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PAPER

Vocational Education in the Era of Big Data: 
Course Design and Optimization Strategy 
Based on Educational Technology

ABSTRACT
In the era of big data, vocational education is confronted with the challenge of effectively 
utilizing students’ learning behavior data. With the advancement of information technol-
ogy, the accumulation of students’ learning trajectories and behavior data presents new 
opportunities for the optimization of education and teaching. Currently, many studies focus 
on the analysis of short-term learning behaviors, while comprehensive consideration of both 
long- and short-term behaviors remains insufficient, limiting the precision of course design 
and resource recommendations. Therefore, the exploration of an optimization strategy that 
integrates students’ long- and short-term learning behaviors is urgently needed to enhance 
the effectiveness of vocational education. This study aims to propose a course design and 
optimization strategy based on educational technology, with a focus on integrating students’ 
long- and short-term learning behaviors, thereby presenting corresponding resource rec-
ommendation methods and course design plans. The study will provide more personalized 
and precise teaching solutions for vocational education, promoting the enhancement of 
educational quality.

KEYWORDS
big data, vocational education, course design, learning behavior, resource recommendation, 
educational technology

1	 INTRODUCTION

With the rapid advancement of information technology, big data has pene-
trated various industries, exerting particularly significant influence on the field of 
education. In vocational education, extensive amounts of students’ learning behav-
ior data have been generated, encompassing key information such as learning trajec-
tories, study habits, and levels of knowledge mastery [1–5]. The effective utilization 
of this data to optimize teaching content and the allocation of learning resources has 
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emerged as an important research topic within the current vocational education 
landscape [6–7]. Simultaneously, the ongoing progress of educational technology has 
facilitated the widespread adoption of intelligent education systems based on big 
data, providing new possibilities for course design and optimization in vocational 
education.

In this context, exploring course design and optimization strategies driven by 
big data holds significant practical relevance. On one hand, precise analysis of 
students’ learning behavior data can provide educators with valuable insights, 
assisting in the adjustment of teaching strategies and content, thus enhancing 
educational outcomes [8–11]. On the other hand, the mining and analysis of big 
data can enable the personalized optimization of students’ learning behaviors 
and outcomes, allowing vocational education to better align with individual needs 
and the direction of industry development [12–18]. Therefore, the exploration of 
effective course design and resource recommendation methods within a big data 
environment has become a critical research direction in the field of vocational 
education.

However, existing research have predominantly focused on the analysis of 
learning behaviors within singular timeframes, neglecting the interplay between 
students’ long- and short-term learning behaviors. This oversight has resulted in 
insufficient precision and adaptability in resource recommendations and course 
design [19–21]. Furthermore, most methodologies have concentrated solely on the 
analysis of specific data types, failing to comprehensively integrate multidimen-
sional learning behavior information, which has led to suboptimal outcomes in 
course optimization [22–23]. Therefore, addressing how to incorporate students’ 
long- and short-term learning behaviors into course design and proposing more 
refined optimization strategies remains an urgent challenge.

This study, grounded in big data technology, combines students’ long- and 
short-term learning behaviors to propose a resource recommendation method and 
an implementation strategy for course design and optimization. The first part of 
the study focuses on discussing the resource recommendation method that inte-
grates long- and short-term learning behaviors to provide students with more 
personalized learning resources. The second part centers on how to design and opti-
mize vocational education courses based on data from long- and short-term learning 
behaviors to enhance teaching effectiveness. This study aims to provide more intel-
ligent and refined solutions for vocational education, promoting the development of 
educational technology applications in the era of big data.

2	 PROBLEM DESCRIPTION OF COURSE DESIGN AND OPTIMIZATION 
IN VOCATIONAL EDUCATION

The goal of vocational education is to cultivate highly skilled talent, and these 
skills continually evolve with technological advancements and industrial upgrades. 
Therefore, big data-driven educational technology can track industry development 
trends and job requirements in real-time, helping vocational education courses 
to be updated promptly, ensuring that the skills students acquire closely align 
with actual job demands. With the rise of remote education and online learning 
platforms, technology-based course design can overcome temporal and spatial 
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limitations, widely providing flexible learning resources, thus making vocational 
education more responsive to the learning needs and life rhythms of modern 
workers. Furthermore, students’ learning behavior data and outcomes can be 
comprehensively recorded and analyzed through big data technology, laying the 
foundation for personalized teaching. As each student’s learning style, pace, and 
interests differ, educational technology can utilize big data analysis to generate 
student profiles, facilitating targeted course design and optimization to enhance 
learning efficiency.

