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Optimizing Learning Path Design in Mobile Learning 
Platforms for Online Courses

ABSTRACT
With the rapid advancement of information technology, online education, particularly voca-
tional education, has become a vital avenue for enhancing skills and knowledge. Vocational 
education necessitates flexible and personalized learning path design to accommodate the 
diverse needs and behaviors of learners. Mobile learning platforms, as a pivotal form of modern 
online education, provide learners with the convenience of accessing educational resources 
anytime and anywhere. However, existing methods for optimizing learning paths exhibit nota-
ble limitations, primarily in accurately capturing learners’ dynamic behaviors and in provid-
ing personalized and intelligent path design. Therefore, how to optimize learning paths based 
on learners’ dynamic behavior data has become a research hotspot in academia and educa-
tional practice. At present, many studies focus on matching analysis based on students’ static 
characteristics with course content but overlook learners’ behavioral changes and dynamic 
needs during the learning process. Traditional recommendation algorithms and rule-based 
path design methods are difficult to cope with complex learning behaviors and diverse learner 
needs. This study addresses these limitations by proposing an optimization model for mobile 
learning path design based on multi-view prediction of dynamic student behaviors. The model 
extracts mobile interaction features from student groups, constructs a multiple mobile behavior 
collaborative encoder, and employs multiple task label prediction techniques to achieve per-
sonalized and intelligent optimization of learning paths. The results demonstrate that this 
approach significantly enhances the learning efficiency and experience of learners, offering 
novel insights and technological support for the path design of mobile learning platforms.

KEYWORDS
mobile learning platforms, learning path optimization, dynamic behavior prediction, 
personalized learning, vocational education, multi-label prediction

1	 INTRODUCTION

With the rapid development of information technology, digital transformation 
has become a significant trend in modern education. Particularly in the field of 
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vocational education, online learning has gradually emerged as an important means 
for training and skill enhancement [1–4]. The characteristics of vocational educa-
tion necessitate a more prominent emphasis on personalized, flexible, and efficient 
learning. The challenge of leveraging information technology to improve learning 
outcomes has become a critical issue that needs to be addressed in the educational 
field [5–7]. The design of learning paths in online courses is one of the key factors 
influencing learning effectiveness, and mobile learning platforms provide learners 
with flexible and efficient learning methods, thus driving the rapid development of 
online education. Consequently, optimizing learning path design through scientific 
and rational approaches to enhance learning experiences and outcomes has become 
a focal point in current study on vocational education and online learning.

In mobile learning environments, learner behavior data is characterized by diver-
sity and complexity. How to design the optimal learning path based on this data has 
become a key research area [8–11]. A well-designed learning path can help learners 
better acquire knowledge and improve learning efficiency. In vocational education, 
the optimization of learning paths can effectively align industry needs with learner 
characteristics, offering more targeted learning solutions [12, 13]. Although existing 
research has made progress in the design and optimization of learning paths, there 
remains a gap in realizing personalization and intelligence. Therefore, conducting 
in-depth research and proposing a dynamic optimization model based on student 
behavior data and the learning process is of significant importance for advancing 
personalized and intelligent learning path design in online learning.

Current study on learning path optimization mainly focuses on the analysis of the 
relationship between static student characteristics and course content, often neglect-
ing the dynamic changes in learners’ behaviors during the learning process [14–16]. 
Many methods rely on rule-based path design or traditional recommendation algo-
rithms, but these approaches are often unable to capture the learners’ immediate 
needs and changes in learning status accurately [17, 18]. Additionally, existing optimi-
zation methods tend to lack a deep analysis of behavioral differences within student 
groups and fail to account for the interactive effects between individual and group 
behaviors. As a result, these methods are limited in their ability to address the com-
plexities of diverse learning scenarios and the varied needs of learners. This study 
proposes an optimization model for mobile learning path design based on multi-view 
dynamic behavior prediction of students, aiming to overcome the shortcomings of 
existing methods. The primary research content of this study includes four aspects: 
first, the definition of the mobile learning path design optimization problem, with 
clear optimization objectives and evaluation criteria; second, the extraction of mobile 
interaction features from student groups to analyze the behavioral patterns of learners 
during the learning process; third, the development of a multiple mobile behavior 
collaborative encoder that integrates multiple data sources to enhance the model’s 
ability to predict dynamic student behaviors; and finally, the introduction of a task-
based multi-label prediction method to achieve personalized recommendations for 
learning tasks. This study aims to provide a more intelligent and personalized learn-
ing path design method for mobile learning platforms, thereby improving learner 
outcomes and experiences and further advancing online vocational education.

