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PAPER

Application of Smart Mobile Devices in Electronic 
Design Education: Multidimensional Interaction 
Model and Learning Outcomes Assessment

ABSTRACT
With the rapid advancement of technology, smart mobile devices are increasingly being 
integrated into the educational domain, showing significant potential, particularly in electronic 
design education. Traditional classroom teaching methods face limitations in information 
delivery and student interaction, while the introduction of smart mobile devices brings new 
opportunities to classroom instruction. Through smart mobile devices, educators can orga-
nize teaching activities more flexibly, and students can engage in classroom interactions in 
various forms, greatly enhancing teaching effectiveness and learning experiences. Although 
numerous studies have explored the application of smart mobile devices in education, most 
focus on single-dimensional interaction models, overlooking the potential of multidimen-
sional interactions. Additionally, traditional methods for assessing learning outcomes often 
rely on qualitative analysis and post-class tests, which fail to comprehensively and in real-
time reflect students’ learning states and emotional changes. This paper aims to construct 
a multidimensional interaction model for electronic design education classrooms based on 
smart mobile devices and to assess learning outcomes through real-time analysis of students’ 
emotions and feedback data, thereby optimizing teaching strategies. This study not only pro-
vides new perspectives and methods for the application of smart mobile devices in education 
but also offers practical guidance for teaching reforms and innovations in electronic design 
education, holding significant theoretical and practical value.
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smart mobile devices, electronic design education, multidimensional interaction model, 
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1	 INTRODUCTION

With the rapid advancement of technology, the application of smart mobile 
devices in the field of education is becoming increasingly widespread, especially 
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in electronic design education [1–3]. Traditional classroom teaching methods face 
limitations in information transmission and student interaction, while the introduc-
tion of smart mobile devices brings new opportunities to classroom teaching [4, 5]. 
Through smart mobile devices, teachers can more flexibly organize teaching activi-
ties, and students can participate in classroom interaction in various forms, greatly 
enhancing teaching effectiveness and the learning experience.

The application of smart mobile devices in electronic design education not only 
revolutionizes traditional teaching methods but also provides technical support for 
the construction of multidimensional interaction models [6–8]. In a multidimen-
sional interaction model, students can interact through text, voice, video, and other 
means, effectively enhancing their initiative and participation in learning [9–12]. 
At the same time, this new teaching mode can also capture and analyze students’ 
emotions and feedback in real-time, providing teachers with an accurate teaching 
adjustment basis, thereby achieving personalized teaching and promoting the com-
prehensive development of students.

Although numerous studies have explored the application of smart mobile 
devices in education, most focus on single-dimensional interaction models, over-
looking the potential of multidimensional interactions [13, 14]. Additionally, tradi-
tional methods for assessing learning outcomes often rely on qualitative analysis 
and post-class tests, which cannot comprehensively and in real-time reflect stu-
dents’ learning states and emotional changes [15–17]. The limitations of these 
research methods have led to the underutilization of smart mobile devices in class-
room teaching, requiring more systematic and comprehensive study to address 
these shortcomings.

This paper primarily includes two parts of study content: first, constructing a mul-
tidimensional interaction model for electronic design education classrooms based 
on smart mobile devices. By comprehensively using text, voice, video, and other 
interactive forms, a richer and more dynamic classroom interaction environment is 
established; second, evaluating the learning outcomes of electronic design education 
using smart mobile devices. By analyzing students’ emotions and feedback data in 
real-time, the learning outcomes are assessed, and teaching strategies are optimized 
accordingly. This study not only provides new perspectives and methods for the 
application of smart mobile devices in the field of education but also offers practical  
guidance for teaching reforms and innovations in electronic design education, 
holding significant theoretical and practical value.

2	 MULTIDIMENSIONAL INTERACTION MODEL FOR ELECTRONIC 
DESIGN EDUCATION CLASSROOMS BASED ON SMART 
MOBILE DEVICES

In the context of rapidly developing educational technology, the widespread 
application of smart mobile devices has brought new interaction methods to elec-
tronic design education classrooms. This classroom interaction is no longer limited 
to the traditional one-way communication of teachers lecturing and students lis-
tening but achieves classroom diversification and dynamism through the multidi-
mensional interaction of smart mobile devices. Specifically, the use of smart mobile 
devices enables students to participate in classroom discussions, ask questions, and 
express opinions in various forms, such as text, voice, and video. This multidimen-
sional interaction not only enhances students’ sense of participation and classroom 
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interaction but also provides teachers with rich classroom data, especially students’ 
emotional data.