In this context, this study proposes a course design and optimization method 
that integrates students’ long- and short-term learning behaviors, specifically 
applied to the field of vocational education. The core principle of this method lies 
in the in-depth analysis and modeling of students’ learning behavior data through 
big data technology, enabling personalized course recommendations and designs. 
Initially, students’ learning behaviors were categorized into long- and short-term 
components, which were modeled separately. Long-term learning behaviors reflect 
students’ overall learning trajectories and interests; therefore, the model employs 
a self-attention mechanism to extract key features from these behaviors, captur-
ing the deep-seated changes in students’ long-term learning interests and behav-
ioral patterns. Short-term learning behaviors reflect students’ recent preferences 
and needs, which were modeled using gated recurrent units (GRUs) to accurately 
describe the dynamic learning states of students. The constructed model not only 
facilitates resource recommendations based on students’ current learning needs but 
also optimizes future learning pathways according to long-term interests, ensur-
ing that the recommended course content aligns with students’ immediate inter-
ests while promoting their long-term developmental goals. This ultimately provides 
personalized course recommendations, optimizes the allocation of educational 
resources, and achieves more precise and intelligent teaching design and optimiza-
tion in vocational education.

3	 COURSE LEARNING RESOURCE RECOMMENDATION INTEGRATING 
STUDENTS’ LONG- AND SHORT-TERM LEARNING BEHAVIORS

For student i, the sequence characteristics of his/her course learning behaviors 
can be represented as follows:

	 T i n n n n
v

( ) , , , ...,� � �1 2 3
	 (1)

The long-term behaviors of student i were selected as M (i) = n1∪n2 ∪n3∪ ... ∪nv-j,  
while the recent behaviors nv-j+1,nv-j+2, ...,nv were considered short-term behaviors. 
The model input consists of the long- and short-term course learning behaviors, 
candidate course learning resources CA, and other features OF, with the output 
being the online click probability of the candidate course learning resources. The 
model function expression is given as follows:

	 ZSE D M i n n CA OF
v j v

� � �� �
( ), , ..., , ,

1
	 (2)
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Fig. 1. Architecture of the effective recommendation model for personalized course learning resources

The key to course design and optimization lies in adequately considering how 
students’ long- and short-term learning behaviors effectively inform personalized 
recommendations for course learning resources. Figure 1 illustrates the architecture 
of the recommendation model. The proposed model possesses two notable structural 
characteristics and functional advantages: a) The model partitions students’ course 
learning behavior data into long- and short-term segments for separate modeling. 
By employing a self-attention mechanism to extract features from long-term course 
learning behaviors, the model captures students’ stable preferences. This ensures 
a profound understanding of students’ overall learning trajectories, providing a 
solid data foundation for personalized course design; b) Short-term course learning 
behaviors are directly input into the model and combined with long-term behav-
ioral features. While modeling the sequence through GRU cells, a basic attention 
mechanism assigns weights to different learning behaviors, effectively reflecting 
students’ current learning needs and interests.

The personalized recommendation mechanism of the proposed model enhances 
students’ learning experiences and engagement, offering a more precise and intel-
ligent course design solution for vocational education. This ensures that educa-
tional resources are flexibly allocated according to students’ evolving needs and 
development, facilitating the realization of personalized learning. Specifically, the 
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model consists of several key components: the input layer, the embedding layer, 
the long-term interest extraction layer, the interest evolution network, the atten-
tion unit, and the multilayer perceptron (MLP) layer. Each of these components is 
detailed as follows:

a)	 Input layer: The input layer of the model employs multidimensional features to 
comprehensively capture students’ learning behaviors. Specifically, the input fea-
tures are categorized into three types: students’ long- and short-term course learn-
ing behaviors, and other relevant features. By analyzing the ordered sequence 
of learning behaviors, the model is able to extract the last j items as short-term 
course learning behaviors, while the remaining components are modeled as 
long-term course learning behaviors. Additionally, to enhance the expressiveness 
of long-term behavioral features, positional encoding was input alongside these 
features into the Transformer network, facilitating subsequent feature extraction 
and understanding. If the length of the ordered student behavior sequence is n, 
long-term course learning behaviors can be represented as follows:

	 n n nM
IT PO

� � �, 	 (3)