2	 DEFINITION OF THE MOBILE LEARNING PATH DESIGN 
OPTIMIZATION PROBLEM

In the context of online courses on mobile learning platforms, learner behavior 
is influenced not only by individual characteristics but also by the “contagion” effect 
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of peer behavior. In a group setting, interactions and influences between students 
can cause changes in individual learning behaviors. Therefore, the consideration of 
behavioral interactions between student groups through dynamic behavior prediction 
has become a critical challenge in optimizing learning path design. To address this 
issue, a model for optimizing mobile learning path design based on multi-view student 
dynamic behavior prediction was proposed. This model conducts a comprehensive 
analysis of student behavior data from multiple perspectives, considering both the 
behavioral variations and mutual influences of learners across different tasks. This 
allows for an accurate prediction of each student’s preferences for multiple perception 
task types, thereby enabling the design of personalized learning paths. The framework 
of the multi-view student dynamic behavior prediction model consists of three key 
components: student group interaction feature extraction, multi-behavior collaborative 
encoding, and multi-label prediction. The student group interaction feature extraction 
module first identifies the influencing factors within the group by analyzing the behav-
ioral relationships and interactions between learners. These factors provide crucial 
inputs for optimizing personalized learning paths. The multi-behavior collaborative 
encoding module integrates behavior data from multiple learning tasks, employing a 
collaborative learning approach to model these interactions. This enables the model to 
capture the synergistic effects of student behaviors across different tasks and predict 
students’ preferences for various learning tasks. Finally, the multi-label prediction mod-
ule generates predictions of student preferences for each task type based on the out-
puts of the previous two modules, taking into account the multi-label characteristics of 
the tasks. This results in personalized task recommendations and learning path design 
for mobile learning platforms. This overall framework not only accounts for individual 
differences among students but also reflects the dynamic changes in group behaviors, 
fully optimizing the personalization and intelligence of learning path design.

In online courses on mobile learning platforms, the optimization of learning path 
design is a core issue for enhancing learning efficiency and personalizing the learn-
ing experience. Existing research typically focuses on static student characteristics, 
which, while providing some predictive value, change infrequently over time and 
are not always readily available. Therefore, the limitations of static features in cap-
turing students’ dynamic learning behaviors and real-time needs are evident. This 
study proposes a multi-view student dynamic behavior prediction method, which 
integrates mobile learning interaction network group behaviors. The goal is to 
achieve more precise and personalized learning path optimization through real-time 
capture of students’ dynamic behaviors and analysis of group behavior interactions. 
Specifically, the proposed method integrates mobile learning interaction network 
group behaviors with multi-view student dynamic behavior prediction by analyzing 
behavioral patterns of students within mobile learning platforms. This approach 
extracts representative behavioral features, including frequently occurring “evalua-
tion” and “star” behaviors, less frequent “favorite” and “fork” behaviors, and rarely 
observed “design” and “create project” behaviors. Through the analysis of these 
behaviors, students’ dynamic preferences across different task types can be identi-
fied. These preferences exhibit clear time-based and frequency-based characteristics. 
The specific definitions involved in this method are outlined as follows:

Definition 1: Learning path optimization target sequence: In online courses on 
mobile learning platforms, the optimization problem of learning path design centers 
on how to formulate personalized learning paths based on students’ historical learn-
ing behaviors and dynamic needs. To achieve this goal, learning path optimization 
target sequences can be defined by statistically analyzing the number and types 
of tasks each student engages with over a specific time period. More specifically, 
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let Aiu iu iu

b
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, , ,  represent the changes and adjustments to student u’s learning 

path each year over a period of B years, reflecting the frequency of participation in 
different learning tasks; O o o oiu iu iu

l

iu� � �1 2
, , ,  represents the trends in the changes of 

student u’s learning path over L months, capturing learning preferences at different 
time intervals, and W w w wiu iu iu

f

iu� � �1 2
, , ,  represents the daily learning path choices of 

student u over F days, with task selection potentially changing on a day-to-day basis.
Definition 2: Group learning path collaboration sequence: In addition to the 

individual learning paths of students, the optimization of learning path design on 
mobile learning platforms must also consider the collective behavior of student 
groups and their collaborative effects. To comprehensively reflect the effectiveness 
of learning path design optimization, it is necessary to define a group learning path 
collaboration sequence. Specifically, let A a a aH H H

b

H� �� �1 2
, , ,  represent the task par-

ticipation of the student group over B years, reflecting the overall learning trend 
of the group; O o o oH H H

l

H� � �1 2
, , ,  represents the changes in the learning paths of 

the student group over L months, capturing the learning behavior patterns within 
the group across different time periods; and W w w wH H H

b

H� � �1 2
, , ,  indicates the fre-

quency of task participation by the student group over F days, revealing the learning 
path preferences of the group across different time intervals.

