
Paper—Cloud Mobile Storage for Mobile Applications

Cloud Mobile Storage for Mobile Applications

The Dynamic Storage Injection Pattern

https://doi.org/10.3991/ijim.v13i03.8086

Fabrice Mourlin (*)
UPEC University Paris, Paris, France
fabrice.mourlin@u-pec.fr

Jean-Marc Farinone
CNAM, Paris, France

Abstract—The data storage in mobile cloud computing domain is an im-
portant topic because of the large amount of data devices can provide. Different
kinds of sensors retrieve information and send them to data storages. But the
storage location can move even dynamically during their uses. So, these chang-
es must be managed at runtime. In the other part, Android devices are good
computers to acquire information and send them to a storage area. These devic-
es are well-known, ergonomic and useful machines sorely used. In this paper,
we present a software architecture from Android devices to Cloud storage areas
to put down data when the data stores are dynamically moving. The different
parts of these distributed applications are built around Android with JSON mes-
sages for REST services and moving NoSQL databases in the Google app en-
gine. The exchanges between the cloud and the Android devices use the Google
Cloud Messaging (GCM) protocol. Furthermore, even without network access,
the saving is made locally in the smartphone. The synchronization with distant
databases is automatically made when the network becomes again available.

Keywords—Mobile Cloud Computing; moving data storage; REST; Cloud
computing service model; NoSQL cloud databases; Sync API for Android.

1 Introduction

Cloud infrastructure give hardware, data storages, APIs to manage them and so we
can develop software for customers to put in it. We can use it as virtual supply and
these parts are well known as IaaS (infrastructure as a service), PaaS (platform as a
service), SaaS (software as a service) [1]. On the other hand, the top daily activities on
smartphones and tablets are about email access, shopping on the Internet and health
coaching [2]. The mobile users are now spending many times consuming digital me-
dia within mobile applications. Therefore, these applications need to save their states
even if there are network disruptions. Furthermore, the mobile applications must in-
clude a software strategy to track whether a network connection is available. In case
of the lack of network, a local backup can be done to keep trace of the useful business

iJIM ‒ Vol. 13, No. 3, 2019 13

Paper—Cloud Mobile Storage for Mobile Applications

data. Finally, the remote database can dynamically change at runtime and the mobile
application must know dynamically these changes. If a database is available, applica-
tions, customers, and business users, can access it. However, any condition that in-
volves the remote database inaccessible causes the failure of the remote persistence
tier and the storage must be momentarily made locally. The required availability of an
application will vary from system to system, but it must be predicted.

Our work is about the dynamically changing of data storage accessible and sup-
plied by smartphones. For example, Leon and al. [3] change the servers and so the
data storage to address the underutilization of these resources and so reducing costs.
Zhangbing Zhoua et al. also treat the subject of replaceability assessment of resources
in [4] and Espadas et al. propose an elastic model to use underutilized resources [5].

A network problem can involve unreachable remote databases. So, the location of
the storage must be known. Another reason to change the location is the poor perfor-
mance of the current database to another instance. The extreme limit occurs when no
remote database is available, so a local persistence should be achieved. Therefore, the
dynamically change of a database is a crucial problem.

In the context of mobile applications, the Cloud access is a crucial feature. For ex-
ample, it ensures the business data access when the network is available. However, it
also introduces two aspects of the communication. A Cloud point of view occurs for
the selection of the database access point, and then this feature is send back to the
mobile application. In addition, a mobile point of view appears about the existence of
this database access or not. In the first case, it means that the work session can be
saved in a remote manner. In the second case, the work session should be saved local-
ly. Depending on the activation of the connection access, the local state will be updat-
ed to the remote database access and the local state will be erased.

So data storages are one of the main part of an application and it can be used for
instance to contain the isolated applications from the OS and the low level VM when
installing the whole virtual machines [6]. Our architecture is useful for example, when
a user or a device need to obtain many data and store them in data storages. Such a
solution helps to continue mobile users to keep a shopping session and more generally
to manage a working context. It is the case when a person wants to make an inventory
of a shop or a hangar. He uses his smartphone or his adapted device to read infor-
mation linked to the material (QR code, barcode), and send them to a storage area.
This data procurement must be made quickly. The same model must be done to obtain
the knowledge of a boat shipment just arriving in a port harbor by using RFID tech-
nology, RFID tags being attached to articles. We have something similar for manag-
ing a crowd of person passing in given places by using NFC tag loaned to them in a
museum for example.

