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Abstract—Machine fault diagnosis systems need to collect and transmit dy-
namic signals, like vibration and current, at high-speed. However, industrial 
wireless sensor networks (IWSNs) and Industrial Internet of Things (IIoT) are 
generally based on low-speed wireless protocols, such as ZigBee and 
IEEE802.15.4. Large amounts of transmission data will increase the energy 
consumption and shorten the lifetime of energy-constrained IWSN nodes as 
well. To address these tensions when implementing machine fault diagnosis ap-
plications in IWSNs, this paper proposes an energy efficient IWSN with on-
sensor data processing. On-sensor wavelet transforms using four popular moth-
er wavelets are explored for fault feature extraction, while an on-sensor support 
vector machine classifier is investigated for fault diagnosis. The effectiveness 
of the presented approach is evaluated by a set of experiments using motor 
bearing vibration data. The experimental results show that compared with raw 
data transmission, the proposed on-sensor fault diagnosis method can reduce 
the payload transmission data by 99.95%, and reduce the node energy con-
sumption by about 10%, while the fault diagnosis accuracy of the proposed ap-
proach reaches 98%. 

Keywords—Industrial wireless sensor networks (IWSNs), fault diagnosis, 
wavelet transform, support vector machine, Industrial Internet of Things (IIoT) 

1 Introduction 

In recent decades, many novel machine fault diagnosis approaches have been pro-
posed to prevent unexpected catastrophic machine failures and reduce the related 
economic loss due to these faults[1]. Currently, the emerging of Internet of Things 
(IoT) and its deployment in industrial settings, namely Industrial Internet of Things 
(IIoT), are transforming traditional industries in many areas including machine fault 
diagnosis [2-6]. IIoT and its wireless implementation, industrial wireless sensor net-
works (IWSNs), can sense device information and then transmit this data via a base 
station and the Internet to powerful cloud servers to enable real-time wireless machine 
condition monitoring and fault diagnosis [7]. 
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Compared with a traditionally wired machine condition monitoring and fault diag-
nosis system, a wireless system using IIoT and IWSNs has many inherent advantages, 
including lower cost, more convenient installation, and easy relocation. However, 
IWSNs and IIoT are generally based on low-speed wireless protocols, such as ZigBee 
and IEEE802.15.4. The limited wireless bandwidth of ZigBee and IEEE 802.15.4 
often impedes the high-speed collection and transmission of dynamic monitoring 
signals, like vibration and current signals, for machine condition monitoring and fault 
diagnosis. An alternative is to use the data processing capability of the IWSN sensor 
node to carry out on-sensor feature extraction and fault diagnosis and then only trans-
fer the final result to the IIoT Cloud Platform. We have previously published work 
which demonstrates the potential of on-sensor data analysis to significantly reduce the 
data communication in IWSN and IIoT [8]. Recently, several other research projects 
and application deployments in this area of on-senor fault diagnosis have been report-
ed. Overall level monitoring, which calculates a small number of statistical parame-
ters, such as RMS, crest factor, and kurtosis of vibration signals, is computed on 
IWSNs sensor node to indicate motor operating condition in [9]. However statistical 
values generally just give an overall indicator of the device condition, without suffi-
cient detail for identifying the types of failures. 

Frequency spectrum analysis based on the Fourier transform is a key technique for 
machine fault diagnosis. We have previously described an IWSN with on-sensor fault 
feature extraction using FFT for motor vibration signal and on-sensor fault diagnosis 
using artificial neural networks (ANN) in [8]. Guesmi H. et al. proposed an IWSN 
with on-sensor fault feature extraction using FFT for motor stator current signal [10]. 
The results show that the proposed method can successfully monitor the machine 
condition using low wireless bandwidth [8,10]. However, the Fourier transform is 
more suitable for a stationary signal. 

Many industrial parameters used for fault diagnoses, like vibration and state cur-
rent, are non-stationary signals or partly non-stationary signals. The Wavelet Trans-
form (WT) represents a signal using a set of basis functions from a single prototype 
wavelet through translation and dilation, and it is more suitable for processing non-
stationary and transient signals, such as vibration and current. WT has been success-
fully used in many wired fault diagnosis systems [11], however, using IWSNs and on-
sensor wavelet transforms for machine fault diagnosis is still a relatively unexplored 
area. Mehrjou et al. presented a broken rotor bar fault monitoring system using wave-
let analysis and WSN, however, the WSN is only used for raw data transmission and 
the wavelet analysis is carried out by MATLAB [12]. In earlier work, our team also 
explored the feasibility of using IWSNs and on-sensor DB97 wavelet transform for 
vibration signal fault feature extraction, combined with a minimum distance classifier 
for fault diagnosis [13], and this appears to be the only other work to explore wavelets 
for on-sensor fault diagnosis.  