Definition 3: Learning path preference prediction sequence: To further optimize 
learning path design and ensure the personalization and timeliness of task recom-
mendations, the concept of a learning path preference prediction sequence was 
introduced in this study. Given students’ historical behavior data and group behav-
ior data, predicting a student’s future learning path preferences under the current 
context is a crucial aspect of optimizing learning path design. Specifically, let the 
student behavior sequence N* = {n1, n2, …, nm} be defined, where each element in 
ni represents a student’s future preference for a particular type of learning task.

In the optimization of learning path design for online courses on mobile learning 
platforms, the central issue is how to develop personalized and efficient learning paths 
through accurate prediction of student dynamic behaviors, combined with group 
behavioral features. The problem under investigation can be specifically described 
as follows: Given a static mobile learning interaction network, individual behavioral 
sequences of students and group interaction sequences are used as inputs. Time series 
data processing methods are then applied to extract behavioral preference features. 
More specifically, student behavior data is aggregated at three-time granularities—
daily, monthly, and yearly—forming time series with varying frequencies. At the same 
time, the group behavioral interaction sequence reveals the interactions and collabora-
tive effects among students within the group. The dynamic changes in group behaviors 
are crucial for understanding students’ learning preferences in a group context. By 
integrating this behavioral data from different time granularities, more accurate pre-
dictions can be made for the subsequent learning path design. Ultimately, the prefer-
ence features derived from this fusion are used to predict individual student dynamic 
behaviors. Based on the prediction results, students’ future task preferences are classi-
fied into different task labels, forming the dynamic behavior prediction sequence. These 
prediction sequences not only reflect students’ learning interests and task choices over 
the upcoming period but also allow for dynamic adjustments based on students’ behav-
ioral interactions within the group. This enables the personalization and optimization 
of learning path recommendations. In terms of learning path design, the prediction 
results aid in tailoring task types and learning sequences to each student’s individual 
learning needs, avoiding overly rigid or generic learning path arrangements. This 
maximizes both learning outcomes and the efficient use of platform resources.
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3	 EXTRACTION OF MOBILE INTERACTION FEATURES 	
OF STUDENT GROUPS

The goal of extracting group student interaction features is to provide more precise 
data support for the optimization of personalized learning paths by deeply analyz-
ing the interaction relationships between students and identifying common behav-
ioral patterns within the group. Specifically, the mobile learning interactions formed 
through similar learning interests, behavioral habits, and learning needs among stu-
dents not only reflect individual preferences but also reveal a “normalized” learning 
pattern at the group level. The interactions among students within the group extend 
beyond explicit communication to include implicit learning behavior connections, 
such as participation in the same tasks, task feedback, and other forms of engagement. 
To better utilize these internal group relationships, this study extracts group interac-
tion features to capture students’ learning tendencies, behavioral changes, and mutual 
influences within the group, thereby providing a basis for the group’s collaborative 
effects in subsequent learning path recommendations. To achieve this goal, an atten-
tion mechanism was employed in this study. This mechanism calculates the similarity 
between students and their neighboring students in the mobile learning interaction 
network, thereby weighting the extraction of group behavior features. Within the 
attention framework, the influence value x(iu, ik) between students represents 
the degree of behavioral influence that student k has on student u. This influence 
value can be calculated using a multi-layer perceptron (MLP) network. By combining 
the influence value with students’ historical behavior data n and network parameters 
(j, q1, and q2), the similarity and interactive relationships between students in terms of 
learning task selection, learning progress, and other factors can be reflected.

	 x j q n q n
i i

S

i i
u k u k

( , )
� �� �tanh

1 2
	 (1)

The attention value obtained was combined with the historical data of neigh-
bouring student k to generate a new vector representation for student u:

	 n n x
i i i i
u k u k

� �
( , )

	 (2)

