efficiency 
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and effectiveness of solutions. This strategy has demonstrated high efficiency and 
effectiveness in handling complex teaching decision-making issues.

Experimental results indicate significant achievements in several areas. Firstly, 
by comparing original and optimized teaching plans, there is a noticeable improve-
ment in teaching effectiveness, validating the effectiveness of the proposed optimi-
zation strategy. Secondly, by analyzing the teaching effectiveness under different 
time distribution coefficient combination configurations, the study identifies the 
best configuration schemes, providing strong data support for practical teaching 
scheduling. Additionally, by analyzing teaching effectiveness under different con-
straints, the study validates the applicability and effectiveness of the proposed 
decision model and optimization strategy across various conditions. Lastly, a 
detailed analysis of teaching effectiveness at different stages (pre-class prepara-
tion, classroom activities, assessment, and improvement) under various configura-
tions provides a scientific basis for further optimizing time allocation and teaching 
activities at each stage.

In conclusion, the research outcomes of this paper hold significant academic 
and practical value. By optimizing flipped classroom teaching decision schemes, 
it presents an effective set of decision optimization strategies and methods, 
with experimental validation showing a significant enhancement in teaching 
effectiveness. This not only provides theoretical support for the implementation 
of flipped classrooms but also offers concrete guidance for teaching practice. 
However, the study has its limitations. Firstly, the experimental data are derived 
from a specific teaching environment, and the effects may differ in other settings; 
thus, future research needs to validate these findings in a broader range of edu-
cational contexts. Secondly, while the differential evolution and greedy backtrack-
ing strategy performed well in current experiments, combining them with other 
optimization algorithms might be necessary to enhance outcomes under more 
complex constraints.
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