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Abstract—Today we live in a society of high technologies, advanced in-
formation and communication systems in every field, including education. So, 
in modern education, teachers make full use of the possibilities of modern In-
formation and Communication Technologies (ICT). In this case, the attitude of 
the teachers towards the use of computers, to achieve the educational goals, is 
very important. To have the technologies sustained and significant effect, stu-
dents in secondary and higher schools need to understand how to use them. The 
goal of this article is to help of students in secondary and higher schools to ac-
quire enough practical programming skills and to learn the sorting algorithms, 
i.e. the article considers basic sorting algorithms. We developed and describe 
here software with name “Visual sorting” that shows visual, the execution of 
the basic sorting algorithms: Bubble sort; Selection sort; Insertion sort; Merge 
sort. Also, our software provides inter-active tracking of the performance (step 
by step) of different sorting algorithms. 
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1 Introduction 

Today we live in a society of high technologies, advanced information and com-
munication systems in every field, including education. In last years the high technol-
ogies, radically changed the people's lifestyles, the businesses and the education in 
secondary and higher schools [1-4]. As a result from the rapid development of new 
Information and Communication Technologies (ICT) in education, which enables a 
two-way connection in real time, the forms of regular, part-time, distance and indi-
vidual educational are interweaves. 

Increasingly, the people have need access to information and if the schools and 
universities cannot provide it, the people will turn to other institutions. That is why 
educational institutions should not lag behind technological progress. From this point 
of view, the education field is becoming in constant consumer of high-tech products. 

Today, the access to information is accomplished through computer, using com-
puter networks and software products, which offer many more alternatives than any 
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textbook. Through ICT the students in secondary and higher schools have access to 
huge number of information sources (electronic libraries, electronic books and maga-
zines, websites of various institutions and people, etc.). This information stream is 
two-way at any time of the day – from web space to the students (colleagues, teach-
ers, experts, followers, friends and etc.) in secondary and higher schools and vice 
versa. So, the attitudes of teachers to the use of computers and Internet to achieve the 
educational goals are very important, if we want to have successful learning, using the 
full potential of modern ICT. 

Only innovations are not enough. Without the right set of skills, the students in 
secondary and higher schools will not be able to take advantage of the opportunities 
that they will face in the future. That is why the global companies, such as Microsoft, 
are committed to both technology innovation, and education and training. To have the 
technologies sustained and significant effect, the people should learn how to use them, 
and this educational process should last a lifetime. 

The aim of this article is to help of students in secondary and higher schools to ac-
quire in-depth knowledge and enough practical programming skills for Sorting algo-
rithms and .NET framework. To achieve this aim, using C# programing language, we 
developed software for visual implementation of some basic sorting algorithms. This 
software shows step by step sorting process and performance of individual sorting 
algorithm, which can be very useful in learning and understanding sorting algorithms 
in education of student in secondary and higher schools. 

The C# programing language is an object-oriented language, which is used by pro-
grammers around the world to develop applications for .NET platform. This language 
is built-on the base of the C, C++, Visual Basic (VB) and Java programing languages 
and provides a complete development environment for applications. The C# pro-
gramming language combines the power of C, the C++ object-orientation, and VB 
graphical interface [5-9]. 

In the sections below, we: 

• Make short descriptions of basic sorting algorithms 
• Present our software with name “Visual sorting” 
• Show the run of “Visual sorting” software 

2 Material and Method 

Often, when we work with large dataset (the data are from one type), it is necessary 
to introduce some rules that make it easier to process them. The ordering of the ele-
ments could give us a significantly more efficient search algorithm, compared to the 
case where the data is not sorted. 

The sorting is a process of rearranging (permuting appropriately) the dataset ele-
ments in a particular order [7]. The sorting is a major activity with a wide range of 
applications: dictionaries, telephone directories, indexes, and anywhere where is re-
quired fast searching of different objects. Depending from the type of the sorted data, 
the sorting process can be done in a variety of ways. 
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There are different classifications of the sorting algorithms. Probably the most 
popular classification is according of data location. Based on this criterion, we can 
find two types sorting: internally (data is in RAM's computer and often is possible 
direct access to any element of the dataset) and externally (the data is in external 
memory (flash drive, Hard Disk Drive and etc.) and often, we access them strictly 
sequential, starting from the first element). According to the operations, performed 
over the elements, we have sorting by comparison (usually by using the operators <, > 
and =) and sorting by transformation (using arithmetic operations, without direct 
comparison of pairs of elements). Other important classifications are based on certain 
properties of the sorting algorithms. Example, persistent and unsustainable. We call 
one method a persistent method, when in sorting process the relative order of ele-
ments with equal values remains unchanged. The persistent methods are preferred, 
when the dataset elements are already sorted, according to other criterion. 