Compared to other on-sensor fault classification methods, like our previous use of 
ANN [8] and minimum distance [13], the support vector machine (SVM) is a promis-
ing new approach for machine fault diagnosis. SVM overcomes the overfitting and 
local optimal solution problem of ANN and often has higher classification accuracy 
for small sample size than ANN and the minimum distance method due to its princi-
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ple of risk minimization [14-16]. To date, on-sensor fault diagnosis using SVM is a 
relatively unexplored area for IWSNs although there are many successful fault diag-
nosis applications based on the wired system with SVM. 

This paper explores the feasibility of using IWSNs with on-sensor WT and SVM 
for fault feature extraction and fault diagnosis, compares the effectiveness of on-
sensor fault feature extraction using various mother wavelets, and also quantifies the 
node energy cost of the proposed on-sensor fault diagnosis approach. In this paper, 
the induction motor and vibration signals are taken as an example of monitored indus-
trial equipment and signals due to their wide use. Machine failures due to bearings 
and the related components are more than 40 percent of all motor failures, so this 
project focuses on motor bearing faults [17,18]. As this paper mainly investigates the 
feasibility of on-sensor fault diagnosis, instead of building up a motor fault diagnosis 
testbed, this research directly uses the data from a well-known freely-available fault 
signal database at Case Western Reserve University (CWRU) Bearing Data Center as 
the training and testing data for on-sensor fault diagnosis [19]. Validating the new 
machine fault diagnosis technologies by using available dataset is a methodology 
adopted by many researchers, and the bearing data of CWRU has been used as a 
standard data set in many research projects [20-22]. 

This paper significantly extends our group’s previous work on wavelet analysis 
[13] with a broader range of mother wavelets and a more sophisticated classification 
scheme to give significantly better results. More specifically, the paper makes the 
following new contributions, compared to our previous work and the work of others 
in analyzing bearing faults using wavelet analysis. 

Firstly, the work focuses on wavelet-based vibration signal feature extractions 
which are suitable for on-sensor computation. To achieve this four different mother 
wavelets are investigated, including the Symlet2 wavelet which requires only integer 
computations rather than floating point computations. The Symlet2 wavelet is shown 
to produce similar classification accuracy with reduced computation cost. 

Secondly, compared with other wavelet-based classification schemes, this work 
uses a new, smaller set of features which are the signal energies at each wavelet de-
composition level. This significantly reduces the number of features, which allows for 
the use of fewer inputs to the classifier, again reducing the computational burden for 
on-sensor computation on the sensor node. 

Thirdly, compared with previous work, this paper explores the use of an SVM 
classifier. SVM produces higher classification accuracy compared to a minimum 
distance classifier and gives deterministic results compared to ANN classifiers which 
can give slightly different results based on the random initialization of weights. Addi-
tional, the SVM has many fewer hyper-parameters that need to be decided compared 
to an ANN. 

Finally, compared to the majority of other machine condition monitoring solutions 
which transmit raw vibration signals to a central server, the solution presented here 
computes the classification on the sensor node. The paper presents a detailed compar-
ison of the energy consumption for raw data transmission versus on-sensor classifica-
tion and shows a small benefit for the latter. This is in addition to the other benefits of 
autonomous condition monitoring, such as an immediate ability to respond to faults, 
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compared to a solution which depends on a remote diagnosis with increased latency 
and dependence on reliable radio communications 

The remainder of this paper is organized as follows. The theoretical background of 
WT and SVM are introduced in Section II. Section III describes the system architec-
ture and implementation methodology. The experimental evaluation of the proposed 
system is given in Section IV. Finally, Section V presents the overall conclusions. 