	 M i n n n nM M M
v j
M( ) , , , ...,� � ��1 2 3

	 (4)

	  Students’ short-term behaviors T i n n n
v j
T

v j
T

v
T( ) , , ...,  � � �� � � �1 2

 were input directly 
into the network without positional encoding, where nT = nIT.

b)	 Embedding layer: The embedding layer within the model can effectively han-
dle high-dimensional sparse one-hot encoded features by mapping them to a 
low-dimensional dense vector, thereby enhancing the efficiency and effective-
ness of model training. The design of the embedding layer is akin to that of the 
Word2Vec model, allowing each one-hot code to be embedded into a fixed-size 
low-dimensional vector space. When processing students’ long-term course 
learning behaviors, the embedding vector encompasses not only the features 
of course learning resources but also incorporates positional encoding informa-
tion, ensuring that the model comprehensively understands the significance and 
contextual relationships of different courses within the time series. Specifically, 
the embedding matrix QM for long-term course learning behaviors has dimen-
sions of |NM|× fM, where fM denotes the dimension of the embedding vector and 
|NM| represents the length of the behaviors. In a similar fashion, the embedding 
matrix QT for short-term course learning behaviors reflects the dense represen-
tation of its features, with dimensions of |NT|× fT, while other features utilize a 
corresponding embedding matrix QP. Through this methodology, the model gen-
erates corresponding embedding vectors r

u
M , r

u
T  and r

u
P for each course learning 

behavior, preserving the original feature information while effectively reducing 
computational complexity.

c)	 Long-term interest extraction layer: The long-term interest extraction layer 
within the model efficiently extracts features of students’ long-term course learn-
ing behaviors using a Transformer layer based on the self-attention mechanism. 
Initially, this layer receives the long-term course learning behavior embedding 
vector r from the embedding layer. Through the self-attention mechanism, rela-
tionships between different learning behaviors can be captured, enabling the 
model to focus on students’ learning preferences and patterns across various 
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time periods. By employing multiple attention, heads, the model is able to learn 
multiple features simultaneously, thereby enhancing its expressive capacity. 
Figure 2 illustrates the architecture of the long-term interest extraction layer. Let 
the learnable parameters be represented by Qw, QJ and QN, and let the number 
of attention heads be denoted by g. All input long-term behavior embedding 
vectors of students are represented by RM. The calculation process is outlined 
as follows:

	 HEAD ATT Q r Q r Q r
u w u

M
J u

M
n u

M� � �, , 	 (5)

	 T LR R CONCAT HEAD HEAD HEAD QM
g G

= =( ) ( , , ..., )
1 2

	 (6)

Fig. 2. Architecture of the long-term interest extraction layer

	  Following feature extraction, a feedforward network was employed to 
perform non-linear transformations, thereby further enhancing the model’s 
fitting capability. To prevent overfitting, a dropout mechanism was incorporated 
into the design, which reduces the complexity of parameters during training. 
Additionally, residual structures and layer normalization (LN) were introduced 
within the self-attention module and the feedforward network to improve train-
ing stability and efficiency. Let the learnable parameter matrices be represented 
as Q(1) and Q(2), while the bias terms are denoted by y(1) and y(2). The non-linear 
transformation is expressed as follows:

	 D FFN= ( )T 	 (7)

	  The residual structure and LN formulas are given as follows:

	 �� �T LN T DROPOUT LG T( ( ( ))) 	 (8)

	 D LN T DROPOUT RELU T Q v Q y� � � � �� � �� �� �( ) ( ) ( ) ( )1 1 2 2 	 (9)
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	  Ultimately, a sum pooling operation was utilized to compress the features of 
the long-term course learning behavior sequences processed by the Transformer 
layer into a fixed-length vector. This ensures that the parameters fed into the 
MLP fully connected network have a consistent dimension. Let the extracted M

u 
after the Transformer layer be represented by d

u
M, and the final student long-term 

behavior features be denoted as R
TR
M , then the compression formula is as follows:

	 R SUMP D SUMP d d d
TR
M M M

v j
M� � � ��

( ) , , ...,
1 2

	 (10)

d)	 Interest evolution network: The interest evolution network within the model 
employs a GRU structure to dynamically predict the evolution of student inter-
ests. This network receives inputs including the vector R

TR
M, which represents the 

student’s long-term characteristics, and the student’s short-term course learn-
ing behavior vector r

u
T , processed through the embedding layer. By integrating 

these two features, the interest evolution network is able to capture trends in the 
changes of student interests, thereby facilitating a more precise understanding of 
their learning needs. If the number of student short-term behaviors is denoted 
as j, then the number of GRU memory cells is j + 1. The output from the last 
time step of the GRU unit is represented as REV, signifying the evolution results 
of all historical behaviors of the student. The calculation formula for the interest 
evolution layer is provided as follows:

	 R GRU R r r r
EV TR

M
v j
T

v j
T

v
T� � �� � � �

, , , ...,
1 2

	 (11)

e)	 Attention unit: The attention unit can effectively measure the weights of input 
course learning behaviors through a fundamental attention mechanism, thereby 
enhancing the accuracy of personalized course recommendations. The inputs 
to this unit include the embedding vector RCA for candidate course learning 
resources and either the long-term course learning behavior embedding vector 
R
TR
M  or the short-term behavior vector r

u
t of the student. By merging these two 

input vectors and their cross-features, the model captures the deep associations 
between student learning behaviors and candidate courses. In calculating the 
attention scores, the model employs a small neural network for feature map-
ping without applying SoftMax normalization. This design choice ensures that 
the resolution of the weights is not compressed, maintaining the significance 
of the weights associated with learning behaviors that are more relevant to the 
candidate course learning resources. Through this approach, the attention unit 
accurately reflects the student’s preferences and focal points regarding different 
courses, providing a more flexible and precise basis for subsequent course rec-
ommendations. The model structure of the attention unit is illustrated in Figure 3.  
Assuming that the candidate item vector is represented by I and the student 
behavior vector by N, the final output of the attention unit is denoted as RAT, with 
the calculation processes expressed as follows:

	 �
u

MLP CONCAT I N I N I� �� �( , , , )� N 	 (12)

	 R N
AT u

u

v

� �
�
��

1

	 (13)
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Fig. 3. Model of the attention unit

f)	 Multilayer perceptron layer: In the model, the MLP layer plays a crucial role in 
feature fusion and final prediction. This layer is responsible for concatenating the 
vector outputted from previous modules, integrating the rich feature information 
from the attention unit, the long-term interest extraction layer, and the interest 
evolution network. This process provides comprehensive input to the fully con-
nected network, enabling the effective combination of various features to gener-
ate more accurate predictions. The design of the MLP layer ensures that different 
types of learning behavior features can interact and fuse within the same space, 
capturing the complex patterns of student learning in courses. Let ROT denote 
the embedding vector of other features, RAT represent the output vector from the 
attention unit, REV signify the output vector from the interest evolution network, 
and RCA indicate the embedding vector of candidate items. The input to the MLP 
can be expressed as follows:

	 � � � �CONCAT R R R R
OT AT EV CA

, , , 	 (14)

	  Ultimately, the output from the MLP was processed through a SoftMax layer, 
generating binary classification predictions, specifically the probability of a course 
being clicked. This probabilistic output provides a clear basis for personalized 
course recommendations, enabling the model to more accurately meet the learning 
needs of students. Let T represent a training set of size T, the output of the SoftMax 
layer be denoted by o(a), and the true click probability of the training samples be 
represented by b∈{0,1}. Thus, the loss function can be formulated as follows:

	 LOSS
V

b o a b o a
a b T

� � � � �
�
�1

1 1( log ( ) ( ) ( ( )))
( , )

log 	 (15)

4	 COURSE DESIGN AND OPTIMIZATION INTEGRATING LONG- 
AND SHORT-TERM STUDENT LEARNING BEHAVIORS

The proposed system architecture for course design and optimization, which 
integrates both long- and short-term student learning behaviors, aims to construct 
an efficient and real-time recommendation system for personalized course resource 
recommendations. The system comprises multiple layers, with the first being the 
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storage layer, responsible for storing vast amounts of data. Hadoop distributed file 
system (HDFS) was employed as the offline data warehouse for historical version 
data, while Hadoop database (HBase) was utilized for efficient real-time querying 
of structured data. MySQL and a remote dictionary server (Redis) were employed 
to handle student registration information and cache recommendation results, 
respectively, ensuring the real-time accessibility and reliability of the data. Figure 4 
illustrates the specific system architecture.