Main requirement to sorting algorithms is minimum costs of additional memory. 
Also, important requirement is the minimum number of comparisons and exchanges 
in sorting process. Usually, the sorting process is done by a simple exchange of the 
locations of two elements in array [7]. 

The sorting algorithms, those are included in developed by us and described here 
software “Visual sorting”, are as following: Bubble sort, Selection sort, Insertion sort 
and Merge sort. 

2.1 Bubble sort 

Bubble sort has a worst-case and average complexity of О(n2), where n is the num-
ber of elements being sorted. It is recommended for small values of n. 

Let a0, a1, ..., an-1 to be a sequence that we want sort in increasing order. The algo-
rithm is as follows: 

1. Let the variable right = n-1. 
2. For the sequence a0, a1, ..., aright we compare sequentially each two adjacent ele-

ments ai and ai+1. If ai > ai+1, we exchange them and keep the exchange position i 
in variable k. If ai <= ai+1, we don't change the locations of elements. The process 
continues until the end of the sequence. If, in this process, after the exchange of i 
and i + 1 elements has not been done other exchanges, therefore the elements k+1, 
k+2, ..., n-1 are sorted in correct order. 

3. right = k. 
4. If right > 0, we go to Step 2 and Step 3. 
5. If right = 0, the sequence is sorted. 

2.2 Selection sort 

Selection sort has O (n2) complexity. The main idea of this method is following: 
we find the smallest (biggest) element, put it in the beginning of the array, and ex-
cluding it from consideration. We repeat these steps for all elements from the se-
quence that we want to sort [10]. 
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Let ai, ai+1, ..., an-1, i = 0, 1, ..., n-2, to be a sequence that we want to sort in increas-
ing order. The Selection sort algorithm is as follows: 

1. We find k-th element, so ak = min {ai, ai+1, ..., an-1}. 
2. We exchange the ak and ai elements. 

2.3 Insertion sort 

Insertion sort has O (n2) complexity. This method implements the following idea. 
Let we have a dataset A = {a0, a1, ..., ai-1}. We need to put the element ai in correct 
position in the dataset A, so the new dataset A’ = {a0, a1, ..., ai, ..., ai-1} to be sorted in 
increasing order. We repeat this action for i = 1, 2, ..., n-1. 

2.4 Merge sort 

In the basis of this sorting algorithm is the "Divide and Conquer" method, i.e. the 
algorithm divide the input sequence into two parts, sort each of them in increas-
ing/decreasing order and then combine (merges) the obtained sub sequences. The 
Merge sort algorithm is one of the most effective sorting algorithms. This algorithm 
has O(n log n) time complexity. 

The source code for the sorting algorithms in C++ and Pascal programming lan-
guages are presented in Appendix. 

2.5 The "Visual Sorting" software 

In this article we show developed by us software with name “Visual Sorting”. The 
aim of this software is to make visual representation of performers (step by step) of 
described above sorting algorithms. We can run our software as desktop application, 
i.e. we do not need to make installation, just copy and paste the folder with software 
files on our computer. To develop the "Visual Sorting" software we use C# 2010 
Express Edition and MS Visual Studio 2010 Express Edition with Framework 2.0. As 
we said above, the software contains realizations of described in previous sections 
sorting algorithms: 

• Bubble sort  – has O(n2) complexity 
• Selection sort  – has O(n2) complexity 
• Insertion sort  – has O(n2) complexity 
• Merge sort  – has O(n log n) complexity 

For each of these sorting algorithms, our software allows interactive tracking of 
performance (step by step). For each step of the performance of the chosen algorithm, 
the array elements that are under consideration are colored in appropriate colors and 
the software shows message for the action being performed at the respective step from 
the algorithm execution. 
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3 Results and Discussion 

3.1 Main form of the “Visual Sorting” software 

Figure 1 show the main form of the “Visual Sorting” software. 

 
Fig. 1. “Visual Sorting” – Main form 

From main form we can select the number of elements (the maximum number is 
limited to twenty elements) that need to be sorted. If we enter a number large than 
twenty elements, the software will display a warning message for too many elements. 
Once we entering the number of elements, the radio buttons "Generate elements" and 
"Manual input" are enabled. The button "Generate elements" automatically generates 
array with the specified number of elements, and the button "Manual Input" allow us 
to enter sequentially elements (manual generate an array), using the field "Element 
No." and pressing the "Enter" key. Once the array is generated (automatically or man-
ually), the software displayed it in the "Sorting Results" panel as follow: 
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After that the "Sorting algorithm" list is enabled. This list allows us to choose the 
sorting algorithm that want to monitor. Once we choose a sorting algorithm, the but-
tons "Sort", "C ++ Source", and "Pascal Source" are enabled.  