In the electronic design education classroom based on smart mobile devices, 
the key to emotion analysis lies in utilizing these terminal devices to capture and 
analyze students’ multidimensional emotional signals, such as voice, text, and 
facial expressions, in real-time. Through emotion analysis, teachers can analyze the 
emotional components in students’ voices, such as excitement, calmness, or depres-
sion, thereby understanding students’ learning status and classroom engagement 
in real-time. One of the core objectives of this study is to determine the emotional 
level of the classroom by calculating the classroom emotion conversion rate and 
classroom excitement.

Assuming the number of emotion conversions is represented by dt, the duration 
of the classroom audio is represented by S, and the sampling frequency of the audio 
is represented by PZ , the formula for classroom emotion conversion rate is:

	 T
d

S
P

t

Z
� � 	 (1)

The duration of the voice segments judged to be excited emotion is represented 
by ddγ , and then the formula for classroom excitement is:

	 R
d

S
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Based on the above two formulas, the formula for determining the emotional 
level of the electronic design education classroom is:
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In the modern educational environment, the application of smart mobile 
device network analysis provides new study perspectives and methods for elec-
tronic design education classrooms. Currently, most smart mobile device network 
analyses focus on the interactive behaviors in online course forums, studying stu-
dents’ and teachers’ learning habits and engagement by analyzing their inter-
actions in these forums. These multidimensional forms of interactive behaviors 
include various forms, such as text, voice, and video, making classroom interac-
tion richer and more three-dimensional. However, the interactive behaviors in 
offline classrooms in existing teaching modes are rarely analyzed, mainly because 
offline classroom data is not as centralized and easy to extract as data in online 
forums. In offline classrooms, students’ interactions and feedback are often scat-
tered across multiple links and forms, and traditional data collection and analysis 
methods make it difficult to effectively capture this information. This paper inno-
vatively proposes to solve the offline classroom data collection problem by ana-
lyzing classroom audio data and applying mobile network analysis to the analysis 
of offline classroom interactive behaviors. Figure 1 shows an example of a smart 
mobile device network diagram for interaction in an electronic design education 
classroom.

https://online-journals.org/index.php/i-jim


iJIM | Vol. 18 No. 19 (2024)	 International Journal of Interactive Mobile Technologies (iJIM)	 71

Application of Smart Mobile Devices in Electronic Design Education: Multidimensional Interaction Model and Learning Outcomes Assessment

Fig. 1. An example of a smart mobile device network diagram for interaction  
in the electronic design education classroom

In this multidimensional interaction classroom model for electronic design edu-
cation based on smart mobile device networks, each speaker is considered a node in 
the smart mobile device network, with the weight of the node representing the total 
speaking time of that speaker. The connection between two nodes represents the 
interaction between the speakers, with the weight of the connection indicating the 
total interaction time. This method allows for a comprehensive analysis of teacher- 
student interaction behaviors in the classroom and the construction of a smart 
mobile device network diagram. Specifically, the conversion rate of teacher- 
student behaviors in the classroom is first calculated, which refers to the frequency 
and number of interactions between students and teachers within a specific time 
period. Second, classroom interaction distance refers to the physical or temporal 
distance between speakers, which can be determined by analyzing interaction 
time and speaking intervals. Classroom interaction density reflects the overall 
activity level of interactions in the classroom, indicating the frequency of interac-
tions within a certain time period. Furthermore, the density of the smart mobile 
device network is the ratio of the actual number of existing connections to the 
maximum possible number of connections in the network, reflecting the tightness 
of overall classroom interactions. The diameter of the smart mobile device network 
is the shortest path between the two farthest nodes in the network, indicating the 
farthest distance information travels in the classroom. The degree of a single node 
represents the number of connections a node has with other nodes, and the aver-
age degree of nodes is the average of all nodes’ degrees, reflecting the overall level 
of interaction.

