
Paper—Interactive Approach to Learning of Sorting Algorithms

Interactive Approach to Learning of Sorting Algorithms
https://doi.org/10.3991/ijoe.v15i08.10530

Radoslav Mavrevski (*), Metodi Traykov
South-West University "Neofit Rilski", Blagoevgrad, Bulgaria

radoslav_sm@abv.bg

Ivan Trenchev
South-West University "Neofit Rilski", Blagoevgrad, Bulgaria

University of Library Studies and Information Technologies, Sofia, Bulgaria

Abstract—Today we live in a society of high technologies, advanced in-
formation and communication systems in every field, including education. So,
in modern education, teachers make full use of the possibilities of modern In-
formation and Communication Technologies (ICT). In this case, the attitude of
the teachers towards the use of computers, to achieve the educational goals, is
very important. To have the technologies sustained and significant effect, stu-
dents in secondary and higher schools need to understand how to use them. The
goal of this article is to help of students in secondary and higher schools to ac-
quire enough practical programming skills and to learn the sorting algorithms,
i.e. the article considers basic sorting algorithms. We developed and describe
here software with name “Visual sorting” that shows visual, the execution of
the basic sorting algorithms: Bubble sort; Selection sort; Insertion sort; Merge
sort. Also, our software provides inter-active tracking of the performance (step
by step) of different sorting algorithms.

Keywords—Sorting algorithms, programing, .NET framework

1 Introduction

Today we live in a society of high technologies, advanced information and com-
munication systems in every field, including education. In last years the high technol-
ogies, radically changed the people's lifestyles, the businesses and the education in
secondary and higher schools [1-4]. As a result from the rapid development of new
Information and Communication Technologies (ICT) in education, which enables a
two-way connection in real time, the forms of regular, part-time, distance and indi-
vidual educational are interweaves.

Increasingly, the people have need access to information and if the schools and
universities cannot provide it, the people will turn to other institutions. That is why
educational institutions should not lag behind technological progress. From this point
of view, the education field is becoming in constant consumer of high-tech products.

Today, the access to information is accomplished through computer, using com-
puter networks and software products, which offer many more alternatives than any

120 http://www.i-joe.org

Paper—Interactive Approach to Learning of Sorting Algorithms

textbook. Through ICT the students in secondary and higher schools have access to
huge number of information sources (electronic libraries, electronic books and maga-
zines, websites of various institutions and people, etc.). This information stream is
two-way at any time of the day – from web space to the students (colleagues, teach-
ers, experts, followers, friends and etc.) in secondary and higher schools and vice
versa. So, the attitudes of teachers to the use of computers and Internet to achieve the
educational goals are very important, if we want to have successful learning, using the
full potential of modern ICT.

Only innovations are not enough. Without the right set of skills, the students in
secondary and higher schools will not be able to take advantage of the opportunities
that they will face in the future. That is why the global companies, such as Microsoft,
are committed to both technology innovation, and education and training. To have the
technologies sustained and significant effect, the people should learn how to use them,
and this educational process should last a lifetime.

The aim of this article is to help of students in secondary and higher schools to ac-
quire in-depth knowledge and enough practical programming skills for Sorting algo-
rithms and .NET framework. To achieve this aim, using C# programing language, we
developed software for visual implementation of some basic sorting algorithms. This
software shows step by step sorting process and performance of individual sorting
algorithm, which can be very useful in learning and understanding sorting algorithms
in education of student in secondary and higher schools.

The C# programing language is an object-oriented language, which is used by pro-
grammers around the world to develop applications for .NET platform. This language
is built-on the base of the C, C++, Visual Basic (VB) and Java programing languages
and provides a complete development environment for applications. The C# pro-
gramming language combines the power of C, the C++ object-orientation, and VB
graphical interface [5-9].

In the sections below, we:

• Make short descriptions of basic sorting algorithms
• Present our software with name “Visual sorting”
• Show the run of “Visual sorting” software

2 Material and Method

Often, when we work with large dataset (the data are from one type), it is necessary
to introduce some rules that make it easier to process them. The ordering of the ele-
ments could give us a significantly more efficient search algorithm, compared to the
case where the data is not sorted.