To start the sorting process, we need to press the "Sort" button, which will per-
forms the first sorting step, will displays the result in the "Sorting Results" panel, and 
below the "Sort" button will displays the message "Perform the Steps", button "Con-
tinue" and button "Stop" (see Figure 2). The "Continue" button sequentially performs 
and visualizes the individual steps of the sorting process, and with the "Stop" button 
the sorting process may be interrupted. 

 
Fig. 2. The message "Perform the Steps" 

The result of the implementation of the chosen algorithm can be deleted by press-
ing the "Clear" button, which is located under the "Sort" button. 

Figure 3 shows the obtained result using Bubble sort and array with six elements 
(automatically generated). 

 
Fig. 3. Obtained result using Bubble sort algorithm and array with six elements 
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The software marks with white color the elements of initial array, with red color 
the elements that are compared in the current step, and with blue color already sorted 
elements (see Figure 3). Also, for each of the steps, the software describes the current 
action (whether or not the relevant elements are exchanged). The next figure (see 
Figure 4) shows the implementation of Merge sort algorithm. 

 
Fig. 4. Implementation of Merge sort algorithm 

3.2 The form "Source code" 

Developed software “Visual Sorting” can shows C++ or Pascal source code for any 
of the described in previous section algorithms. The buttons "C ++ Source code" and 
"Pascal Source code" (Main form), open a form that contain C++ (see Figure 5) or 
Pascal (see Figure 6) source code for the chosen algorithm. 
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Fig. 5. Form: C++ source code for Bubble sort 

 
Fig. 6. Form: Pascal source code for Selection sort 

Using this form, the students can study the source code in C++ and Pascal pro-
gramming languages, for each of the algorithms that are included in developed soft-
ware. 
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4 Conclusion 

In conclusion we can say that the use of the visual and event-oriented programming 
in the Computer science courses is excellent choice and they give us perfect results. 
For successful implementation of training courses that use the full potential of mod-
ern technology, very important are both the mindset and attitude of the lecturers to 
these technologies, and their use in the learning process, to achieve the educational 
goals [11-19]. 

In this article we considered the sorting algorithms that are included in the devel-
oped by us software with name "Visual sorting". Also, we presented our software to 
interactive tracking of the progressive execution of sorting algorithms. 
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Appendix 

The source code for the sorting algorithms in C++ and Pascal programming lan-
guages: 