A set of sensors, which spot a lot of data about cars on a highway and require to
send information to a storage place need to use our kind of architecture. If the network
link is damaged, these sensors must be coupled with an intern storage area. Therefore,
these sensors are linked with micro programs inside micro-controllers put for example
on Arduino card or microcomputers as Raspberry card. In these all cases, the local
database is a kind of cache we use temporally to be flushed when the network is al-
ready available.

14 http://www.i-jim.org

Paper—Cloud Mobile Storage for Mobile Applications

The treatment of the data is made on server side but, generally the problems to ac-
cess or even use a remote database are not approached. In this paper, we propose an
architecture were these problems (network availability, dynamic databases changes)
are solved. Moreover, our architecture describes and implements a dynamically
change were data are stored and describe what it must be made when the network is
not available. So, we define protocols for moving databases. The specifications of
data storage are made but different implementations can be dynamically chosen or
injected. It is a dynamic storage injection design pattern closed to the injection de-
pendence design pattern. Therefore, in this paper we also define an injected storage
architecture.

In this paper, we use the whole stack of the services model of the cloud computing:
Software as a Service (SaaS) with GCM, Platform as a service (PaaS) with our appli-
cations service appengine [7] and Infrastructure as a Service (IaaS) for the data bases
in the Google cloud. In addition, of course, we developed cloud clients.

In the following of this paper, we present related works on this subject in the sec-
ond section. In the third section, we introduce our general software architecture. It has
two parts, a cloud part presented in the fourth section and a mobile part in the fifth
section. We indicate some futures works and ideas on the subject in the sixth section
and draw a conclusion.

2 Related Work

This section introduces references to existing works, which are useful to under-
stand our approach and our contribution to the mobile software engineering.

2.1 Mobile Cloud application: service access everywhere

Cloud computing is defined as the ability to provide a set of servers and services to
the large set of users. As a software point of view, mobile cloud computing allows to
use services for mobile clients anywhere the mobile end users are. They use infor-
mation technology as a service over the network and can consider that a data model is
managed in a cloud and a view can be obtained remotely for a mobile device. Today,
this kind of architecture is become popular. Several well-known applications such that
Snapchat and Facebook [8], Instagram [9] and so on are a reference of such kind of
applications. A user has access anywhere to any application of the suite using a mo-
bile device.

At the design step, this choice has consequences on the software architecture. The
back-end software is deployed into a cloud and visible anywhere through the network.
Many mobile applications have such a structure and when a user downloads such
application, it installs a client part on its mobile device. This one will be used as an
ideal network client for the building of all the exchanges. As an example, the Gmail
application can be download from a market [10] and then the users read their mails
anywhere they are. Waze application [11] is also an example of a graphical applica-

iJIM ‒ Vol. 13, No. 3, 2019 15

Paper—Cloud Mobile Storage for Mobile Applications

tion whose code is downloaded from a market place and it only displays the responses
of the requests.

2.2 MVC architecture evolution (Model View Cloud)

Based on a distributed architecture, the mobile device plays the role of graphical
client where the data model is on a remote server. The updates come through network
stimuli, which update the display. Because of the important role of the user interface
thread activity, the network behavior is managed in other threads and a global asyn-
chronous behavior is considered between the mobile client and the cloud server. For
instance, during a travelling by car, a Waze’s user receives data about his geograph-
ical context, which are displayed on his screen. If the traffic network is stopped, then
the display is frozen until a new reception.

2.3 Remote access from mobile device

Often a mobile device plays the role of a client in a distributed application. For in-
stance, users want a remote access to the sensors of a device or an application needs
to filter the data from a set of mobile devices. However, the question is how to create
a remote access to a server. In that, we consider the device as a resource set where
each of them is behind a Web service. However, the Web service technology has
evolved, and the REST approach is well accepted in the domain if the embedded sys-
tems.

On the server side, the management of the requests is a key feature for such a client
connection. When the number of requests becomes high, the mobile service must use
threads. The service launches at least on thread per requestor. By the end of a request,
the memory is reused by the virtual machine to the next requests.

Several frameworks already exist for programming REST services on mobile de-
vice but the Google’s framework called Restlet was the first one to provide a portable
way of programming. It manages also a set of object mappings over XML, JSON and
raw strings

2.4 Synchronization with the cloud

When we are looking for a cloud service provider where we can keep our files and
folders, there are confusions on three terms: cloud storage, cloud backup, and cloud
synchronization. While all of three serve as a remote place to stow data, the use case
for each differs.