The sorting is a process of rearranging (permuting appropriately) the dataset ele-
ments in a particular order [7]. The sorting is a major activity with a wide range of
applications: dictionaries, telephone directories, indexes, and anywhere where is re-
quired fast searching of different objects. Depending from the type of the sorted data,
the sorting process can be done in a variety of ways.

iJOE ‒ Vol. 15, No. 8, 2019 121

Paper—Interactive Approach to Learning of Sorting Algorithms

There are different classifications of the sorting algorithms. Probably the most
popular classification is according of data location. Based on this criterion, we can
find two types sorting: internally (data is in RAM's computer and often is possible
direct access to any element of the dataset) and externally (the data is in external
memory (flash drive, Hard Disk Drive and etc.) and often, we access them strictly
sequential, starting from the first element). According to the operations, performed
over the elements, we have sorting by comparison (usually by using the operators <, >
and =) and sorting by transformation (using arithmetic operations, without direct
comparison of pairs of elements). Other important classifications are based on certain
properties of the sorting algorithms. Example, persistent and unsustainable. We call
one method a persistent method, when in sorting process the relative order of ele-
ments with equal values remains unchanged. The persistent methods are preferred,
when the dataset elements are already sorted, according to other criterion.

Main requirement to sorting algorithms is minimum costs of additional memory.
Also, important requirement is the minimum number of comparisons and exchanges
in sorting process. Usually, the sorting process is done by a simple exchange of the
locations of two elements in array [7].

The sorting algorithms, those are included in developed by us and described here
software “Visual sorting”, are as following: Bubble sort, Selection sort, Insertion sort
and Merge sort.

2.1 Bubble sort

Bubble sort has a worst-case and average complexity of О(n2), where n is the num-
ber of elements being sorted. It is recommended for small values of n.

Let a0, a1, ..., an-1 to be a sequence that we want sort in increasing order. The algo-
rithm is as follows:

1. Let the variable right = n-1.
2. For the sequence a0, a1, ..., aright we compare sequentially each two adjacent ele-

ments ai and ai+1. If ai > ai+1, we exchange them and keep the exchange position i
in variable k. If ai <= ai+1, we don't change the locations of elements. The process
continues until the end of the sequence. If, in this process, after the exchange of i
and i + 1 elements has not been done other exchanges, therefore the elements k+1,
k+2, ..., n-1 are sorted in correct order.

3. right = k.
4. If right > 0, we go to Step 2 and Step 3.
5. If right = 0, the sequence is sorted.

2.2 Selection sort

Selection sort has O (n2) complexity. The main idea of this method is following:
we find the smallest (biggest) element, put it in the beginning of the array, and ex-
cluding it from consideration. We repeat these steps for all elements from the se-
quence that we want to sort [10].

122 http://www.i-joe.org

Paper—Interactive Approach to Learning of Sorting Algorithms

Let ai, ai+1, ..., an-1, i = 0, 1, ..., n-2, to be a sequence that we want to sort in increas-
ing order. The Selection sort algorithm is as follows:

1. We find k-th element, so ak = min {ai, ai+1, ..., an-1}.
2. We exchange the ak and ai elements.

2.3 Insertion sort

Insertion sort has O (n2) complexity. This method implements the following idea.
Let we have a dataset A = {a0, a1, ..., ai-1}. We need to put the element ai in correct
position in the dataset A, so the new dataset A’ = {a0, a1, ..., ai, ..., ai-1} to be sorted in
increasing order. We repeat this action for i = 1, 2, ..., n-1.

2.4 Merge sort

In the basis of this sorting algorithm is the "Divide and Conquer" method, i.e. the
algorithm divide the input sequence into two parts, sort each of them in increas-
ing/decreasing order and then combine (merges) the obtained sub sequences. The
Merge sort algorithm is one of the most effective sorting algorithms. This algorithm
has O(n log n) time complexity.