2 Theoretical Background 

2.1 Wavelet transform theory 

Compared with Gabor and short-time Fourier transforms, the wavelet transform is 
a more sophisticated time-frequency analysis technique. It has strong time localization 
and multi-resolution analysis abilities and is suitable for processing non-stationary 
and transient signals, such as machine fault signals. The wavelet transform has two 
forms, namely, the continuous wavelet transform (CWT) and the discrete wavelet 
transform (DWT). CWT is mainly used to analyze continuous time-domain signals by 
decomposing different segments of the signal with an adjustable window function. 
The CWT is defined as 

𝑋𝑋(#,%) =
1
√𝑎𝑎

+ 𝑥𝑥(𝑡𝑡)𝜓𝜓∗(
𝑡𝑡 − 𝑏𝑏
𝑎𝑎 )𝑑𝑑𝑡𝑡

34

54
 (1) 

where a, b, x(t), and ψ are the scale parameter, translation parameter, time-domain 
signal, and mother wavelet, respectively, and ψ* is the complex conjugate of ψ [13]. 

The DWT is the implementation of WT in discrete form. It is represented by 

𝑌𝑌(7,8) =
1
√27

:𝑥𝑥(𝑡𝑡)𝜓𝜓∗(
𝑡𝑡 − 27 ∙ 𝑘𝑘
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85=
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 (2) 

where a = 2B  and b = 2Bk  are the scale parameter and translation parameter 
[13,23].  The DWT decomposes the original time-domain signal, x(t), into two com-
ponents by passing the signal through a series of high and low pass filters. Therefore, 
the signal can be described as follows 

𝑥𝑥(𝑡𝑡) = 𝐴𝐴7(𝑡𝑡) +:𝐷𝐷7(𝑡𝑡)
7HI

 (3) 

where AB is the low frequency band signals (approximations) at level j, while DB 
represents the high frequency bands (details) [13,24]. In other words, the signal is 
decomposed into lowest level approximations and jth level details of wavelet coeffi-
cients. 
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2.2 Support vector machine theory 

An SVM is a statistical machine learning technique that has been widely applied in 
data classification [14,25,26]. SVM is powerful for linear classification problems, 
especially for the problem with small amounts of training data. It also can be used for 
nonlinear and high dimensional data classification by introducing kernel functions. 
The introduction of kernel functions reduces the computational complexity as well 
and makes SVM suitable for embedding in IWSNs node. SVM completes the classifi-
cation process by seeking the optimal hyper-plane with the maximal margin between 
the separate data classes.  

Taking two two-dimensional data sets as an example, the basic principle of the 
SVM classifier is illustrated in Fig. 1. The dashed line (H) is the optimal hyper-plane, 
which separates the two-class data points with the maximal margin, namely, the dis-
tance between H and the nearest data point in each class is maximal. These nearest 
data points are called support vectors, while the two solid lines (H1 and H2) parallel to 
H are known as bounding planes. The distance between H1 and H2 is the classification 
margin, which is equalto2/ǁwǁ. The optimal hyper-plane parameters for the biggest 
margin can be transformed into a convex quadratic programming problem that can be 
solved more easily. 

For linearly separable data, H is found by solving the following equation: 

𝑚𝑚𝑚𝑚𝑚𝑚 =
P
‖𝑤𝑤‖P subject to 𝑦𝑦T(𝑤𝑤U𝑋𝑋T + 𝑏𝑏) ≥ 1 (4) 

For non-complete separable data, the quadratic optimization problem becomes: 

𝑚𝑚𝑚𝑚𝑚𝑚
1
2
‖𝑤𝑤‖P + 𝐶𝐶:𝜉𝜉T

Y

T?=

		subject	to		𝑦𝑦T(𝑤𝑤U𝑋𝑋T + 𝑏𝑏) ≥ 1 − 𝜉𝜉T, 𝑚𝑚 = 1,2, … , 𝑚𝑚	 (5) 

where C is the penalty parameter that controls the trade-off between training error 
and generalization, while  𝜉𝜉T is the sl6)ack variables that measure misclassification 
degree. 

For the non-linearly separable data, the data is mapped into a high-dimensional 
feature space by some non-linear mapping functions, called kernel functions. After 
data space transformation, the optimal hyper-plane can be built to separate the data 
linearly [25]. In this paper, RBF kernel function is selected as the kernel function 
because it is able to fit any curve in any feature space and it has been used successful-
ly in many wired fault diagnosis applications. The RBF kernel is as follows: 

𝑘𝑘(𝑥𝑥, 𝑦𝑦) = 𝑒𝑒5c‖d5e‖f, (𝛾𝛾 > 0)	 (6) 

In this research, the grid search algorithm is adopted to find the best C and γ pa-
rameters. The best value of C is 0.125, while best γ is 2.8284. 