The first cloud usage stays the data storage. It is like having an external hard drive
online that is accessible anywhere.

Cloud backup differs in that it is usually automated. Depending on the service, it
can happen continuously or on a set schedule. When a file is created or modified, the
newest version is uploaded and stored on the cloud.

Synchronization means keeping the most up-to-date version of a file or files on two
or more devices. It is ideal for collaboration or people who frequently use multiple

16 http://www.i-jim.org

Paper—Cloud Mobile Storage for Mobile Applications

devices. Many cloud backup and cloud storage providers have incorporated synchro-
nization into their services. In our context, this occurs when a remote database and a
local database of a mobile device need to merge their data or compute their differ-
ence.

2.5 Gap covered by our proposed architecture

Some technologies address on data treatment in the cloud and in the mobile cloud
computing domains. For example, Dropbox and Google Drive offer convenient file
syncing and sharing. Some papers are interested by the security (availability, reliabil-
ity, fault-tolerance) of the data as in [12] or data integrity, data confidentiality, and
availability in [13]. Some systems as HDFS [14] and ceph [15] are built to treat very
well these particularities by using redundancy and tools to manage it. They are good
systems for big data technologies. In [16], Lieyun Ding et al. consider the problem of
large data management without the aspect on the access from a mobile device. In [17],
B. Jiang et al. treats the synchronization data coming from mobile devices with the
cloud and we address in this paper. But we didn't find papers which discuss about the
dynamic moveable data bases in the cloud so the moveable data in the cloud which
the main contribution of this paper. Moreover, we study, in this paper, moveable data
bases coming from mobile devices so two kinds of dynamic moveable domains.

A new software architecture is proposed by Yen-Hung Kuo et al. in [18] based on
the use of services. Also, the data source is exposed through a local or remote service
and the client selects one of them depending on local criteria. In that case the authors
consider the availability of the client and not the availability of the services. Often the
data source is not reliable enough and over a long period of time, a service can reboot.
The reliability must be considered in the context of mobile access where the network
is a key resource. We propose in the next sections a new architecture which answers
to these drawbacks.

3 Software Architecture

It is essential to identify mobile applications over a network. For instance, Interna-
tional Mobile Equipment Identity (IMEI) [19] is an identifier for a smartphone. An
Android smartphone can also be a Wi-Fi hotspot and propose an SSID. However,
these two ids cannot be used for our architecture. First IMEI is not confidential and
must be avoided in most use-cases without limiting required functionalities. Second,
we want to use internet network, not only Wi-Fis one. Because the identifier of a
mobile device is not enough, it is necessary to build a compound identifier based on
the material identifier and the software identifier. So, our choice is to use the GCM
architecture.

The different entities we use in our architecture are:

• The Google Cloud Messaging API (GCM),

iJIM ‒ Vol. 13, No. 3, 2019 17

Paper—Cloud Mobile Storage for Mobile Applications

The regId obtained by GCM, which identifies a smartphone. Furthermore, we builta
regId database which stores the regIds of the different smartphones called the regId
registry

• The different remote moving databases and the Google application, which manages
them and inform the smartphones every time the database is changing.

There are two parts in our architecture: a cloud part and the mobile part. In the
cloud part, there are the different moving databases and an application which manages
them: this application knows the current database which is used and sends this infor-
mation when the database is changing and when a new smartphone wants to be con-
nected to our architecture. This Google app is called the database manager. Further-
more, as we use regIds to contact the mobile smartphones, we built another Google
application which main part is to store these regIds. This second Google cloud appli-
cation is called the regIds registry.

In the mobile part, there is an Android application with receives the location of da-
tabases to put down the data or put them locally when the network shuts down for
instance.

Fig. 1. The initialization step

We use the Google Cloud Messaging API (GCM) to send information from the
Google cloud to Android platforms. So, a GCM project has been built in the Google
cloud. When a smartphone wants to participate to our architecture, it asks for this
GCM project an identifier and receives a regId. With this identifier and the GCM
project, information can be sent to it.

There are two main steps in our architecture. First when a smartphone wants to par-
ticipate to this distributed application: it is the initialization step. Second when the
database is changing and the Google app, which manages these changing databases,
must inform all the smartphones: it is the changing databases step.