The source code for the sorting algorithms in C++ and Pascal programming lan-
guages are presented in Appendix.

2.5 The "Visual Sorting" software

In this article we show developed by us software with name “Visual Sorting”. The
aim of this software is to make visual representation of performers (step by step) of
described above sorting algorithms. We can run our software as desktop application,
i.e. we do not need to make installation, just copy and paste the folder with software
files on our computer. To develop the "Visual Sorting" software we use C# 2010
Express Edition and MS Visual Studio 2010 Express Edition with Framework 2.0. As
we said above, the software contains realizations of described in previous sections
sorting algorithms:

• Bubble sort – has O(n2) complexity
• Selection sort – has O(n2) complexity
• Insertion sort – has O(n2) complexity
• Merge sort – has O(n log n) complexity

For each of these sorting algorithms, our software allows interactive tracking of
performance (step by step). For each step of the performance of the chosen algorithm,
the array elements that are under consideration are colored in appropriate colors and
the software shows message for the action being performed at the respective step from
the algorithm execution.

iJOE ‒ Vol. 15, No. 8, 2019 123

Paper—Interactive Approach to Learning of Sorting Algorithms

3 Results and Discussion

3.1 Main form of the “Visual Sorting” software

Figure 1 show the main form of the “Visual Sorting” software.

Fig. 1. “Visual Sorting” – Main form

From main form we can select the number of elements (the maximum number is
limited to twenty elements) that need to be sorted. If we enter a number large than
twenty elements, the software will display a warning message for too many elements.
Once we entering the number of elements, the radio buttons "Generate elements" and
"Manual input" are enabled. The button "Generate elements" automatically generates
array with the specified number of elements, and the button "Manual Input" allow us
to enter sequentially elements (manual generate an array), using the field "Element
No." and pressing the "Enter" key. Once the array is generated (automatically or man-
ually), the software displayed it in the "Sorting Results" panel as follow:

124 http://www.i-joe.org

Paper—Interactive Approach to Learning of Sorting Algorithms

After that the "Sorting algorithm" list is enabled. This list allows us to choose the
sorting algorithm that want to monitor. Once we choose a sorting algorithm, the but-
tons "Sort", "C ++ Source", and "Pascal Source" are enabled.

To start the sorting process, we need to press the "Sort" button, which will per-
forms the first sorting step, will displays the result in the "Sorting Results" panel, and
below the "Sort" button will displays the message "Perform the Steps", button "Con-
tinue" and button "Stop" (see Figure 2). The "Continue" button sequentially performs
and visualizes the individual steps of the sorting process, and with the "Stop" button
the sorting process may be interrupted.

Fig. 2. The message "Perform the Steps"

The result of the implementation of the chosen algorithm can be deleted by press-
ing the "Clear" button, which is located under the "Sort" button.

Figure 3 shows the obtained result using Bubble sort and array with six elements
(automatically generated).

Fig. 3. Obtained result using Bubble sort algorithm and array with six elements

iJOE ‒ Vol. 15, No. 8, 2019 125

Paper—Interactive Approach to Learning of Sorting Algorithms

The software marks with white color the elements of initial array, with red color
the elements that are compared in the current step, and with blue color already sorted
elements (see Figure 3). Also, for each of the steps, the software describes the current
action (whether or not the relevant elements are exchanged). The next figure (see
Figure 4) shows the implementation of Merge sort algorithm.

Fig. 4. Implementation of Merge sort algorithm

3.2 The form "Source code"

Developed software “Visual Sorting” can shows C++ or Pascal source code for any
of the described in previous section algorithms. The buttons "C ++ Source code" and
"Pascal Source code" (Main form), open a form that contain C++ (see Figure 5) or
Pascal (see Figure 6) source code for the chosen algorithm.