Fig. 1. Fusion representation of student group behavior

The roles students play within the group, their mobile learning interaction rela-
tionships with other students, and factors such as academic performance all influ-
ence their behavioral patterns and preferences. Therefore, it is crucial to account for 
the heterogeneity between students when extracting group behavior features. The 
influence of mobile learning interactions on different students must be considered. 
By introducing the attention mechanism, different weights were assigned to each 
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student in the group, dynamically adjusting the fusion weight of individual students’ 
behaviors based on the strength of their relationships with other group members. 
For students with strong mobile learning interaction influence, their behavioral pat-
terns may have greater relevance to the overall group learning path design, and 
therefore, they were assigned higher weights. In contrast, students with weaker 
mobile learning interaction influence have relatively less impact on the group, and 
as such, they were assigned lower weights. Figure 1 illustrates the fusion represen-
tation of student group behavior. The softmax function was employed in this study 
to normalize the weights between student u and the V neighbors within the group H, 
with the following calculation:

	 x

t n n

t n n

i i

i

e

i

e

i

e

i

e

v

V
u v

u v

u v

( , )

( ) ( )
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,

,

�
� �� �
� �� ��
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Assuming that the influence weight of neighbor iv on student iu is represented 
by x

i i
u v

( , )
, the historical behavior data of neighbor iv is denoted as N

i

e

v

( ). When e = 1, 
N A

i

i

v

v( )1 = ; when e = 2, N o
i

i

v

v( )2 = ; and when e = 3, N W
i

i

v

V( )3 = . The fusion representation 
HN(e) of student behavior within group H is computed as follows:

	 HN x Ne

i i i

e

i H u v vv

( )

( , )

( )�
�� 	 (4)

4	 MULTIPLE MOBILE BEHAVIOR COLLABORATIVE ENCODER

Fig. 2. Framework of multi-view user dynamic behaviour prediction method
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The optimization of mobile learning path design requires the comprehensive 
exploration of students’ multi-dimensional behavioral data. The behavioral data of 
students in mobile learning environments typically exhibit complex temporal relation-
ships, where current actions are influenced by past behaviors, and future actions may 
impact present decisions. Furthermore, behavioral data often originates from various 
perspectives, including task engagement, group interaction, and personal interests. 
These views not only span different time intervals but may also contain hierarchical 
behavioral information. Traditional long short-term memory (LSTM) models, when 
processing time-series data, primarily rely on unidirectional feature propagation, con-
sidering only the dependency between the current and the previous time step. This 
approach may fail to capture the bidirectional relationships between actions when 
dealing with students’ behavioral sequences. To address this limitation, the bidirec-
tional LSTM (Bi-LSTM) network was chosen as the multiple mobile behavior collabo-
rative encoder. By incorporating a backpropagation mechanism, Bi-LSTM captures the 
relationships between past and future behaviors at the same time step, thus enabling 
the simultaneous consideration of both contextual information from the past and the 
future. This allows for the effective integration of behavioral features across different 
time periods, facilitating the identification of latent associations between student 
behaviors within a multi-view learning process. The basic steps of the multi-view 
student dynamic behavior prediction model, as shown in Figure 2, are as follows:

a)	 Data preprocessing and feature extraction: The multiple types of behavioral 
data collected from students on the mobile learning platform were first prepro-
cessed. These data typically include various perspectives, such as student par-
ticipation in learning tasks, interactions with peers (e.g., comments, likes, and 
discussions), and fluctuations in personal interests. The data were organized into 
sequences of different time periods, such as daily, monthly, or quarterly data with 
different time granularities, and feature extraction was performed according to 
task-specific requirements.

b)	 Input to the Bi-LSTM network: After feature extraction, the behavioral data 
of students were input into the Bi-LSTM network. The input at each time step 
includes the student’s behavioral data, encompassing multiple perspectives such 
as task engagement and interest changes. The Bi-LSTM network processes tem-
poral information from both the past and the future, performing bidirectional 
encoding at each moment to compute the forward and backward dependencies 
of the behavioral data at that specific time.

c)	 Bidirectional information fusion: In the Bi-LSTM model, the output at each time 
step not only relies on the behavioral data at that time and its preceding data 
but also considers the behavioral data at that time and that which follows. This 
bidirectional information fusion enables the model to better understand the 
potential relationships between different time points in the behavioral sequence, 
thus allowing for a more comprehensive representation of student behavior. 
Specifically, at time step s, the hidden state outputs from the forward LSTM, 
denoted as gs,d, and the backward LSTM, denoted as gs,y, were combined to form 
the hidden state output of the Bi-LSTM at time s, i.e., gs = [gs,d, gs,y].

	 g LSTM Q g
s d d s d, ,

( , )�
�1

	 (5)

	 g LSTM Q g
s y y s y, ,

( , )�
�1

	 (6)
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	  The historical behaviors of individual students over a specified period of  
a days, b months, and c years, namely Ai

u , Oi
u , and Wi

u , and the historical group 
behaviors AH, OH, and WH, were encoded separately, resulting in the hidden states 
TA, TO, and TW for the individual student and GA, GO, and GW for the student group.

d)	 Output layer and multi-label prediction: Finally, the feature outputted by the 
Bi-LSTM network, which was generated by fusing both forward and backward 
information, formed a comprehensive behavior feature representation. These 
features were then used for multi-label prediction, which forecasts the future 
behavioral patterns of the student. The multi-view behavior features of each 
student were processed by the network, and the model was capable of person-
alizing the recommendation of suitable learning paths and task types for each 
individual student.