The teacher-student behavior conversion rate measures the frequency of interac-
tions between teachers and students. Its calculation principle is to record the time of 
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each teacher and student’s speech, count the number of times students speak imme-
diately after a teacher’s speech, and count the number of times a teacher speaks 
immediately after a student’s speech, thereby evaluating the frequency and propor-
tion of teacher-student interactions. Assuming the number of teacher-student inter-
action behavior conversions is represented by dts, the duration of classroom audio is 
represented by S, and the frequency by PZ, the calculation formula is:

	 Es
d

S
P

ts

Z
� � 	 (4)

Classroom interaction distance refers to the interaction distance between speak-
ers, usually in terms of time. Its calculation principle is to use the speech times 
recorded by smart mobile devices to calculate the time intervals between each 
speech, i.e., the time distance of each interaction. If physical location information 
is available, the physical distance between speakers can also be calculated, which 
helps understand the interaction distance and frequency between speakers.
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Classroom interaction density reflects the overall activity level of classroom 
interactions. Its calculation principle is to record the number of speeches and 
interactions between speakers within a certain period, compare the actual num-
ber of interactions with the maximum possible number of interactions, and eval-
uate the frequency and activity level of interactions. This index helps understand 
the overall interaction situation in the classroom. Assuming the total number of 
edges between all nodes is represented by m, the weight of the edges by μs, the 
total number of nodes by v, and the weight of a single node by μv, the calculation 
formula is:
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The density of the smart mobile device network is the ratio of actual existing 
interaction relationships to the maximum possible interaction relationships. Its 
calculation principle is to construct a network diagram containing all speakers, 
count the number of actual existing interaction connections, and compare it with 
the number of all possible interaction connections to obtain the network density. 
This reflects the tightness of classroom interactions and the breadth of information 
dissemination.

	 F
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The diameter of the smart mobile device network is the shortest path between 
the two farthest nodes in the network, indicating the farthest distance informa-
tion travels in the classroom. Its calculation principle is to calculate the shortest 
path length between all pairs of nodes and find the longest one among them; 
this path length is the network diameter. This helps evaluate the efficiency of 
information dissemination in the classroom. Assuming the average degree of 
the network distance between two nodes is represented by fua, the calculation 
formula is:
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	 fv = MAX (fux)	 (8)

The average degree of nodes is the average of all nodes’ degrees, reflecting the 
overall level of interaction. Its calculation principle is to count the degrees of all 
nodes and then calculate the average of these degrees. Through the average degree, 
we can understand the breadth of interaction in the entire classroom, providing a 
reference for improving teaching strategies.

	 F
F

v
AVE

� � 	 (9)

The degree of a single node represents the number of connections it has with 
other nodes. Its calculation principle is to count the number of connections between 
a node and other nodes in the network diagram; these numbers of connections are 
the degree of that node. The higher the degree, the more interaction relationships 
that node has, reflecting the breadth of the speaker’s interaction in the classroom. 
Assuming the in-degree of a node is represented by UF and the out-degree by PF, the 
calculation formula is:

	 F = UF + PF	 (10)

3	 EVALUATION OF LEARNING OUTCOMES IN ELECTRONIC DESIGN 
EDUCATION USING SMART MOBILE DEVICES

To obtain an accurate evaluation of learning outcomes in electronic design edu-
cation using smart mobile devices, this paper proposes a spatial attention mecha-
nism bidirectional gated recurrent unit (BiGRU) model based on Spark distributed 
ensemble empirical mode decomposition (EEMD). The main reason is that learning 
outcome evaluation in electronic design education involves a large amount of time 
series data, and this model excels at handling complex time series data. During the 
data preprocessing stage, student interaction and learning data recorded by smart 
mobile devices, such as the number of speeches, interaction frequency, and assign-
ment completion times, can be extracted, sorted, grid-matched, and statistically 
analyzed. Proper preprocessing can provide high-quality input data for subsequent 
model analysis. In the model construction stage, the combination of EEMD and 
normalization methods can effectively decompose complex time series data into 
a finite number of intrinsic mode functions (IMFs) and residual sequences. These 
decomposed sequences are easier to analyze and predict, especially when com-
bined with the BiGRU algorithm with a spatial attention mechanism, which can bet-
ter capture spatial interaction information in the classroom, such as the interaction 
frequency between students and teachers and the intensity of discussions among 
students. Finally, during the model implementation stage, running the model on the 
Spark parallel distributed platform can efficiently handle large-scale educational 
data and achieve real-time evaluation of learning outcomes. The parallel computing 
capability of the Spark platform can accelerate data processing and model train-
ing, ensuring the timeliness and accuracy of evaluation results. Additionally, the 
model performs denormalization and superposition on the prediction results to 
provide intuitive learning outcome evaluations, such as learning progress curves 
and knowledge point mastery levels. Figure 2 shows the flow chart of the EEMD 
algorithm.
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Fig. 2. Flow Chart of the ensemble empirical mode decomposition algorithm