The main applications, which wants to send information and data to the
smartphones, are Google Cloud applications. So, the regIds of the smartphones must
be known by a Google cloud application of our architecture.

18 http://www.i-jim.org

Paper—Cloud Mobile Storage for Mobile Applications

We first study the initialization step. We use the fig.1 above.

• First, the Android app, as it participates to the GCM architecture, asks and re-
ceives a regId from the cloud (arrow labeled 1). Then it sends it to the centralized
Google application called the regId registry (2). Then the Google application,
which receives this new regId, informs the Google application, which manages the
changing databases (3), the database manager. Therefore, the database manager can
send to this smartphone the location of the database (arrows labeled 5 and 6) where
the smartphone must deposit its data.

• Next, we study the changing databases step. We use the figure 2 below. Every
time, the database changes, the database manager asks the regId registry (arrow 2),
obtain all the regIds (3) and broadcast the information of the new database to every
smartphone using these regIds and GCM (4). Therefore, every smartphone knows
the new database (5) where it must send its data.

Fig. 2. The changing database step

So, we define two protocols the first one is the initialization process and the second
one depicts the exchanges in a stationary mode.

4 Cloud Part

In the cloud part, our software architecture follows a layer pattern. It means that the
mobile user can consider our mobile application as a layer stack where the closer
layer is its graphical user interface and the farther is assigned to the network manage-
ment. As shown in figure 2 a mobile phone can receive data from a service deployed
in a cloud or it can send data to a web application.

Our need for mobile cloud computing is increasing because it is a way to become
nomad users. In addition, anywhere we are, an Internet access provides not only the
data from the cloud but also it allows the access of new HTTP services. In our soft-

iJIM ‒ Vol. 13, No. 3, 2019 19

Paper—Cloud Mobile Storage for Mobile Applications

ware architecture, the figure 1 highlights two main services. One is a regId receiver,
which means a REST service, which collects and persists all the regIds. The second
one is the database url provider. It gives a valid location of another service, which is
able to persist the user data.

These two cases follow a usual architecture as multi-tier layer. Figure 3 displays
the software architecture that implements the relationship of the arrow labelled 6 in
Figure 2. This layer structure manages every technical role into its own layer. In our
example, the rightmost layer is where the data are saved, which means a database.
Because we have developed a Cloud application, the database is a NoSQL database
called DataStore in the Google implementation.

Fig. 3. The persistence layer

The next layer in the middle part plays the role of a mapping between an object
world and a relational world. It provides a data access object per table of the data
source. Because, some statement need the use of several data access objects, this layer
called ORM layer exposes useful persistence services, which need to manage transac-
tions over the data source.

These persistence services fill a role locally to the data manager, but they have to
be called from another remote endpoint where the data are first recorded. A mobile
device is such device and needs to call remotely a persistence service. We have built a
REST layer with the objective is to map persistence operation on HTTP methods.
These three layers equip all data manager on our network.

4.1 RegId receiver service

A registering identity is a way to identify mobile device in a mobile cloud. Howev-
er, a mobile device cannot choice its identity. This depends on the network, the cho-
sen architecture, which is used by the devices. For this reason, we have built a GCM
project, which is a service to provide the identification of mobile devices. It provides
a unique regId per device.

20 http://www.i-jim.org

Paper—Cloud Mobile Storage for Mobile Applications

As soon as a mobile phone receives a regId, this one is saved into a remote registry
where a service called regId registry records these regIds. This registry keeps all the
device identifiers in case of resource location changes in our software architecture.

4.2 Database url provider

All the active devices will receive a notification about the change of the location of
the databases. In our case study, the changes are given by the new uniform resource
location (url) of the persistence layer and it is obtained by the database url provider.
So dynamically, we can inject a right persistence layer in our software. It is a similar
thing as the well-known design pattern dynamic dependency injection but in the do-
main of persistent layer in the mobile cloud computing. Therefore, it is a kind of new
design pattern we call a dynamic storage injection design pattern.

On the server side, the database url provider service has also an update alert. It
checks the availability of a persistence layer. When the connection test provides a
timeout or when there is no database available, the mobile clients cannot persist their
data. In the first case (no network available), the mobile is notified by an intern event.
In the second case (no remote database available), the mobile clients are informed by
the database url provider service. In both cases, the mobile devices save the data lo-
cally.

When several remote persistence layers are recorded into the application, the data-
base provider can provide one of this persistence layer.