Fig. 4. Architecture of the course design and optimization system

The computation layer is responsible for transforming raw data into the formats 
required by the model service layer, which includes generating student profiles and 
course resource profiles to support the operation of multi-path recall algorithms 
and ranking algorithms. The model service layer focuses on the training and updat-
ing of the recall model and the ranking model, with the offline model updated as 
scheduled. In contrast, the real-time recall model dynamically generates recom-
mendation sets based on student behaviors, thereby ensuring the timeliness of the 
recommendations.

The backend service layer is responsible for the online recommendation service 
interface and the operational logic of the system, ensuring seamless integration 
between the recommendation algorithms and the frontend display interface. This 
guarantees that students experience a smooth user interaction. The display layer 
directly interacts with the students, with their behavioral data collected via the log-
ging module and fed back to the data warehouse, continuously updating the student 
profiles and providing a basis for future recommendations.

The system architecture was designed to integrate both long- and short-term stu-
dent learning behaviors, ensuring that the recommendation system can respond in 
real time to students’ evolving learning needs and interests. This allows for personal-
ized course design and optimization, ultimately enhancing the learning experience 
and outcomes for students.

The workflow of the course design and optimization system can be divided into 
four main components: offline part, real-time part, data collection, and frontend 
part. The specific steps are as follows:

a)	 Data collection: When students browse the recommendation system website, 
their behavioral data can be captured through specific tracking points, generat-
ing behavior logs. These log data are collected by Flume and stored in the HDFS 
offline data warehouse, while also being sent to Kafka for use by the real-time 
recall module. Simultaneously, the business data from the backend database 
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MySQL is periodically synchronized to HDFS via Sqoop, ensuring the integrity of 
both offline and real-time data.

b)	 Data processing and profile generation: The logs and business data collected 
in HDFS can be processed using Spark SQL to generate student profiles, course 
learning resource profiles, and student behavior record tables. These data are 
stored in HBase for use by the multi-path recall model. Subsequently, student pro-
files and course learning resource profiles undergo further processing via Spark 
SQL, generating the feature data, which is also stored in HBase.

c)	 Offline recall and model training: The offline recall model generates correspond-
ing recall results based on student profiles and course learning resource pro-
files, which are stored in HBase. To improve the efficiency of online services, the 
results of multiple recall algorithms are stored in the same HBase table, with dif-
ferent recall sets assigned to separate column families. The LSIN ranking model 
reads the student-course learning resource feature data from HBase for training 
and model updates. The trained model is deployed on Torch Serve, providing an 
external model prediction interface.

d)	 Real-time recall: The real-time recall model retrieves real-time student behavior 
data and new or trending course resource data from Kafka to generate similar 
recall results, which are stored in the recall table in HBase. Simultaneously, new 
and popular articles are cached in Redis to ensure fast access and efficient read-
ing. These cached data are automatically deleted upon expiration.

e)	 Recommendation and feedback: When a student requests a recommendation, the 
recommendation center retrieves the recall set from the HBase recall table and 
passes it to the ranking model to predict the student’s click-through rate on the 
recalled course learning resources. Based on the predicted click-through rates, 
the results are ranked and returned as recommendations. Most recommendation 
results are cached, while a smaller portion is displayed directly to the student. 
As students continue to interact with the system, a complete feedback loop is 
formed. This process not only ensures the accuracy and timeliness of the recom-
mendations but also allows the system to continuously adjust and optimize to 
meet the evolving learning needs and behaviors of the students.