The basic SVM is designed to deal with binary classification problems. However, 
numerous multiclass classification tasks in practical applications encouraged re-
searchers to extend SVM for multiclass problems. Recently, many multiclass classifi-
cation methods have been proposed, such as one-against-all, one-against-others, one-
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against-one, and directed acyclic graph support vector machines (DAGSVM). Com-
pared with one-against-all and one-against-others, one-against-one and DAGSVM 
methods need a shorter training time [27-29]. Although DAGSVM needs the same 
training time as one-against-one, it has a shorter testing time. Therefore, the 
DAGSVM method is adopted in this project to identify the various operating status of 
the motor. 

 
Fig. 1. Optimal separating hyper-plane for data classification 

3 System Architecture and Implementation 

The architecture of the proposed machine fault diagnosis system using IIoT and 
IWSNs with on-sensor WT and multiclass support vector machine (M-SVM) is illus-
trated in Fig. 2. The system consists of a star topology IWSN with one coordinator 
and several sensor nodes, a computer working as the gateway, a cloud platform, and a 
management portal. ZigBee and a Jennic JN5139  sensor board and controller board 
are selected as the communication protocol and the hardware platform for the end 
nodes and the coordinator of the IWSN. The signal acquisition, WT fault feature ex-
traction, and M-SVM fault diagnosis are completed on the IWSN end nodes, and then 
the fault diagnosis results are collected and transmitted through the coordinator and 
the gateway to the cloud platform for subsequent access by the management portal. 
The end nodes can switch to sleep mode between signal acquisition, fault feature 
extraction, and fault diagnosis stages to reduce node energy consumption and prolong 
the lifetime of IWSNs and IIoT. The details of the system are described below. 
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Fig. 2. The overall architecture of the proposed system 

3.1 Machine fault signal 

As introduced in section I, this project uses the vibration data of normal and faulty 
bearings provided by the Bearing Data Center at CWRU as the training and testing 
data for the proposed on-sensor fault diagnosis method. The test bed of CWRU is 
shown in the left part of Fig. 2. It consists of a 2 hp reliance electric motor, a torque 
transducer, and a dynamometer. The motor speed is 1797rpm. Rolling ball fault, inner 
race fault, and outer race fault with different fault diameters were separately seeded 
on the normal bearing using electro-discharge machining, and the vibration signal is 
collected using accelerometers and a 16 channel DAT recorder with 12 kHz sampling 
frequency. 

In this paper, five bearing working conditions, namely normal condition bearing 
(NOR), bearing with inner raceway fault of 0.007 inches in diameter (IR007), bearing 
with inner raceway fault of 0.021 inches in diameter (IR021), bearing with rolling ball 
fault of 0.021 inches in diameter (B021), and bearing with outer raceway fault of 
0.021 inches in diameter (OR021), are selected for further fault diagnosis experiment. 

Fig. 3 shows the original vibration signal data of examples of each of the five con-
ditions. For these experiments, classification is based on a single accelerometer at the 
fan-end of the motor, which is sufficient to identify these bearing faults. Compared 
with the signal in a normal condition, the signal amplitudes change significantly when 
a fault occurs in the bearing. 
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Fig. 3. The original vibration signal of the bearing with different conditions 

3.2 Wavelet transform fault feature extraction 

One wavelet transform method with low-memory requirements presented in [30] is 
selected for the resources-constrained IWSN nodes. The 2-level wavelet transform on 
bearing vibration signals with four popular used mother wavelets, namely Db97, 
Db53, Coiflet1, and Symlet2 wavelets, are computed to verify the feasibility of the 
proposed on-sensor WT fault feature extraction, and to compare the fault feature ex-
traction effectiveness of the various mother wavelets. Daubechie, Coiflet, and Symlet 
mother wavelets are orthogonal, symmetric or approximately symmetric, and success-
fully used in many fault diagnosis applications [31-33]. The selected four mother 
wavelets are shown in Fig. 4. The filter coefficients of Db97, Db53, Coiflet1, and 
Symlet2 wavelets as given in [30,34,35] are used in this research. 