5	 MULTI-LABEL PREDICTION OF TASKS IN MOBILE 
LEARNING PLATFORMS

Fig. 3. Framework for the mobile learning path design method

In mobile learning platforms, each student may experience dynamic changes 
across multiple aspects, such as learning tasks, interactive behaviors, and interest 
preferences. These behaviors are not necessarily mutually exclusive but may inter-
sect or overlap. Therefore, traditional single-label classification methods are not 
effective in handling scenarios with multiple tasks or labels. Multi-label classifiers, 
on the other hand, are capable of predicting multiple behaviors of a student simul-
taneously, especially when the student’s behavior sequence exhibits various possi-
bilities. This approach provides more accurate learning path optimization strategies. 
Figure 3 illustrates the framework for the mobile learning path design method. Based 
on the principles of multi-label classification, the behavior sequence of a student 
was treated as multiple binary classification problems in this study. Predictions for 
each label were used to capture the diverse behavioral information of the student. 
For each student’s behavior pattern, the sigmoid activation function was employed 
instead of the softmax function, as it allows for independent predictions for each 
label. This enables the model to independently assess whether each task, behavior, 
or interest will occur, without interference between predictions. In the specific 
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context of classroom learning on mobile learning platforms, students may be inter-
ested in different types of tasks simultaneously or may exhibit high engagement in 
certain tasks while showing weaker involvement in others. By utilizing the sigmoid 
output layer, the model predicted an independent label for each task or behavior, 
thus generating a multidimensional learning path recommendation. Furthermore, 
during the training process, the cross-entropy loss function was used to optimize the 
accuracy of each label’s prediction, ultimately enabling the design of more precise, 
personalized learning paths for students. Let D

k

i
u represent the output of the k-th 

fully connected layer for student u, with the parameters trained in this layer denoted 
as Qk and yk. Let V denote the total number of training samples, M represent the 
total number of task categories, and B

k

i
u indicate whether the u-th student is inter-

ested in the k-th mobile learning platform task category. The preference probability 
of the u-th student for the k-th task category is denoted as � D

k

i
u� �. The following 

equations hold:

	 D Q g y
k

i

k

S

s k

u � � 	 (7)
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6	 EXPERIMENTAL RESULTS AND ANALYSIS

Fig. 4. Experimental results under different hyperparameter settings
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The model for optimizing mobile learning paths based on multi-view student 
dynamic behavior prediction was systematically evaluated through experiments 
conducted with various hyperparameter settings. The experimental results shown 
in Figure 4 indicate that both MAP@5 and Recall@5 metrics exhibit favorable 
trends under different configurations of neuron counts and network architectures. 
Particularly, with the configuration of (19, 7, 5), as the number of neurons increases, 
MAP@5 reaches 0.695, showing a significant improvement and maintaining a high 
performance relative to other configuration setups. Similarly, Recall@5 also per-
forms excellently, achieving a maximum of 0.745. This suggests that the model is 
highly capable of accurately capturing learner behavior characteristics and recom-
mending personalized learning tasks. Overall, it is evident that as the number of neu-
rons increases, the model’s performance improves, especially under more complex 
network structures, highlighting the importance of deeper feature extraction 
capabilities for enhanced model performance.