4.3 Persistence service

A first persistence application is built and deployed in the Google Cloud Platform
for saving the data. For the reception, a web service exposes this application on HTTP
protocol. The url database provider provides this location to any mobile client which
sends a request about. However, behind this address the software architecture is de-
fined as a classical Java EE application. This means that a mapping object relational
requires first the declaration of one entity class per business table. Even if our data-
base is not relational, a mapping is essential because, it applies a reuse approach of
the persistence management, as design patterns dissociate the specification of a work
and its implementation.

Next, the definition of data access object hides the use of request over objects in
memory cache. Each class contains five methods, which covers all the needs over a
table. CRUDS is the name attached to such a set of methods, create, read, update,
delete and searchAll. Because a statement can touch more than one table, also we
have created persistence services for the management of several entities in a con-
sistent manner inside a transaction. Finally, we have created a REST service per per-
sistence service for the usages in a SAAS of the Google cloud.

The goal of all this work is to create an access to a NoSQL Database called Google
Cloud Datastore, which is built for automatic scaling, high performance, and ease of
application development. It uses redundancy to minimize impact from points of fail-
ure. It uses also a distributed architecture to automatically manage scaling. Moreover,

iJIM ‒ Vol. 13, No. 3, 2019 21

Paper—Cloud Mobile Storage for Mobile Applications

Cloud Datastore is exposed to applications through multiple clients. It also provides a
SQL-like query language. All our services have access to a precise schema that is
available anywhere in the cloud.

5 Mobile Part

The mobile project management needs the use of dedicated tools not only for the
built application but also for the tests and their automation. Even if the framework
role stays similar from Java EE application to mobile application, we need to adapt
each of them to the embedded system domain.

5.1 Network exchange

The mobile application is often a web client of a web application server. In addi-
tion, the data stream often comes from a mobile source to a service in a cloud. Our
software architecture needs to take into account the data stream in the opposite sense.
This means that data are imported from the cloud into a mobile application. Today,
Representational State Transfer (REST) is a style of architecture based on a set of
principles that describe how networked resources are defined and addressed. Roy
Fielding [20] first described these principles in 2000. REST is an alternative to SOAP
and JavaScript Object Notation (JSON). It is important to note that REST is a style of
software architecture as opposed to a set of standards and it is particularly suitable for
embedded applications. A framework called Restlet allows developers to create new
REST services, which expose resource from a mobile phone. This framework is also
portable, and the same structure is proposed from the development over a cloud. This
allows a uniform approach for all the network exchanges.

5.2 Business mobile application

When the data exchanges occur at runtime, they play a role of business data injec-
tion into a remote workflow. Our use case is about the management of contacts with
the use of a remote database. Therefore, the body of the requests contains a data struc-
ture useful for the remote service. On the service side, these data structures are con-
sidered as resources. This is a reason why REST services are more suitable than other
remote access types.

Our concrete implementation of a REST Web service follows four basic design
principles, use HTTP methods explicitly, be stateless, expose directory data structure-
like URIs and transfer JavaScript Object Notation (JSON) objects.

HTTP GET is defined as a data-producing method that has intended to be used by a
client application to retrieve a contact, to fetch contacts from a Web server or to exe-
cute a query with the expectation that the Web server will look for and respond with a
set of matching contacts. The basic REST design principle establishes a one-to-one
mapping between create, read, update, and delete (CRUD) operations and HTTP
methods. According to this mapping.

22 http://www.i-jim.org

Paper—Cloud Mobile Storage for Mobile Applications

• To create a contact on the server, use POST,
• To retrieve a contact, use GET,
• To change the state of a contact or to update it, use PUT,
• To remove a contact, use DELETE

We adopt the same naming convention for all the Web services of our distributed
mobile application. Moreover, the mobile device exposes web services for the injec-
tion of a registration identifier. We apply the same mapping between the operations of
the various REST services.

5.3 Local persistence layer

Our mobile client application needs to store data somewhere. We may store our da-
ta and it sometimes do it in the local embedded SQLite database. We had to decide
between writing SQL queries, using a Content Provider (useful if you want to share
your data with other apps), or using an ORM as explained before. We have selected
an embedded ORM. However, when the data are locally saved, it becomes essential to
synchronize databases when a connection is possible. This is done, using a Syn-
cAdapter Android API that is able to update the data from the mobile device to the
data store in the cloud. This requires the creation of a content provider in the mobile
client. The SyncAdapter pilots the update until its termination.