After the wavelet transform, the signal energies of the wavelet coefficients of each 
DWT level are calculated as the fault features to reduce fault feature set size because 
wavelet coefficients are still too large to be directly transmitted by the IWSNs as the 
fault features. The signal energy feature used in this paper is defined as follows: 

 
(7) 

where Sj(t) is the wavelet signal in decomposition level j, yj(k) is the kth wavelet 
coefficients in DWT level j, and n is the sample number of each DWT level. The 
obtained signal energy of the wavelet coefficients is then used as the input of the M-
SVM fault classifier which will be described in the next section. 
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Fig. 4. Various mother wavelets 

3.3 M-SVM Fault diagnosis 

Due to its short training and testing time, DAGSVM is chosen as the multiclass 
fault classifier in this paper. The principle of a DAG for classifying five machine 
working conditions is shown in Fig.5. 

We can see that there are 5*(5-1)/2=10 internal nodes and 5 leaf nodes in Fig.5. 
Each internal node is a binary  SVM  classifier that has been trained by a distinct pair 

 
Fig. 5. The DAG for selecting the correct machine working condition out of five classes 

of machine working conditions, while each leaf node indicates one working condition. 
To evaluate a test data set, we start at the root node. The binary output of the root 
node, namely Normal VS OR021, is calculated first, the node is then exited via the 
left edge if the result does not indicate OR021; or the right edge if the binary output 
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does not indicate Normal. The binary output of the next node (for example, Normal 
VS B021 in level 2 is then evaluated. By repeating this calculation and evaluation 
process at every level, we can travel down the DAG and finally reach a leaf node that 
indicates the predicted machine working condition. For a problem with N classes, N-1 
decision nodes, one in each level, will be evaluated to complete the classification 
procedure. In this research, N is set as 5. The purple dotted line in Fig. 5 is one possi-
ble path taken through the DAG, representing the evaluation path. 

4 Experimental Validation 

In this section, a set of experiments were carried out to evaluate the proposed ap-
proach. Firstly, the vibration data from the Bearing Data Center at CWRU is stored in 
the Jennic JN5139 wireless sensor node, which is a typical commercial IWSN node 
with 192 kB ROM, 96 kB RAM, and ZigBee radio, and is suitable for on-sensor data 
processing. Secondly, the 2-level wavelet transforms with four popular used mother 
wavelets are implemented by C language, and then embedded and carried out on 
JN5139, to verify the feasibility of the proposed on-sensor WT fault feature extrac-
tion, and to analyze the fault feature performance of different mother wavelets. Third-
ly, the accuracy of the presented on-sensor M-SVM is evaluated. Finally, the data 
transmission and energy consumption of the proposed approach are analyzed. The 
detailed steps and results of this experiment are given below. 

4.1 WT Fault feature extraction 

In this experiment, the feasibility of on-sensor fault feature extraction using WT is 
explored. The 2-level wavelet transforms with four different mother wavelets, 

namely Db97, Db53, Coiflet1 and Symlet2 wavelet, are conducted on IWSNs node to 
decompose vibration signals in the five conditions, namely NOR, IR007, IR021, 
B021, and OR021. 

The vibration data used in this step are collected from the sensor nodes installed at 
the fan end of the motor housing. 1024 samples constitute a data set of one bearing 
condition, so the total number of samples is 5120. The CWRU Bearing Data was 
collected from a single machine with different sets of introduced bearing faults.  Such 
faults are indicative of a scenario where a single class of machine is used in a variety 
of applications, running at similar speeds.  In a real-world scenario, bearing fault data 
would either be collected by the manufacturer in specific testing, or through the long-
term recording of data from many machines in the field. Traces of both normal and 
faulty operation would be accumulated in a central data store and would be used to 
regularly update and retrain the classifiers. So, even if a specific machine has never 
had a fault, the broader database would allow such fault conditions to be trained in the 
classifier. For operations at different speeds, different classifiers could be constructed 
for these scenarios. 
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Fig. 6. The 2-level DWT decomposition of the vibration signals under five bearing working 

conditions using four different mother wavelets 

Of course, bearing faults are not the only failure mechanism. Other faults like shaft 
misalignments or out-of-balance faults could also be included. The range of fault 
signals could also be increased (such as vibrations in different axes). This experiment 
investigates one class of fault (bearing fault) on a specific machine, with the specific 
goal of analyzing the accuracy and energy efficiency of on-sensor classification. 