Table 1. Performance comparison of different mobile learning path design methods

Model
MAP@10% Recall@10% F1@10

AVG SD AVG SD AVG SD

MPC 0.3215 0.2114 0.3625 0.2135 0.3321 0.0018

MCTS 0.5784 0.1425 0.6215 0.1244 0.5845 0.0012

LSTM 0.5236 0.1562 0.5895 0.1325 0.5521 0.0014

Proposed model 0.8124 0.1236 0.8231 0.1240 0.8213 0.0011

Second-best 0.5748 0.1325 0.6254 0.1326 0.5895 0.0012

First-best 0.8236 0.1245 0.8216 0.1258 0.8215 0.0008

Relative gain 0.2459 0.0081 0.2158 0.0189 0.2365 0.0005

In the performance comparison of different mobile learning path design 
methods, the proposed model based on multi-view student dynamic behavior 
prediction demonstrates significant advantages. Specifically, as shown in Table 1, 
the proposed model achieves a MAP@10% of 0.8124, significantly outperforming 
other methods such as model predictive control (MPC) (0.3215), LSTM (0.5236), 
and Monte Carlo tree search (MCTS) (0.5784), as well as the second-best (0.5748) 
and first-best (0.8236) configurations. This result indicates that the proposed 
model is more effective in identifying and predicting learner behavior patterns, 
thereby optimising mobile learning paths. Additionally, the average Recall@10% 
and F1@10 values are 0.8231 and 0.8213, respectively, further confirming the 
model’s efficiency in personalizing learning task recommendations. In contrast, 
the performance of other methods does not reach similar levels, particularly MPC, 
which has a Recall@10% of only 0.3625, significantly lower than that of the pro-
posed model. By integrating multiple data sources and extracting student group 
mobile interaction features, the proposed model significantly improves the accu-
racy of task prediction and personalized adaptation. The experimental results not 
only reflect the rationality of the defined optimisation goals and evaluation cri-
teria but also highlight the model’s potential for application in real educational 
environments.
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Table 2. Performance comparison of different mobile learning path design methods on different datasets

Data Evaluation Metric MPC MCTS LSTM Proposed Model

Course dataset MAE 0.6652 0.6528 0.6235 0.6189

RMSE 0.8541 0.8451 0.8154 0.8026

Learning dataset MAE 1.1235 1.3256 1.1254 1.1145

RMSE 1.2548 1.2345 1.1268 1.0256

Textbook dataset MAE 0.8452 0.8326 0.8256 0.7895

RMSE 1.1246 1.1284 1.1214 1.1124

Fig. 5. Comparison of algorithm running time and number of task types on the mobile learning platform

In the performance comparison of mobile learning path design methods across 
different datasets, the proposed model based on multi-view student dynamic 
behavior prediction consistently outperforms other approaches in multiple eval-
uation metrics. As shown in Table 2, on the course dataset, the proposed model 
achieves a mean absolute error (MAE) of 0.6189, which is superior to MPC (0.6652), 
MCTS (0.6528), and LSTM (0.6235). The root mean squared error (RMSE) metric also 
shows significant improvement, reaching 0.8026, which is notably lower than that 
of MPC (0.8541), MCTS (0.8451), and LSTM (0.8154). On both the learning dataset and 
textbook dataset, the proposed model demonstrates a substantial reduction in MAE 
and RMSE values compared to the other methods. Particularly on the learning data-
set, the MAE and RMSE of the proposed model are 1.1145 and 1.0256, respectively, 
highlighting its stability and accuracy in more complex learning environments.

As shown in Figure 5, when cold start is not employed, the proposed model 
demonstrates superior performance across different task types on the mobile learn-
ing platform. With 15 task types, the model is able to complete 30 tasks, while MPC, 
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MCTS, and LSTM complete 37, 31, and 28 tasks, respectively. Although the model’s 
task completion count is still somewhat lower, it exhibits a relatively steady growth 
as the number of task types increases, demonstrating strong adaptability. When the 
number of task types reaches 60, the model completes 40 tasks, compared to 50 tasks 
for MPC and 42 tasks for MCTS. Although the number of tasks completed is still 
slightly lower, a gradual performance improvement is observed. Compared to LSTM, 
the proposed model consistently shows more stable growth across all task types, 
particularly when the number of task types reaches 75, where the model completes 
42 tasks, closely approaching MPC’s 54 tasks, indicating its feasibility under high task 
complexity.

In summary, the proposed mobile learning path design optimization model 
based on multi-view student dynamic behavior prediction demonstrates relatively 
stable performance growth when facing different task types. While the task com-
pletion count is slightly lower than that of MPC, the model shows distinct advan-
tages in overall adaptability and scalability. Through the construction of a multiple 
mobile behavior collaborative encoder and the application of multi-label prediction 
methods, the model is able to handle complex learning tasks more effectively, pro-
viding learners with personalized learning path recommendations.

7	 CONCLUSION

This study proposes an optimized model for mobile learning path design based on 
multi-view student dynamic behavior prediction, aiming to address the limitations 
of existing mobile learning approaches in terms of personalized recommendation 
and dynamic adaptability. The study is divided into four main components. First, 
the optimization problem of mobile learning path design and its evaluation criteria 
were defined. Second, by extracting mobile interaction features from student groups 
and analyzing learner behavior patterns throughout the learning process, the 
dynamic needs of learners were revealed. Third, a multiple mobile behavior col-
laborative encoder was constructed to integrate data from multiple perspectives, 
thereby enhancing the model’s ability to predict student dynamic behaviors. Finally, 
a task-based multi-label prediction method was proposed to achieve personalized 
learning task recommendations and provide more accurate learning path sug-
gestions for students. Experimental results demonstrate that the proposed model 
outperforms traditional methods across various hyperparameter settings and in 
comparisons with other mobile learning path design methods, particularly showing 
stronger stability and adaptability as task complexity increases.