A key feature of our case study is the evolution of the remote databases. Because
the backup of the contacts can be done on distinct databases including the local data-
base in the smartphone, we have adopted the same REST service interface to all data
stores. This allows the mobile client to become stable even a new data store is consid-
ered. The same Web service is also useful when databases are synchronized. This
happened when several contacts are saved locally to the mobile device in the case of
the network is unreachable and when an access point becomes available.

6 Results and Benchmarks

Our distributed software is deployed over a network, which is the crucial resource.
It is possible to track the network activity when a mobile application is making net-
work requests. Usually data are sent to servers. These servers are virtual machine in
the cloud and we have developed and deposit software to manage these data in these
servers. Therefore, we use a SaaS cloud architecture.

We use the Google cloud infrastructure for that. The figures we are going to pre-
sent under come from the Google console and the Google user interface to manipulate
the Google cloud. The software put in the Google cloud are called Google apps.

6.1 Software architecture

In the initialization step described in the figure 1, we use two Google Cloud data
stores. The first one records the different regIds. This database is unique in our archi-

iJIM ‒ Vol. 13, No. 3, 2019 23

Paper—Cloud Mobile Storage for Mobile Applications

tecture. The second indicates the URI of the current databases where data are stored.
This second database is also unique in our architecture.

Therefore, we have a data store where regIds are recorded with their values (begin-
ning by APA) and the date when it was recorded. We wrote a Google cloud app to
manage this data store and this Google app is traced by the figure 4.

Fig. 4. The Cloud Dashboard for RegId DataStore

In our architecture, the databases where data are stored can vary. So, we must man-
age these moves. For that, a database for the records is located by an URI. These
URIs are recorded in a data store in Google Cloud.

The second data store shown in the figure 5 records the URI of the database where
the mobile phone will push their data. We put too the date when an URI is available.
We wrote a Google cloud app to manage this data store.

Fig. 5. The Cloud database manager

24 http://www.i-jim.org

Paper—Cloud Mobile Storage for Mobile Applications

In the figure 6, we have a third database where the data coming from mobile
smartphone are recorded. This database is shown in the figure 2. Even this database
can change; they have all the same structure i.e. a Google Cloud data store with the
kind of records as shown in the figure 6.

Fig. 6. A Cloud Contact Database

6.2 Benchmarks

We have used Dalvik Debug Monitor Server (DDMS) and Systrace to break down
what our application is doing and for how long. On Android, every application runs in
its own process, each of which runs in its own virtual machine (VM) called Android
Runtime (ART). Each VM exposes a unique port that a debugger client can attach to
it.

The DDMS includes a Detailed Network Analyzer (DNA) that makes it possible to
track when our application is making network requests. Using this tool, we can moni-
tor how and when our application transfers data and optimize the underlying code
appropriately. We can also distinguish between different traffic types by applying a
filter to network sockets before use. When we look at the behavior of the mobile ap-
plication (mobile-client), it receives periodically registration identifiers and data
source url from the cloud. On the other side, the mobile application sends REST re-
quests to remote servers.

By monitoring the frequency of our data transfers, and the amount of data trans-
ferred during each connection, we identify areas of our application that are made more
battery-efficient. This corresponds to the packages called contact network and regid
network. We have identified the cause of transfer spikes.

6.3 Management of the transfer spikes

The main energy consumption is due to network traffic regardless the algorithm of
selecting the protocol. From the Bluetooth to the WiFi, the use of communication
sensors involves an energy cost. Mohammad Tawalbeh notes in [21] that the network
transfers cost often more than the screen even if the luminosity is high. Also, he pro-
poses to disable some network services such as Bluetooth service, IrDA (Infrared

iJIM ‒ Vol. 13, No. 3, 2019 25

Paper—Cloud Mobile Storage for Mobile Applications

Data Association) service and so on until a need appears. This allows to suppress the
lookup of network base or the test of the signal range.

Good battery technology simply hasn't arrived yet in 2018, which means it's down
to software and settings to configure the limited power. In the domain of hostile envi-
ronment, all the resources are limited: not only the energy but also, the network capa-
bilities, the memory, etc. Kaushik Dutta et al. [22] propose to cache a set of results
concerning the most useful application. They define in a strategy of cache manage-
ment which reduces the energy consumption.