The original vibration signals and corresponding wavelet coefficients after 2-level 
DWT are shown as Fig. 6, where Detail 1 is the detail coefficients at 1st level, Detail 
2 is the detail coefficients at 2nd level, and Approx 2 is the approximation coefficients 
at 2nd level. Although vibration signals amplitude rose significantly for a faulty bear-
ing, it is still difficult to decide bearing working condition just by vibration signal 
amplitude. In addition, compared to the normal condition, the wavelet coefficients of 
the faulty bearings have different characteristics. 

E1, E2, and E3, the energy of the corresponding wavelet coefficients of the testing 
data sets, are then calculated using equation (7) on the sensor node. Although the sum 
of energy of all the wavelet coefficients at all details and approximate parts is equal to 
the energy of the original vibration signal, the energy distribution at various frequency 
bands will change according to the bearing working condition. The normalized wave-
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let energy signals for vibration signals under five bearing working conditions using 
four different mother wavelets are shown in Fig. 7. It is easier to distinguish the dif-
ferent bearing working status by using the energy signals rather than using vibration 
amplitude. 

 

 
Fig. 7. The normalized energy of wavelet coefficients for vibration signals under five bearing 

working conditions using four different mother wavelets 

4.2 M-SVM Fault diagnosis 

In this section, the feasibility of on-sensor multiclass fault diagnosis using 
DAGSVM is investigated. The vibration data from the bearing under the above men-
tioned five working conditions are used.  

First, a total of 450 training data sets, 90 for each condition, are used to train the 10 
SVM binary classifiers off-line. After training, the obtained M-SVM classifier param-
eters with different mother wavelets are given in Table 1. It can be seen that Coiflet1 
(Coif1) wavelet needs the least training time, while Symlet2 (Sym2) has the smallest 
support vector number and potentially shortest calculation time in the on-line fault 
diagnosis procedure. 
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Table 1.  M-SVM classifier parameters using different wavelet 

Group Training time (s) Total number of SV SV Coverage  
Db97 3.78 454 25.22% 
Db53 3.54 539 29.95% 
Coif1 3.00 447 24.83% 
Sym2 3.69 403 22.39% 

The training accuracies of M-SVM classifiers with different mother wavelets are 
given in Table 2. It can be seen that the total training accuracy of M-SVM classifiers 
with Coiflet1 and Symlet2 wavelet reach 98%, while the accuracy of Db97 and Db53 
are 93% and 95%, respectively. 

Second, the obtained parameters of the M-SVM classifiers are then embedded in 
the program on the sensor nodes. Then 140 data sets, 28 for each condition, which 
were not used for training, were used for testing and verification on-line. 

Table 2.  The training accuracy of M-SVM classifiers with different mother wavelets 

Fault Type IR007 IR021 B021 OR021 NOR Total 
Number of Training 

Samples 90 90 90 90 90 450 

Training 
Accuracy 
（（%）） 

Db97 95.56 84.45 96.67 90.00 100 93.33 
Db53 98.89 91.11 97.78 93.33 100 96.22 
Coif1 97.78 98.89 100 97.78 100 98.89 
Sym2 95.56 100 94.45 100 100 98.00 

 
The testing accuracy of M-SVM classifiers with different mother wavelets is given 

in Table 3. The training accuracy of M-SVM classifiers with all of the four mother 
wavelets exceeds 90%. The M-SVM classifier using Symlet2 wavelet gives the high-
est accuracy, which reaches 99.29%, while Coiflet1 wavelet has an accuracy of 
98.57%. 

Table 3.  The testing accuracy of M-SVM classifiers using different wavelet 

Wavelet Db97 Db53 Coif1 Sym2 

Number of Test Samples 28*5 28*5 28*5 28*5 
Testing Accuracy（%） 96.43 92.96 98.57 99.29 

 
Third, 590 data sets from another set of vibration data are used to test the perfor-

mance of the obtained M-SVM classifier models again. The results are given in Table 
4. It can be seen that the classification accuracy of Coiflet1 and Symlet2 wavelet 
reaches 98.31%, and are better than the results of Db97 and Db53 wavelet. The Clas-
sification results of Coiflet1 and Symlet2 wavelet are also illustrated by confusion 
matrix in Fig. 8. 