Source code for Bubble sort in C++: 
1:   void BubbleSort(int a[], int n) { 
2:         int right = n-1; 
3:         int temp = 0; 
4:         while(right > 0) { 
5:               int k = 0; 
6:               for(int i = 0; i < right; i ++) { 
7:                     if(a[i+1] < a[i]) { 
8:                          temp = a[i+1]; 
9:                          a[i+1] = a[i]; 
10:                         a[i] = temp; 
11:                         k = i; 
12:                   } 
13:             } 
14:             right = k; 
15:       } 
16: } 
Source code for Bubble sort in Pascal: 
1:  procedure BubbleSort(a: Tarray; n: integer); 
2:  var 
3:        right, temp, k, i: integer; 
4:  begin 
5:        right := n-1; 
6:        temp = 0; 
7:        repeat 
8:              k = 0; 
9:              for i := 0 to right do 
10:                   if a[i+1] < a[i] then 
11:                   begin 
12:                         temp := a[i+1];  
13:                         a[i+1] := a[i]; 
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14:                         a[i] := temp; 
15:                         k := i; 
16:                   end; 
17:            right := k;  
18:       until (right > 0); 
19: end; 
Source code for Selection sort in C++: 
1:  void SelectSort(int a[], int n) { 
2:        int min, k; 
3:        for(int i = 0; i < n; i ++) { 
4:              k = i; 
5:              min = a[k]; 
6:              for(int j = i + 1; j < n; j ++) { 
7:                    if(a[j] < min) { 
8:                          k = j; 
9:                          min = a[k]; 
10:                   } 
11:             } 
12:             a[k] = a[i]; 
13:             a[i] = min;   
14:       } 
15: } 
Source code for Selection sort in Pascal: 
1:  procedure SelectSort(a: Tarray; n: integer) 
2:  var 
3:        min, k, i: integer; 
4:  begin 
5:        for i := 0 to n do 
6:        begin 
7:              if a[j] < min then 
8:              begin 
9:                    k := j; 
10:                   min := a[k]; 
11:             end; 
12:             a[k] := a[i]; 
13:             a[i] := min; 
14:       end; 
15: end; 
Source code for Insertion sort in C++: 
//This procedure inserts elements in a dataset that is in increasing order 
1:  void Insert(int a[], int i) { 
2:        int j; 
3:        int x = a[i]; 
4:        for(j = i - 1; j >= 0; j --) { 
5:              if(x < a[j]) 
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6:                    a[j+1] = a[j]; 
7:              else 
8:                    break;  
9:        } 
10:      a[j+1] = x;  
11: } 
// This procedure realizes Insertion sort 
1: void InsertSort(int a[], int n) { 
2:       for(int i = 1; i < n; i ++) 
3:             Insert(a, i); 
4: } 
Source code for Insertion sort in Pascal: 
//This procedure inserts elements in a sequence that is in increasing order 
1:  procedure Insert(a: Tarray; i: integer); 
2:  var 
3:        j, x: integer; 
4:  begin 
5:        x := a[i]; 
6:        for j := i-1 downto 0 do 
7:        begin 
8:              if (x < a[j]) then a[j+1] := a[j]; 
9:        end; 
10:      a[j+1] := x; 
11: end; 
// This procedure realizes Insertion sort 
1: procedure InsertSort(a: integer; n: integer); 
2: var 
3:       i: integer; 
4: begin 
5:       for i := 1 to n do Insert(a, i); 
6: end; 
Source code for Merge sort in C++: 
//This procedure combine (merge) two arrays 
1:  void merge(const int a[], int n, const int b[], int m, int* c) { 
2:        int i = 0, j = 0, k = -1; 
3:        while(i < n && j < m) { 
4:              if(a[i] < b[j]) { 
5:                    k ++; 
6:                    c[k] = a[i]; 
7:                    i ++; 
8:              } else { 
9:                    k ++; 
10:                  c[k] = b[j]; 
11:                  j ++; 
12:            } 
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13:      } 
14:      if(i == n) { 
15:            while(j < m) { 
16:                  k ++; 
17:                  c[k] = b[j]; 
18:                  j ++; 
19:            } 
20:      } else { 
21:            while(i < n) { 
22:                  k ++; 
23:                  c[k] = a[i]; 
24:                  i ++; 
25:            } 
26:      } 
27: } 
// This procedure realizes Merge sort 
1:  void MergeSort(int a[], int n) { 
2:        if(n < 2) 
3:              return; 
4:        int nLeft = n / 2; 
5:        int nRight = n - nLeft; 
6:        MergeSort(a, nLeft); 
7:        MergeSort(a + nLeft, nRight); 
8:        int* p = new int[n]; 
9:        merge(a, nLeft, a + nLeft, nRight, p); 
10:       for(int i = 0; i < n; i ++) 
11:            a[i] = p[i]; 
12:       delete [] p; 
13: } 
Source code for Merge sort in Pascal: 
//This procedure combine (merge) two arrays 
1:  procedure merge(a: Tarray; n: integer; b: Tarray; m: integer; var c: Integer); 
2:  var 
3:        i, j, k: integer; 
4:  begin 
5:        i := 0; 
6:        j := 0; 
7:        k := -1; 
8:        repeat 
9:              if a[i] < b[j] then 
10:            begin 
11:                   k := k + 1; 
12:                   c[k] := a[i]; 
13:                   i := i + 1; 
14:             end 
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15:             else 
16:             begin 
17:                   k := k + 1; 
18:                   c[k] := b[j]; 
19:                   j := j + 1; 
20:             end 
21:       until ((i < n) and (j < m)); 
22:       if i = n then 
23:       begin 
24:             repeat 
25:                   k := k + 1; 
26:                   c[k] := b[j]; 
27:                   j := j + 1; 
28:             until (j < m) 
29:       end 
30:       else 
31:       begin 
32:             repeat 
33:                   k ++; 
34:                   c[k] = a[i]; 
35:                   i++; 
36:             unitl (i < n) 
37:       end; 
38: end 
// This procedure realizes Merge sort 
1:  procedure MergeSort(a: Tarray; n: integer); 
2:  var 
3:        nLeft, nRight, i: integer; 
4:        p: Tarray; 
5:  begin 
6:        if n < 2 then Еxit; 
7:        nLeft := n / 2; 
8:        nRight := n - nLeft; 
9:        MergeSort(a, nLeft); 
10:      MergeSort(a + nLeft, nRight); 
11:       merge(a, nLeft, a + nLeft, nRight, p); 
12:       for i := 0 to n do a[i] := p[i]; 
13: end 
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