Below are detailed explanations of the four execution steps of the model:
Step 1: Application of the ensemble empirical mode decomposition algo-

rithm in model design: Set the overall average number of times as L, the white 
noise sequence of the u-th time as vu(s), the original signal as a(s), and the additional 
noise signal added to the u-th time as au(s). By adding vu(s) with a standard normal 
distribution to a(s), an additional noise signal can be obtained. The perturbation 
characteristics of white noise make the subsequent modal decomposition more 
stable and accurate.

	 au(s) = a(s) + vu(s), u = 1, 2, …, L	 (11)

Empirical mode decomposition (EMD) is performed on au(s) to obtain several 
IMFs and a residual sequence. These IMFs and residual sequences represent dif-
ferent frequency components and trend information in learning outcome data. 
Assuming the K-th IMF obtained after adding white noise in the u-th time is repre-
sented by zu,k(s), the residual function by eu,k(s), and the number of IMFs by K, the 
formula is:

	 a s z s e s u L k K
u u k u kk

K

( ) ( ) ( ), , , , ; , , ,
, ,

� � � �
�� 1

1 2 1 2  	 (12)

Repeat the above steps L times, and by adding different amplitudes of white noise 
signals multiple times, the influence of noise on the decomposition results can be 
offset, resulting in a more stable set of IMFs.

	 z1,k, z2,k, z3,k , …, zL,k , k = 1, 2, …, K	 (13)

To ensure the accuracy and stability of the IMFs, average calculations are per-
formed on the obtained function set, resulting in the final outcome of the modal 
decomposition functions. Finally, the decomposed IMFs and residual sequences 
are mapped to [0, 1] for data normalization, facilitating subsequent modeling and 
prediction. Assuming the k-th IMF of the decomposition is represented by zk(s), the 
calculation formula is:

	 z s
L

z s u K
k uku

L

( ) ( ), , , ,� �
��1

1 2
1

 	 (14)

Step 2: Constructing spatial attention mechanisms: Grid processing is per-
formed on classroom interaction data to extract the number of student interactions 
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in each grid. Specifically, the classroom is divided into several areas, each represent-
ing specific interactive activities such as asking questions, answering, and have dis-
cussions. The number of interactions extracted from these areas is used as weights 
to indicate the interaction frequency in each grid. Further, these interaction fre-
quencies are used as a weight to perform maxpool and avgpool processing on the 
input feature data. The maxpool operation captures the most frequent interaction 
behavior in each grid, while avgpool operation calculates the average interaction 
frequency. Through these two pooling operations, the most important interaction 
information in each grid can be extracted. The pooled feature data is then convolved 
to capture the spatial correlation between features. Convolution operations extract 
local patterns in the data, helping the BiGRU network better understand the import-
ant features in student interaction data. Finally, the convolved features are input 
into the sigmoid function for activation processing to generate spatial attention 
weights. These weights guide the BiGRU network to pay more attention to the key 
parts of classroom interaction data. Assuming the feature map is represented by 
D, average pooling by AP, maximum pooling by MP, convolution operation by fd, 
sigmoid activation function by δ, and spatial attention parameter matrix by LT D, 
the construction process of the spatial attention mechanism module is given by the 
following formulas:

	 L(D) = [AP(D); MP(D)]	 (15)

	 LT D = δ (d(L(D)))	 (16)

Step 3: Fusion of the BiGRU Model: In electronic design education, evaluating 
learning outcomes requires handling complex time series data. This paper selects 
the BiGRU model, which, by combining two GRU networks with opposite direc-
tions, can more effectively capture the information in these time series data. The 
BiGRU model consists of two unidirectional GRUs, one processing the forward time 
series information and the other processing the backward time series information. 
Assuming the update gate is represented by cs, the reset gate by es, the output value 
at time (s − 1) by gs−1, the input value at time s by as, the activation functions by δ and 
tanh, the weight matrix by Q, the update gate weight by Qc, the reset gate weight by 
qe, the tanh output value by g

s
, and the output result by gs, the definition of the GRU 

model is given by the following formulas:

	 Cs = δ (Qc · [gs−1, as])	 (17)

	 es = δ (Qe · [gs−1, as])	 (18)

	 g Q e g a
s s s s
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�
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1
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	 g C g C g
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�
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The hidden state of the forward GRU in BiGRU at time s is g
s−1