There are multiple cases of moving data into and out of the cloud which can gener-
ate spikes. The first scenario is called a bursting case where the databases, applica-
tions and middle-tier servers are all based in the same location. When the cloud pro-
vides a large volume of data, it involves an overcome of activities with spikes of re-
quests and a burst of resources. The second use case is about the replication of data
and applications in the public cloud. If something goes wrong, then the whole work-
space is saved and after resumption, the transfer spike occurs.

7 Conclusion and Future Works

In our paper, we present the opportunity to change dynamically storage areas.
However, of course, as we use Android smartphones, the client part can move too.
Therefore, our paper presents an architecture where the two parts, client and server
can move.

We prove in this paper that we can save data coming from mobile devices to mov-
ing databases. The databases can change dynamically and the mobile devices know
the new database to store their data. Even there is no network; data can be save by the
mobile in their own local SQLite databases. In fact, as the well-known dependency
injection used in object-oriented software architecture, we built a storage area injec-
tion to dynamically change the places where data can be saved. This dynamically
storage area injection can be proposed as a new design pattern for software architec-
ture using databases. May be this kind of software need to be quite generic to be easi-
ly translated from a machine to another. So, our storage area injection design pattern
can be use in software built on dependence inversion.

The mobile devices are good machines to retrieve information. But a lot of other
machines can make the job for example in the Internet of things domain. Raspberry
PI, Arduino cards, different sensors and other technologies are good candidates to
collect information. Therefore, we can suggest developing software for these connect-
ed objects. In addition, we must inform these Internet connected objects where to send
their collected data to changing storage in the cloud.

Our work could be extended with the use of mobile service. This will transform our
software architecture into a more elastic architecture where mobile components will
income into the mobile client. These new components will play an invoker role. So,
depending where the end user is, he will receive on his mobile phone a piece of code
which is a service invoker of a service which is hosted in the cloud. This approach
suppresses the need of an API gateway, which helps the discovery of the useful ser-

26 http://www.i-jim.org

Paper—Cloud Mobile Storage for Mobile Applications

vices but introduces a new dependency on a technical API. Also, it provides the client
part a more evolving behavior; when exchange format changes then the mobile com-
ponent brings a request builder which take care of the new packet format. This means
that the mobile part becomes easier maintainable than before.

Our architecture used Google Cloud Messaging (GCM) to inform the different
smartphones. In fact, the part Firebase Cloud Messaging (FCM) [23] of the Android
Firebase technology is the new version to send messages to and receive from the
cloud.

Our work was implemented and tested using the local SQLite databases of Android
smartphones, MySQL databases on servers and NoSQL databases in Google cloud
using appengine technologies [24]. We can propose to store and share data in a peer-
to-peer infrastructure between smartphones using Wi-Fi direct. Our work is accessible
in a git format at https://github.com/mourlin/fmjmf.

8 References

[1] Qi Zhang, Lu Cheng and Raouf Boutaba, «Cloud computing: state-of-the-art and research
challenges» at Journal of Internet Services and Applications, Volume 1, Issue 1, pp 7–18,
2010.https://doi.org/10.1007/s13174-010-0007-6

[2] Aaaron Smith, «U.S. Smartphone Use in 2015», April. 1, 2015. [Online]. Available:
http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/

[3] Xavier León and LeandroNavarro, «A Stackelberg game to derive the limits of energy
savings for the allocation of data center resources», Future Generation Computer Systems,
vol. 29, p. 74–83, January 2013. https://doi.org/10.1016/j.future.2012.05.022

[4] Zhangbing Zhoua Walid Gaalou, Lei Shu, Samir Tata and Sami Bhiri, «Assessing the re-
placeability of service protocols in mediated service interactions», Future Generation
Computer Systems, vol. 29, p. 287–299, January 2013. https://doi.org/10.
1016/j.future.2011.08.007

[5] Javier Espadas, Arturo Molina, Guillermo Jiménez, Martín Molina, Raúl Ramírez and
David Concha, «A tenant-based resource allocation model for scaling Software-as-a-
Service applications over cloud computing infrastructures» Future Generation Computer
Systems, vol. 29, p. 273–286, January 2013. https://doi.org/10.1016/j.future.2011.10.013

[6] Youhui Zhang, Yanhua Li and Weimin Zheng, «Automatic software deployment using us-
er-level virtualization for cloud-computing» at Future Generation Computer Systems 29,
(2013) 323–329, 2013.