 
 

54 http://www.i-joe.org



Paper—IWSNs with On-sensor Data Processing for Energy Efficient Machine Fault Diagnosis 

Table 4.  The testing accuracy of M-SVM classifier by another data set 

Fault type Data number 
Wavelet 

Db97 Db53 Coif1 Sym2 
IR007 118 96.61 92.37 97.45 95.76 
IR021 118 89.83 80.50 98.30 100 
B021 118 97.45 94.91 100 95.76 
OR021 118 91.52 90.67 95.76 100 
Normal 118 100 100 100 100 
Average accuracy 95.08 91.69 98.31 98.31 

 
Fourthly, we randomly divide the 560 sets of data into 8 groups. Each group in-

cludes 70 data sets, 14 for each condition. These data are used to verify the overall 
classification effect of the obtained M-SVM classifier with different mother wavelets 
again. The results are shown in Fig.9. Compared with Db97 and Db53 wavelet, 
Coiflet1 and Symlet2 wavelet have higher overall classification accuracy (98.31%) 
and less fluctuation. 

Finally, the effectiveness of the proposed M-SVM method is compared with the ef-
fectiveness of fault classifiers based on ANN and minimum distance methods. In this 
experiment, Coiflet1 wavelet is used for fault feature extraction due to its better per-
formance mentioned above, and the neural network has three inputs, five hidden layer 
neurons, and five output layer neurons. The experimental result is shown in Fig. 10, 
which indicates that the fault diagnosis accuracy of M-SVM method is far superior to 
the results of the neural network and minimum distance methods. The accuracy of the 
presented on-sensor approach has 15% and 30% higher accuracy than ANN and min-
imum distance methods. 

   
a) Coiflet1 wavelet b) Symlet2 wavelet 

Fig. 8. Confusion matrix using M-SVM and wavelet transform 
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Finally, the effectiveness of the proposed M-SVM method is compared with the ef-
fectiveness of fault classifiers based on ANN and minimum distance methods. In this 
experiment, Coiflet1 wavelet is used for fault feature extraction due to its better per-
formance mentioned above, and the neural network has three inputs, five hidden layer 
neurons, and five output layer neurons. The experimental result is shown in Fig. 10, 
which indicates that the fault diagnosis accuracy of M-SVM method is far superior to 
the results of the neural network and minimum distance methods. The accuracy of the 
presented on-sensor approach has 15% and 30% higher accuracy than ANN and min-
imum distance methods. 

 
Fig. 9. Comparison of fault diagnosis classification accuracy using different wavelet 

 
Fig. 10.  Comparison of the classification accuracy of the proposed approach with neural net-

work and minimum distance methods 
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4.3 Payload transmission data and Node energy consumption 

In this section, the transmission data and node energy consumption for data trans-
mitted after on-sensor WT fault feature extraction and SVM fault diagnosis and for 
raw data transmission are tested and compared by a series of experiments. 

• 1) Payload transmission data: For raw data transmission mode, the IWSN end 
node should send 8192 bytes to the coordinator for 1024 samples. For on-sensor 
WT fault feature extraction and SVM fault diagnosis mode, the end node only 
needs to transmit the fault diagnosis result, so the payload transmission data de-
crease from 8192 to 4 bytes, i.e., a 99.95% reduction.  

• 2) Node Energy Consumption: When a 16-MHz system clock is used, the typical 
current consumption of JN5139 CPU processing status is 7.57 mA. The calculating 
time for on-sensor WT fault feature extraction using Symlet2 mother wavelet and 
on-sensor DAGSVM multiclass fault diagnosis is around 2.12 s, so the energy con-
sumption for the proposed on-sensor fault diagnosis approach is given as 

𝐸𝐸kY5lmYlknoT#p = 2.353𝑉𝑉 × 7.57𝑚𝑚𝐴𝐴 × 2.12𝑠𝑠 = 37.8	𝑚𝑚𝑚𝑚	 (8) 

Typical current consumption of JN5139 for wireless data transmitting is 38mA. 
The time for transmitting 8192 bytes raw data is about 0.47 s, the node voltage in this 
experiment is about 2.353 V, so the energy consumption for raw data transmission is 

𝐸𝐸n#zo#>#>n#Yl = 2.353𝑉𝑉 × 38𝑚𝑚𝐴𝐴 × 0.47𝑠𝑠 = 42.0	𝑚𝑚𝑚𝑚	 (9) 

Compared with raw data direct transmission, the on-sensor fault diagnosis method 
using Symlet2 WT and DAGSVM reduces energy consumption from 42 mJ to 37.8 
mJ, i.e. a decrease of 4.2 mJ or 10%.  