126 http://www.i-joe.org

Paper—Interactive Approach to Learning of Sorting Algorithms

Fig. 5. Form: C++ source code for Bubble sort

Fig. 6. Form: Pascal source code for Selection sort

Using this form, the students can study the source code in C++ and Pascal pro-
gramming languages, for each of the algorithms that are included in developed soft-
ware.

iJOE ‒ Vol. 15, No. 8, 2019 127

Paper—Interactive Approach to Learning of Sorting Algorithms

4 Conclusion

In conclusion we can say that the use of the visual and event-oriented programming
in the Computer science courses is excellent choice and they give us perfect results.
For successful implementation of training courses that use the full potential of mod-
ern technology, very important are both the mindset and attitude of the lecturers to
these technologies, and their use in the learning process, to achieve the educational
goals [11-19].

In this article we considered the sorting algorithms that are included in the devel-
oped by us software with name "Visual sorting". Also, we presented our software to
interactive tracking of the progressive execution of sorting algorithms.

5 Acknowledgement

This research would not have been possible without the financial assistance of the
following project: "Application of the mixed reality in the training and promotion of
the cultural heritage for the purposes of the in the university information environ-
ment" financed by National Science Fund of the Ministry of Education and Science of
the republic of Bulgaria with Contract № KP – 06 – OPR 05/14 from 17.12.2018, led
by Prof. DSc Irena Peteva.

6 References

[1] Mavrevski R. (2014). Selection and comparison of regression models: estimation of
torque-angle relationships. C. R. Acad. Bulg. Sci. 67(10), 1345-1354.

[2] Traykov M., M. Trencheva, R. Mavrevski, A. Stoilov, I. Trenchev. (2016) Using partial
differential equations for pricing of goods and services. Scientific Annals of Economics
and Business 63(2), 291-298. https://doi.org/10.1515/saeb-2016-0122

[3] Traykov M, M. Trencheva, E. Stavrova, R. Mavrevski, I. Trenchev. (2018). Risk analysis
in the economics through R Language. WSEAS TRANSACTIONS on BUSINESS and
ECONOMICS, 15, 180-186.

[4] Mavrevski R., M. Traykov, I. Trenchev, M. Trencheva. (2018). Approaches to modeling of
biological experimental data with GraphPad Prism software. WSEAS TRANSACTIONS
on SYSTEMS and CONTROL, 13, 242-24.

[5] Arora, G., Aiaswamy, B. (2002). Microsoft C# Professional Projects. Course Technology
PTR, Kentucky, USA.

[6] Johnson, B., Young, M., Skibo, G. (2003). Inside Microsoft Visual Studio .Net. 2003rd
edn. Microsoft Press, Washington, USA.

[7] Cormen, H., Leiserson, E., Rivest, L., Stein, C. (2009). Introduction to Algorithms. 3rd
edn. MIT Press, Massachusetts, USA.

[8] Abramson, D., Watson, G. (2003). Debugging scientific applications in the .NET Frame-
work. Future Generation Computer Systems 19(5), 665–678. https://doi.org/10.101
6/s0167-739x(02)00176-0

[9] Börger, E., Fruja, N., Gervasi, V., Stärk, R. (2005). A high-level modular definition of the
semantics of C#. Theoretical Computer Science 336(2-3), 235–284.

128 http://www.i-joe.org

Paper—Interactive Approach to Learning of Sorting Algorithms

[10] Armstronga, D., Loehr, N., Warrington, G. (2015). Sweep maps: A continuous family of
sorting algorithms. Advances in Mathematics 284(1), 159-185. https://doi.org/10.10
16/j.aim.2015.07.012

[11] Tudor S. (2012). The Role of Multimedia Strategies in Educational Process. Procedia - So-
cial and Behavioral Sciences 78, 682-686. https://doi.org/10.1016/j.sbspro.2013.04.375

[12] Meia H, Chena W, Maa Y, Guana H, Hua W. VisComposer. (2018). A Visual Program-
mable Composition Environment for Information. Visualization. Visual Informatics
2(2018), 71-81. https://doi.org/10.1016/j.visinf.2018.04.008

[13] Siple P., Hatfield N., Caccamise, F. (1978). The role of visual perceptual abilities in the
acquisition and comprehension of sign language. American Annals of the Deaf 123(7),
852-856.