� ����
, indicating that the 

current time step’s state depends on the previous time step’s state; the hidden state 
of the backward GRU at time s is g

s−1

� ����
, indicating that the current time step’s state 

depends on the subsequent time step’s state. Through this bidirectional structure, 
BiGRU can consider both past and future contexts, making the model’s dependency 
relationship modeling for time series data more comprehensive. At each time step s, 
the hidden state of BiGRU is the weighted sum of the forward GRU and the backward 
GRU. Specifically, this means that at each time step, the model integrates information 
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from the past to the present (forward GRU) and from the future to the present (back-
ward GRU), thereby more accurately capturing the complex temporal patterns in 
student interaction data. This is especially important for evaluating the multidimen-
sional interaction forms in the classroom, as students’ learning behavior is often 
influenced by both preceding and subsequent activities. Assuming the nonlinear 
transformation of the input word vectors is represented by the GRU() function, the 
input value at time s by as, the forward output result by g

s

� ��
, the backward output 

result by g
s

� ��
, the forward and backward output at time (s − 1) by g

s−1

� ����
 and g

s−1

� ����
, the 

forward hidden state at time s by g
s

� ��
, the backward hidden state at time s by g

s

� ��
, the 

weights by qs and ns, and the bias of the hidden state at time s by ys. The calculation 
formulas are as follows:

	 g GRU a g
s s s

� �� � ����
�

�
( , )

1
	 (21)

	 g GRU a g
s s s

� �� � ����
�

�
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	 g q g n g y
s s s s s s
� � �
� �� � ��

	 (23)

Figure 3 shows the flow chart of the constructed evaluation model for learning 
outcomes in electronic design education using smart mobile devices.

Fig. 3. Flow chart of the constructed evaluation model for learning outcomes in electronic design 
education using smart mobile devices
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4	 EXPERIMENTAL RESULTS AND ANALYSIS

According to the data in Table 1, four types of smart mobile terminals used in 
electronic design education exhibit significant differences in network layer and 
relationship layer metrics. The Learning Support Tools category has an average 
degree of 308.252, out-degree centrality of 28.254%, in-degree centrality of 16.245%, 
betweenness centrality of 3.25%, eigenvector of 74.25%, and density of 18.2359. The 
Interactive Teaching Tools category performs best in all metrics, with an average 
degree of 458.236, out-degree centrality of 32.562%, in-degree centrality of 17.325%, 
betweenness centrality of 1.81%, eigenvector of 70.25%, and density of 26.3241. The 
Practical Operation Tools category has an average degree of 287.523, out-degree cen-
trality of 23.124%, in-degree centrality of 6.599%, betweenness centrality of 1.43%, 
eigenvector of 56.32%, and density of 16.2568. The Data Collection and Analysis 
Tools category has an average degree of 356.324, out-degree centrality of 29.685%, 
in-degree centrality of 16.235%, betweenness centrality of 1.68%, eigenvector of 
72.32%, and density of 20.3214.

Table 1. Relationship layer and network layer metrics of smart mobile terminal networks

Relationship Layer Network Layer

Average  
Degree

Out-Degree 
Centrality

In-Degree 
Centrality

Betweenness 
Centrality Eigenvector Density

Learning 
Support Tools

308.252 28.254% 16.245% 3.25% 74.25% 18.2359

Interactive 
Teaching Tools

458.236 32.562% 17.325% 1.81% 70.25% 26.3241

Practical 
Operation Tools

287.523 23.124% 6.599% 1.43% 56.32% 16.2568

Data Collection 
and Analysis Tools

356.324 29.685% 16.235% 1.68% 72.32% 20.3214

From these data, it can be concluded that the interactive teaching tools category 
plays the most important role in the multidimensional interaction model of electronic 
design education classrooms. Its high average degree and network layer metrics 
indicate that these tools are effective in promoting classroom interaction and stu-
dent engagement. High out-degree and in-degree centrality suggests that interactive 
teaching tools not only actively guide students to participate in interactions but also 
effectively receive student feedback. Meanwhile, learning support tools and data col-
lection and analysis tools also show high network centrality and eigenvector values, 
indicating their significant roles in supporting learning and data analysis. However, 
the lower betweenness centrality and eigenvector values of Practical Operation Tools 
suggest that their role in interaction and feedback is relatively weaker.