[7] Yavuz Selim Yilmaz, Bahadir Ismail Aydin and Murat Demirbas, «Google cloud messag-
ing (GCM): An evaluation», at IEEE Global Communications Conference, 2014.
https://doi.org/10.1109/GLOCOM.2014.7037233

[8] Utz Sonja, Muscanell N and Khalid C, «Snapchat Elicits More Jealousy than Facebook: A
Comparison of Snapchat and Facebook Use», Cyberpsychology, Behavior, and Social
Networking, vol. 18, p. 7, 2015.

[9] Yuheng Hu, Lydia Manikonda and Subbarao Kambhampati, «What We Instagram: A First
Analysis of Instagram Photo Content and User Types,» chez ICWSM, June 2014.

[10] «Gmail: free storage and email from Google,» 2016. [Online]. Available:
https://www.google.com/gmail/about/

[11] Tobias Jeske, «Floating car data from smartphones: What google and waze know about
you and how hackers can control traffic», at Proc. of the BlackHat Europe, 2013.

iJIM ‒ Vol. 13, No. 3, 2019 27

Paper—Cloud Mobile Storage for Mobile Applications

[12] Mai Alfawair, «A Cloud Storage Architecture for High Data Availability, Reliability, and
Fault-tolerance» ICFNDS '17 Proceedings of the International Conference on Future Net-
works and Distributed Systems, 19, 2017

[13] Chun-Ting Huang, Lei Huang, Zhongyuan Qin, Hang Yuan «Survey on securing data stor-
age in the cloud,» chez The 7th International Conference on Signal Processing, Image Pro-
cessing and Pattern Recognition (SIP 2014), Hainan China, 2014. https://doi.org/10.10
17/ATSIP.2014.6

[14] «HDFS (Hadoop Distributed File System) data architecture» Available:
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.

[15] «ceph storage» Available: https://ceph.com/ceph-storage/
[16] Lieyun Ding, Xun Xu, «Application of Cloud Storage on BIM Life-Cycle Management»

International Journal of Advanced Robotic Systems , vol. 11, 2014.
[17] Jiang, Bing & Yu Ma, Guo & Ma, Sheng & Feng Xie, Jian. (2013). Mobile Sync Client

Design of Cloud Storage System. Applied Mechanics and Materials. 464. 358-364.
10.4028/www.scientific.net/AMM.464.358.https://doi.org/10.4028/www.scientific.net/AM
M.464.358

[18] Yen-Hung Kuo ; Yu-Lin Jeng ; Juei-Nan Chen, «A Hybrid Cloud Storage Architecture for
Service Operational High Availability» chez IEEE 37th Annual Computer Software and
Applications Conference Workshops, Kyoto, Japan, 2013.

[19] I. Database, https://imeidb.gsma.com/imei/index#
[20] R. Fielding, Architectural styles and the design of network-based software architectures

(Doctoral dissertation), Irvine: University of California, 2000.
[21] Mohammad Tawalbeh, Alan Eardley, Lo'ai Tawalbehb «Studying the Energy Consump-

tion in Mobile Devices» chez 13th International Conference on Mobile Systems and Per-
vasive Computing, Montreal, Quebec, Canada, 2016.

[22] Kaushik Dutta, Debra Vandermeer, «Caching to Reduce Mobile App Energy Consump-
tion» ACM Transactions on the Web (TWEB), vol. 12, 2018.

[23] https://firebase.google.com/docs/cloud-messaging/, «Firebase Cloud Messaging».
[24] Google Cloud Platform, 2016. https://cloud.google.com/appengine/

9 Authors

Dr. Fabrice Mourlin is member of the Logics, Algorithmic and Complexity La-
boratory (LACL), Charles de Gaulle Avenue 60, 94010 Creteil, France. He works in
the team called Systems Specification and Verification. He is expert in mobile agent
application and is associate professor of Computer Science, at UPEC - Paris-Est Uni-
versity, Program coordinator of 2 Master programs in Computer Science.

Dr. Jean-Marc Farinone is an associate professor in Conservatoire National des
Arts et Métiers in Paris (France). He is studying Cloud architecture and processing,
the Internet of Objects. He works on Cloud system and mobile architecture. He has
created trainings about Android, C, C++ and Java programming languages, design
patterns, object-oriented designs, distributed architecture and middleware.

Article submitted 2017-12-09. Resubmitted 2018-12-28. Final acceptance 2018-12-28. Final version
published as submitted by the authors.

28 http://www.i-jim.org