The details of payload data transmission and node energy consumption for raw da-
ta transmission and on-sensor fault diagnosis are given in Table 5. 

Table 5.  Comparison of transmission data and energy consumption of raw data transmission 
and on-sensor fault diagnosis 

Data processing and transmis-
sion mode  

Transmission 
data (bytes) 

Time for on-sensor 
WT&SVM or Raw data 

Transmission (s) 

Energy 
consumption (mJ) 

On-sensor Db97 WT & SVM 4 3.10 55.2 
On-sensor Db53 WT & SVM 4 2.47 44.0 
On-sensor Ciof1WT & SVM 4 2.86 50.9 
On-sensor Sym2 WT & SVM 4 2.12 37.8 
Raw data transmission 8192 0.47 42.0 

 
It can be seen that the energy consumption of on-sensor fault diagnosis depends on 

the calculation time and complexity of the selected algorithm. The energy consump-
tion for on-sensor fault diagnosis with Db53 WT and SVM is similar to the energy 
utilization for raw data transmission, while the energy consumption of on-sensor fault 
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diagnosis with Ciof1 WT or Db97 WT and SVM is higher than the energy utilization 
of raw data transmission 

5 Conclusion 

In this paper, we proposed a novel machine fault diagnosis method, which uses 
IIoT and IWSNs with on-sensor fault feature extraction by wavelet transform and on-
sensor fault diagnosis by M-SVM to reduce the payload transmission data in IWSN. 
Four popular mother wavelets, namely Db97, Db53, Coiflet1, and Symlet2 wavelet, 
and DAGSVM are selected and implemented on the IWSN sensor node. 

While previous work has demonstrated that wavelet-based features and SVM clas-
sification can be used for bearing-fault diagnosis, this paper introduces some novel 
results.  It particularly addresses the practicality of implementation on a typical wire-
less sensor node with limited energy.  It investigates the energy savings from using 
low-computational complexity wavelets (Db53 and Sym2) on-board the sensor node 
with only classification results transmitted to the coordinator.  This work is the first to 
identify that the Sym2 wavelet provides both low computation cost and high classifi-
cation accuracy. 

The feasibility and effectiveness of the presented approach have been demonstrated 
by a set of experiments using the bearing vibration data obtained from the Bearing 
Data Center at CWRU. Testing results show the following. 

• Compared with raw data transmission, the proposed on-sensor fault diagnosis 
method can reduce the payload transmission data by 99.95%, and reduce the node 
energy consumption by about 10%; 

• The fault diagnosis accuracy of the proposed method with all the four mother 
wavelets exceeds 91%, while the accuracy by Coiflet1 and Symlet2 wavelet reach-
es 98%;  

• The accuracy of the presented on-sensor approach with Coiflet1 wavelet is 15% 
and 30% higher than the accuracy of ANN and minimum distance methods. 

There is, of course, significant scope to investigate other features such as MEL, 
other classifiers such as Random Forest classifiers, or even techniques that combine 
feature extraction and classification such as convolutional neural networks. 

The on-sensor calculations just take a few seconds, so the system can operate in re-
al-time. The duty-cycle will be determined by the available energy, but with sufficient 
energy, monitoring could be done continuously, with the condition monitoring 
equipment permanently connected to the motor. In such situations, the ruggedness and 
durability of the system would need to be consistent with the anticipated lifetime of 
the motor. 

The energy consumption results show that small energy savings can be made, of 
the order of 10% by using on-sensor computation. However, the relatively small sav-
ings suggest that there is still scope for improved performance by reducing the energy 
cost of on-sensor processing, using more energy efficient computation architectures 
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such as FPGAs. Su, for example, has shown power savings of 90% for on-sensor 
computation by using low power FPGAs [36]. 
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