[14] Todman J., Seedhouse E. (1994). Visual-action code processing by Deaf and hearing chil-
dren. Language and Cognitive Processes 9, 129-141. https://doi.org/10.1080/01
690969408402113

[15] Mavrevski R., Traykov M. (2019). Visualization software for hydrophobic-polar protein
folding model. Scientific Visualization, 11(1), 11-19. https://doi.org/10.26583/sv.11.1.02

[16] Denchev S. Trencheva T. (2016). Intellectual Property as a Basic Part of the University's
Information Literacy. 2nd International Conference on Education and Management Sci-
ence (ICEMS), Beijing, may 28-29, 2016, 74-78.

[17] Trencheva T., Denchev S. (2015) THE UNIVERSITY'S R&D INSTITUTES AS A NEW
EDUCATIONAL APPROACH. 9th International Technology, Education and Develop-
ment Conference (INTED), Madrid, mar 02-04, 2015, 951-957.

[18] Denchev S., Varbanova K., Peteva I., Tetevenska B. (2010). Bulgarian university libraries
as an e-learning support center. ICSIT 2010 - International Conference on Society and In-
formation Technologies, Proceedings pp. 385-389.

[19] Denchev S. (1993). Science and technology in the New Bulgaria Technology in Society,
15(1), 57-63.

7 Authors

Radoslav Mavrevski is Chief Assistant in Department of Informatics, Faculty of
Mathematics and Natural Sciences, member of University Center for Advanced, Bio-
informatics Research, South-West University "Neofit Rilski", 66 Ivan Mihaylov Str.,
Blagoevgrad, Bulgaria. PhD on Informatics. Scientific Interest: programming, com-
puter modelling, applied statistics and bioinformatics. He is one of the organizers of
the South Eastern European Mathematical Olympiad for University Students
(SEEMOUS) with International Participation, 2012, http://seemous2012.swu.bg/ and
XXVII REPUBLICAN STUDENT PROGRAMMING OLYMPIAD, 2015,
http://bcpc.eu/XXVII/.

Metodi Traykov is Assistant in Department of Informatics, Faculty of Mathemat-
ics and Natural Sciences, member of University Center for Advanced, Bioinformatics
Research, South-West University "Neofit Rilski", 66 Ivan Mihaylov Str.,
Blagoevgrad, Bulgaria. PhD on Informatics. Scientific Interest: programming and
bioinformatics. He is one of the organizers of the XXVII REPUBLICAN STUDENT
PROGRAMMING OLYMPIAD, 2015, http://bcpc.eu/XXVII/.

Ivan Trenchev is Associate professor in Department of Electrical Engineering,
Electronics and Automatics, Faculty of Engineering, member of University Center for

iJOE ‒ Vol. 15, No. 8, 2019 129

Paper—Interactive Approach to Learning of Sorting Algorithms

Advanced, Bioinformatics Research, South-West University "Neofit Rilski", 66 Ivan
Mihaylov Str., Blagoevgrad, Bulgaria and Associate professor in University of Li-
brary Studies and Information Technologies Sofia, Bulgaria. PhD on Informatics.
Scien-tific Interest: virtual reality (VR), computer modelling and bioinformatics. He is
one of the organizers of the XXVII REPUBLICAN STUDENT PROGRAMMING
OLYMPIAD, 2015, http://bcpc.eu/XXVII/.

Article submitted 2019-01-21. Resubmitted 2019-03-04. Final acceptance 2019-04-04. Final version
published as submitted by the authors.