Overall, this study holds significant theoretical and practical value, offering a 
model and new insights for personalized teaching in the field of mobile learning. 
However, certain limitations exist, such as the need for further validation of the 
model’s generalization capability in specific scenarios and the enhancement of its 
real-time data processing ability. Future research can focus on further optimizing 
the model’s real-time predictive capabilities, extending it to a broader range of 
learning scenarios and task types, and considering additional external factors that 
influence student learning behaviors, all of which will contribute to improving the 
model’s overall performance and practical applicability. This will support the intel-
ligent development of mobile learning systems, leading to a more personalized and 
efficient learning experience.

https://online-journals.org/index.php/i-jim


	 16	 International Journal of Interactive Mobile Technologies (iJIM)	 iJIM | Vol. 19 No. 1 (2025)

Wang

8	 REFERENCES

	 [1]	 Q. Lu and M. R. M. Rustam, “How academic self-efficacy influences online learning 
engagement: The mediating role of boredom,” International Journal of Interactive Mobile 
Technologies (iJIM), vol. 17, no. 24, pp. 115–135, 2023. https://doi.org/10.3991/ijim.v17i24. 
44759

	 [2]	 S. Afifi, H. B. Santoso, and L. M. Hasani, “Investigating students’ online self-regulated 
learning skills and their e-learning experience in a prophetic communication course,” 
Ingénierie des Systèmes d’Information, vol. 27, no. 3, pp. 387–397, 2022. https://doi.org/ 
10.18280/isi.270304

	 [3]	 N. Nonthamand, “Development of an online learning lesson in the educational tech-
nology equipment operation course for pre-service teachers,” International Journal of 
Interactive Mobile Technologies (iJIM), vol. 17, no. 10, pp. 30–46, 2023. https://doi.org/ 
10.3991/ijim.v17i10.37775

	 [4]	 S. E. Alqaan and A. M. Qamar, “Sentiment analysis of Arabic tweets on online learning 
during the COVID-19 pandemic: A machine learning and LSTM approach,” Ingénierie 
des Systèmes d’Information, vol. 28, no. 6, pp. 1435–1443, 2023. https://doi.org/10.18280/
isi.280601

	 [5]	 G. Chen, “Construction and improvement path of digital literacy evaluation model for 
higher vocational teachers based on deep learning and soft computing,” International 
Journal of e-Collaboration (IJEC), vol. 20, no. 1, pp. 1–15, 2024. https://doi.org/10.4018/
IJeC.347506

	 [6]	 L. Zhou and J. J. Li, “The impact of ChatGPT on learning motivation: A study based on 
self-determination theory,” Education Science and Management, vol. 1, no. 1, pp. 19–29, 
2023. https://doi.org/10.56578/esm010103

	 [7]	 S. Serth, T. Staubitz, M. van Elten, and C. Meinel, “Measuring the effects of course mod-
ularizations in online courses for life-long learners,” Frontiers in Education, vol. 7, 2022. 
https://doi.org/10.3389/feduc.2022.1008545

	 [8]	 L. Jiang and G. Kamel Shaker Al-Shaibani, “Influencing factors of students’ small private 
online course-based learning adaptability in a higher vocational college in China,” 
Interactive Learning Environments, vol. 32, no. 3, pp. 972–993, 2024. https://doi.org/ 
10.1080/10494820.2022.2105901

	 [9]	 L. Li, X. Wang, and M. P. Wallace, “I determine my learning path, or not? A study of differ-
ent learner control conditions in online video-based learning,” Frontiers in Psychology, 
vol. 13, 2022. https://doi.org/10.3389/fpsyg.2022.973758

	[10]	 J. A. Martínez-Carrascal, J. Munoz-Gama, and T. Sancho-Vinuesa, “Evaluation of recom-
mended learning paths using process mining and log skeletons: Conceptualization and 
insight into an online mathematics course,” IEEE Transactions on Learning Technologies, 
vol. 17, pp. 555–568, 2024. https://doi.org/10.1109/TLT.2023.3298035