5	 EXPERIMENTAL RESULTS AND ANALYSIS

The dataset used in this study comprises three main categories: 1) Teaching outcome 
data include student performance metrics such as final exam scores, class participa-
tion, and assignment completion. Additionally, student feedback and subjective evalu-
ations of the course are collected through learning attitude surveys, providing further 
insight into teaching effectiveness. 2) Teaching process data record the specific oper-
ations and dynamics during the teaching process, which are essential for analyzing 
the implementation of course design and instructional strategies of teachers. Key indi-
cators include lecture duration and pacing, the frequency and functionality of edu-
cational technology tools used, teaching strategies employed, and records of student 
interactions. 3) Learning environment data focus on the impact of the learning envi-
ronment on course design and teaching outcomes, covering both physical and virtual 
environments. These data include the layout of learning spaces, the availability and 
usage of learning resources, technical support conditions, and student background 
information. The arrangement of learning spaces and the accessibility of resources 
can affect the student learning experience, while the stability of technical support is 
directly related to the effective application of educational technology.
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Table 1. Performance comparison of different models in course learning resource recommendations

Dataset
Model

Teaching Outcome Data Teaching Process Data Learning 
Environment Data

AUC LogLoss AUC LogLoss AUC LogLoss

DCG 0.7652 0.5862 0.7845 0.5369 0.7784 0.5214

SVD+ 0.7725 0.4956 0.8123 0.4123 0.8021 0.4456

GNN 0.7788 0.4231 0.8236 0.3987 0.8152 0.4326

BST 0.7896 0.4012 0.8254 0.3658 0.8236 0.4158

Model 1 
(this study)

0.7841 0.4023 0.8236 0.3562 0.8254 0.4123

Model 2 
(this study)

0.7796 0.4325 0.8235 0.3789 0.8125 0.4236

Model 3 
(this study)

0.7726 0.5012 0.8124 0.4013 0.8123 0.4326

Table 2. Impact of different modelling approaches on area under the curve

Dataset Method AUC Dataset Method AUC

Teaching 
outcome +  
teaching 
process data

Proposed model - 
attention mechanism

0.784 Learning 
environment data

Proposed model - 
attention mechanism

0.7785

Proposed model - 
GRU structure

0.7625 Proposed model - 
GRU structure

0.7456

Proposed model 0.8236 Proposed model 0.8236

Table 1 presents a performance comparison of various models in recommend-
ing course learning resources. By analyzing the performance of different models 
across teaching outcome, teaching process, and learning environment data, Model 1  
from this study demonstrates strong overall performance. Notably, its area under 
the curve (AUC) value reaches 0.8236, and its logarithmic loss (LogLoss) is 0.3562 
for teaching process data, highlighting its advantage in capturing students’ learning 
dynamics. This indicates that the self-attention mechanism effectively enhances the 
model’s understanding of the evolution of student interests when extracting long-
term learning behavior features. In contrast, traditional models such as discounted 
cumulative gain (DCG) and singular value decomposition (SVD)+ exhibit inferior 
performance across multiple metrics, with AUC values generally below 0.78, reflect-
ing their weaker adaptability in personalized recommendations. Further analysis of 
Model 2 and Model 3 reveals that, as the number of self-attention layers increases, 
the performance of the models fluctuates. Model 2 shows relatively stable overall 
performance and is suitable for handling complex learning behavior data, whereas 
Model 3 shows a slight deficiency in the AUC value for teaching outcome data. This 
may suggest that an excessive number of layers could lead to overfitting in certain 
situations, preventing the model from effectively leveraging the complexity of the 
data. Therefore, the findings of this study underscore the importance of selecting 
an appropriate number of self-attention layers to optimize the performance of the 
course recommendation system. This highlights the need to balance model complex-
ity and generalization capability in the domain of personalized education.

Table 2 presents the impact of different modeling approaches on the AUC val-
ues. For models that integrate teaching outcome and teaching process data, the 
model using the attention mechanism demonstrates a higher AUC value of 0.784, 
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while the model employing a GRU structure is significantly lower at 0.7625. This 
trend is also observed in the analysis of learning environment data, where the 
attention mechanism model achieves an AUC of 0.7785, compared to 0.7456 for the 
GRU-based model. These results suggest that when dealing with complex learning 
behavior data, the attention mechanism is more effective in capturing both long- 
and short-term learning dynamics. The analysis indicates that the attention mecha-
nism offers a clear advantage in feature extraction and modeling student learning 
behaviors, thereby enhancing the predictive capability and adaptability of the 
model. Compared to the GRU structure, the attention mechanism is better equipped 
to identify critical information within the learning data, thus improving the effec-
tiveness of personalized course recommendations.