By analyzing the EEMD and actual data in the one-day and 10-day datasets shown 
in Figure 4, it is evident that the EEMD algorithm fits the actual data very closely. In 
the 1-day dataset, the values from the EEMD algorithm are almost identical to the 
actual data at each time point. For example, at time points 10, 20, 30, 40, 50, 60, 70, 
and 80, the EEMD values are 4, 1, 8, 4, 16, 10, 70, and 170, which match exactly with 
the actual data. Similarly, in the 10-day dataset, the fit between the EEMD algorithm 
and actual data is also very good. For instance, at time points 200, 400, 600, 800, 
and 1000, the values are 176, 18, 71, 52, and 158 for both the EEMD and actual 
data, indicating strong consistency. This high level of consistency suggests that the 

https://online-journals.org/index.php/i-jim


	 78	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 18 No. 19 (2024)

Huang and Luo

EEMD algorithm performs well in capturing data trend changes. Based on this fitting 
performance, it can be inferred that the EEMD algorithm can be effectively applied in 
electronic design education to provide accurate learning effect evaluations through 
the decomposition and analysis of student interaction and feedback data.

b) 10-day dataset

a) 1-day dataset

Fig. 4. Fitting situation of the empirical mode decomposition algorithm

Table 2. Forecasting of sequences before normalization using empirical mode decomposition

IMF
MOEs

MAPE (%) MAE RMSE ME

1 7.302% 1.625 3.124 9.562

2 8.215% 0.489 0.712 2.324

3 31.235% 0.926 0.956 1.225

4 90.312% 6.012 8.415 14.236

5 12.512% 8.265 8.325 9.562

6 2.842% 1.689 1.825 2.785

7 32.62% 12.456 13.562 22.136
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According to the data in Table 2, the predictive performance of each IMF varies 
significantly. In terms of prediction error, IMFs one and six have the lowest mean 
absolute percentage error (MAPE) at 7.302% and 2.842%, respectively, indicating 
good prediction accuracy. IMFs two and five have MAPEs of 8.215% and 12.512%, 
showing relatively small prediction errors. Conversely, IMFs three and seven have 
higher MAPEs of 31.235% and 32.62%, respectively, indicating lower prediction 
accuracy. Additionally, IMF four has the highest MAPE of 90.312%, showing the larg-
est prediction error. Other error metrics such as mean absolute error (MAE), root 
mean square error (RMSE), and mean error (ME) also reflect similar trends, with 
IMFs six and one performing the best across all metrics, while IMFs four and seven 
perform the worst.

Table 3. Forecasting of sequences after normalization using empirical mode decomposition

IMF
Measures of Effectiveness (MOEs)

MAPE (%) MAE RMSE ME

1 3.602% 0.856 1.125 2.214

2 1.315% 0.332 0.356 0.652

3 4.121% 0.235 0.265 0.421

4 3.912% 1.021 1.325 2.652

5 0.024% 0.031 0.031 0.048

6 0.021% 0.007 0.009 0.026

7 3.412% 1.265 1.526 2.785

Table 4. Performance of different models on learning effectiveness evaluation across various datasets

Days 1-Day 5-Day 10-Day

MOEs MAPE 
(%) MAE RMSE ME MAPE 

(%) MAE RMSE ME MAPE 
(%) MAE RMSE ME

Algorithms EMD-LSTM 12.121 2.236 2.458 6.352 11.456 2.158 2.562 6.485 18.526 2.658 4.325 28.265

EEMD-LSTM 5.784 2.456 4.125 7.895 12.154 0.956 1.289 6.021 8.124 13.25 2.458 18.125

EMD-GRU 10.265 3.895 4.652 9.874 28.326 5.685 4.125 10.262 22.235 3.895 6.235 37.451

EEMD-GRU 8.125 2.652 3.265 6.021 26.254 3.589 3.987 21.235 22.315 2.895 4.125 21.365

EMDN-GRU 3.658 1.236 1.658 3.254 6.789 1.845 2.562 9.124 4.365 1.895 2.895 14.265

The Proposed Model 1.512 0.725 0.936 2.151 3.124 0.445 0.562 1.895 2.561 0.715 0.978 3.458