	[11]	 J. Zhao, H. Mao, P. Mao, and J. Hao, “Learning path planning methods based on learning 
path variability and ant colony optimization,” Systems and Soft Computing, vol. 6, 
p. 200091, 2024. https://doi.org/10.1016/j.sasc.2024.200091

	[12]	 S. Xu, “Recommendation of online learning resources for personalized fragmented 
learning based on mobile devices,” International Journal of Emerging Technologies in 
Learning (iJET), vol. 17, no. 3, pp. 34–49, 2022. https://doi.org/10.3991/ijet.v17i03.29427

	[13]	 Y. Luo, “A personalized recommendation of mobile learning model based on content 
awareness,” International Journal of Continuing Engineering Education and Life Long 
Learning (IJCEELL), vol. 33, nos. 2/3, pp. 299–312, 2023. https://doi.org/10.1504/IJCEELL. 
2023.129222

https://online-journals.org/index.php/i-jim
https://doi.org/10.3991/ijim.v17i24.44759
https://doi.org/10.3991/ijim.v17i24.44759
https://doi.org/10.18280/isi.270304
https://doi.org/10.18280/isi.270304
https://doi.org/10.3991/ijim.v17i10.37775
https://doi.org/10.3991/ijim.v17i10.37775
https://doi.org/10.18280/isi.280601
https://doi.org/10.18280/isi.280601
https://doi.org/10.4018/IJeC.347506
https://doi.org/10.4018/IJeC.347506
https://doi.org/10.56578/esm010103
https://doi.org/10.3389/feduc.2022.1008545
https://doi.org/10.1080/10494820.2022.2105901
https://doi.org/10.1080/10494820.2022.2105901
https://doi.org/10.3389/fpsyg.2022.973758
https://doi.org/10.1109/TLT.2023.3298035
https://doi.org/10.1016/j.sasc.2024.200091
https://doi.org/10.3991/ijet.v17i03.29427
https://doi.org/10.1504/IJCEELL.2023.129222
https://doi.org/10.1504/IJCEELL.2023.129222


iJIM | Vol. 19 No. 1 (2025)	 International Journal of Interactive Mobile Technologies (iJIM)	 17

Optimizing Learning Path Design in Mobile Learning Platforms for Online Courses

	[14]	 F. Hao, Z. Pei, D. S. Park, V. Phonexay, and H. S. Seo, “Mobile cloud services recom-
mendation: A soft set-based approach,” Journal of Ambient Intelligence and Humanized 
Computing, vol. 9, pp. 1235–1243, 2018. https://doi.org/10.1007/s12652-017-0572-7

	[15]	 T. Yang, L. Zuo, X. Yang, and N. Liu, “Target-oriented teaching path planning with deep 
reinforcement learning for cloud computing-assisted instructions,” Applied Sciences, 
vol. 12, no. 18, p. 9376, 2022. https://doi.org/10.3390/app12189376

	[16]	 B. Jiang et al., “Data-driven personalized learning path planning based on cognitive 
diagnostic assessments in MOOCs,” Applied Sciences, vol. 12, no. 8, p. 3982, 2022. https://
doi.org/10.3390/app12083982

	[17]	 J. Guo and L. Qi, “Visualization research of college students’ career planning paths inte-
grating deep learning and big data,” Mathematical Problems in Engineering, vol. 2022, 
no. 1, pp. 1–12, 2022. https://doi.org/10.1155/2022/6006968

	[18]	 J. W. Tzeng, N. F. Huang, Y. H. Chen, T. W. Huang, and Y. S. Su, “Personal learning 
material recommendation system for MOOCs based on the LSTM neural network,” 
Educational Technology & Society, vol. 27, no. 2, pp. 25–42, 2024. https://doi.org/10.30191/
ETS.202404_27(2).SP03

9	 AUTHOR

Junxiang Wang graduated with a Master of Engineering from Tiangong 
University and currently serves as a Lecturer at the School of Marxism, Shijiazhuang 
College of Applied Technology, China. Her research focuses on Computer Application 
Technology, the Application of Modern Educational Technology, and Online 
Education (E-mail: 2006110054@sjzpt.edu.cn).

https://online-journals.org/index.php/i-jim
https://doi.org/10.1007/s12652-017-0572-7
https://doi.org/10.3390/app12189376
https://doi.org/10.3390/app12083982
https://doi.org/10.3390/app12083982
https://doi.org/10.1155/2022/6006968
https://doi.org/10.30191/ETS.202404_27(2).SP03
https://doi.org/10.30191/ETS.202404_27(2).SP03
mailto:2006110054@sjzpt.edu.cn