Figure 5 illustrates the effect of different proportions of long- and short-term 
student learning behaviors on the effectiveness of course design and optimization 
of the model. As the proportion of long-term learning behaviors increases, the AUC 
value for teaching outcome data rises, reaching a peak of 0.822, with the best per-
formance observed at a ratio of 16:4 (long-term/short-term). This indicates that the 
effective utilization of long-term behaviors significantly enhances the effectiveness 
of personalized recommendations. A similar upward trend is seen in the teach-
ing process data, with the AUC reaching a maximum of 0.812, further supporting 
the positive impact of long-term learning behaviors on dynamic learning states. 
In contrast, the AUC for learning environment data exhibits less variation across 
different ratios, with the highest value being 0.784, suggesting that this data type 
is less sensitive to changes in the behavior ratio. The overall analysis indicates that 
increasing the proportion of long-term learning behaviors in the model contrib-
utes to improved accuracy in personalized course recommendations, particularly 
in the modeling of teaching outcome and process data. Long-term behaviors are 
more effective in capturing students’ learning trajectories and evolving interests. 
This finding underscores the importance of appropriately balancing long- and short-
term learning behaviors during course design and optimization to enhance model 
performance. In practical applications, prioritizing the influence of long-term learn-
ing behaviors is essential for optimizing learning resource recommendations and 
improving students’ learning experiences.

Fig. 5. Impact of the proportion of long- and short-term student learning behaviors on course design and 
optimization performance of the model
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Fig. 6. Impact of the embedding size on course design and optimization performance (area under the curve) 
of the model

The data in Figure 6 show a clear upward trend in AUC values for teaching 
outcome data, teaching process data, and learning environment data as the embed-
ding size increases. For teaching outcome data, the highest AUC value of 0.778 is 
achieved when the embedding size reaches 60, while for teaching process data, 
the peak AUC of 0.83 is observed at an embedding size of 70. This suggests that 
increasing the embedding size allows the model to capture the complex features 
of student learning behaviors more effectively. Furthermore, the AUC for learning 
environment data also demonstrates stability at an embedding size of 70, reaching 
a maximum of 0.81, further confirming the importance of embedding size in model 
performance. The overall analysis indicates that the appropriate selection of embed-
ding size has a significant impact on model performance, particularly in capturing 
the multidimensional features of learning data. An embedding size that is too small 
may fail to adequately represent the complexity of student behavior, while an exces-
sively large size may lead to increased computational costs and model redundancy. 
Therefore, it is recommended that an embedding size in the range of 60 to 70 be 
considered during course design and optimization to achieve optimal personalized 
recommendation results and enhance the efficiency of learning resource utilization. 
This finding provides practical guidance for model tuning, ensuring effectiveness in 
applications within vocational education.

6	 CONCLUSION

This study, supported by big data technology, explored a resource recommen-
dation method and a course design and optimization strategy that integrates both 
long- and short-term student learning behaviors, aiming to provide personalized 
and intelligent solutions for vocational education. In the first part of the study, the 
effectiveness of integrating long- and short-term learning behaviors in resource 
recommendations was validated through a performance comparison of different 
models, highlighting the importance of utilizing big data for in-depth analysis of 
learning behaviors. The second part examined how these behavioral data can be used 
to optimize vocational education courses, thereby improving teaching outcomes.
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The experimental results demonstrate that both model selection and the appro-
priate choice of embedding size significantly impact model performance, partic-
ularly in terms of AUC values. These findings suggest that integrating long- and 
short-term learning behaviors not only improves the accuracy of recommendation 
systems but also provides more refined insights for course design. However, some 
limitations were identified, such as the potential impact of sample size and data 
diversity on the generalizability of the results. Future research could focus on larger 
datasets, more diverse learning environments, and more complex model structures 
to further enhance the effectiveness and adaptability of educational technologies. By 
continuing exploration and innovation, the progress and development of vocational 
education in the era of big data can be further promoted.
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