Table 3 shows the results of forecasting using the EMD algorithm after normal-
ization for each IMF. It is evident that normalization significantly improved predic-
tion accuracy. The MAPE values for functions one, two, three, four, and seven are 
3.602%, 1.315%, 4.121%, 3.912%, and 3.412%, respectively, all of which are lower 
than before, indicating a reduction in prediction errors. In particular, functions five 
and six have MAPEs of 0.024% and 0.021%, demonstrating extremely high predic-
tion accuracy with errors nearly negligible. For other error metrics such as MAE, 
RMSE, and ME, the values for each function also significantly decreased after nor-
malization, with functions five and six showing the best results: MAE of 0.031 and 
0.007, RMSE of 0.031 and 0.009, and ME of 0.048 and 0.026. These results indicate 
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that normalization has significantly enhanced the predictive performance of the 
EMD algorithm. Especially for functions five and and, the near-zero prediction errors 
after normalization demonstrate their effectiveness in capturing data features and 
providing highly accurate predictions. This is of significant importance for real-time 
assessment and feedback in electronic design education based on smart mobile ter-
minals, as high-precision predictions can more accurately reflect students’ emotions 
and learning outcomes, helping educators adjust teaching strategies promptly.

Table 4 shows the performance of different datasets and different algorithms in 
learning outcome evaluation. From the 1-day dataset, the proposed model performs 
well in all error indicators, with MAPE being only 1.512%, significantly lower than 
other algorithms. The MAE is 0.725, the RMSE is 0.936, and the ME is 2.151, all of 
which are the lowest values, indicating that the proposed model has the highest 
accuracy in short-term prediction. In the five-day dataset, the proposed model also 
performs excellently, with MAPE being 3.124%, significantly better than other algo-
rithms. The MAE is 0.445, the RMSE is 0.562, and the ME is 1.895. These data again 
verify the high accuracy of the proposed model. For the 10-day dataset, the proposed 
model’s MAPE is 2.561%, MAE is 0.715, RMSE is 0.978, and ME is 3.458, which is also 
the best among all algorithms. These data indicate that, whether it is a short-term 
or long-term prediction, the proposed model has high accuracy and stability. Based 
on the above results, it can be seen that the proposed model, based on Spark distrib-
uted ensemble EMD with a spatial attention mechanism and BiGRU, has significant 
advantages in learning outcome evaluation. Compared with traditional long short-
term memory (LSTM), GRU, and convolutional neural network (CNN) algorithms, the 
proposed model shows the lowest MAPE, MAE, RMSE, and ME in datasets of various 
time spans, indicating that it can more accurately capture and predict complex time 
series data characteristics.

5	 CONCLUSION

This paper focuses on the application of smart mobile terminals in electronic 
design education, mainly including two parts: First, a multidimensional interaction 
model for electronic design education classrooms based on smart mobile terminals 
was constructed. By comprehensively utilizing multiple interactive forms such as 
text, voice, and video, a richer and more dynamic classroom interaction environ-
ment was established. This multidimensional interaction model can effectively 
enhance student engagement and learning experiences, providing a new teaching 
model for electronic design education. Secondly, this paper conducted an evalua-
tion of learning outcomes in electronic design education using smart mobile termi-
nals. Through real-time analysis of students’ emotional and feedback data, learning 
outcomes were evaluated, and teaching strategies were optimized accordingly. The 
experimental results show that the proposed model, based on Spark distributed 
EEMD with a spatial attention mechanism and BiGRU, outperforms traditional meth-
ods in terms of prediction accuracy and stability, having significant advantages.

This study not only provides new perspectives and methods for the application of 
smart mobile terminals in the field of education but also offers practical guidance for 
teaching reform and innovation in electronic design education, with important the-
oretical and practical value. By constructing a multidimensional interaction model 
and a precise learning outcome evaluation model, this paper provides a system-
atic solution for how to use smart mobile terminals to improve educational out-
comes. These study results can be applied to actual teaching, helping teachers better 
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understand and meet students’ learning needs, thereby improving overall teaching 
quality. Despite the significant achievements of this study, there are still some lim-
itations. First, the diversity and scale of experimental data may not fully reflect the 
effects in all teaching scenarios. Secondly, the adaptability and stability of the model 
in different teaching environments and student groups need further verification. 
Future study can be expanded in the following directions: First, expand the scale 
and diversity of datasets to verify the model’s generalizability and robustness; sec-
ond, integrate more advanced machine learning and deep learning techniques to 
further optimize the model’s performance; Third, conduct larger-scale field teaching 
experiments to verify and improve the practical application of the multidimensional 
interaction model and learning outcome evaluation model, thereby promoting 
further innovation and development in electronic design education.
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