Appendix

The source code for the sorting algorithms in C++ and Pascal programming lan-
guages:

Source code for Bubble sort in C++:
1: void BubbleSort(int a[], int n) {
2: int right = n-1;
3: int temp = 0;
4: while(right > 0) {
5: int k = 0;
6: for(int i = 0; i < right; i ++) {
7: if(a[i+1] < a[i]) {
8: temp = a[i+1];
9: a[i+1] = a[i];
10: a[i] = temp;
11: k = i;
12: }
13: }
14: right = k;
15: }
16: }
Source code for Bubble sort in Pascal:
1: procedure BubbleSort(a: Tarray; n: integer);
2: var
3: right, temp, k, i: integer;
4: begin
5: right := n-1;
6: temp = 0;
7: repeat
8: k = 0;
9: for i := 0 to right do
10: if a[i+1] < a[i] then
11: begin
12: temp := a[i+1];
13: a[i+1] := a[i];

130 http://www.i-joe.org

Paper—Interactive Approach to Learning of Sorting Algorithms

14: a[i] := temp;
15: k := i;
16: end;
17: right := k;
18: until (right > 0);
19: end;
Source code for Selection sort in C++:
1: void SelectSort(int a[], int n) {
2: int min, k;
3: for(int i = 0; i < n; i ++) {
4: k = i;
5: min = a[k];
6: for(int j = i + 1; j < n; j ++) {
7: if(a[j] < min) {
8: k = j;
9: min = a[k];
10: }
11: }
12: a[k] = a[i];
13: a[i] = min;
14: }
15: }
Source code for Selection sort in Pascal:
1: procedure SelectSort(a: Tarray; n: integer)
2: var
3: min, k, i: integer;
4: begin
5: for i := 0 to n do
6: begin
7: if a[j] < min then
8: begin
9: k := j;
10: min := a[k];
11: end;
12: a[k] := a[i];
13: a[i] := min;
14: end;
15: end;
Source code for Insertion sort in C++:
//This procedure inserts elements in a dataset that is in increasing order
1: void Insert(int a[], int i) {
2: int j;
3: int x = a[i];
4: for(j = i - 1; j >= 0; j --) {
5: if(x < a[j])

iJOE ‒ Vol. 15, No. 8, 2019 131

Paper—Interactive Approach to Learning of Sorting Algorithms

6: a[j+1] = a[j];
7: else
8: break;
9: }
10: a[j+1] = x;
11: }
// This procedure realizes Insertion sort
1: void InsertSort(int a[], int n) {
2: for(int i = 1; i < n; i ++)
3: Insert(a, i);
4: }
Source code for Insertion sort in Pascal:
//This procedure inserts elements in a sequence that is in increasing order
1: procedure Insert(a: Tarray; i: integer);
2: var
3: j, x: integer;
4: begin
5: x := a[i];
6: for j := i-1 downto 0 do
7: begin
8: if (x < a[j]) then a[j+1] := a[j];
9: end;
10: a[j+1] := x;
11: end;
// This procedure realizes Insertion sort
1: procedure InsertSort(a: integer; n: integer);
2: var
3: i: integer;
4: begin
5: for i := 1 to n do Insert(a, i);
6: end;
Source code for Merge sort in C++:
//This procedure combine (merge) two arrays
1: void merge(const int a[], int n, const int b[], int m, int* c) {
2: int i = 0, j = 0, k = -1;
3: while(i < n && j < m) {
4: if(a[i] < b[j]) {
5: k ++;
6: c[k] = a[i];
7: i ++;
8: } else {
9: k ++;
10: c[k] = b[j];
11: j ++;
12: }

132 http://www.i-joe.org

Paper—Interactive Approach to Learning of Sorting Algorithms

13: }
14: if(i == n) {
15: while(j < m) {
16: k ++;
17: c[k] = b[j];
18: j ++;
19: }
20: } else {
21: while(i < n) {
22: k ++;
23: c[k] = a[i];
24: i ++;
25: }
26: }
27: }
// This procedure realizes Merge sort
1: void MergeSort(int a[], int n) {
2: if(n < 2)
3: return;
4: int nLeft = n / 2;
5: int nRight = n - nLeft;
6: MergeSort(a, nLeft);
7: MergeSort(a + nLeft, nRight);
8: int* p = new int[n];
9: merge(a, nLeft, a + nLeft, nRight, p);
10: for(int i = 0; i < n; i ++)
11: a[i] = p[i];
12: delete [] p;
13: }
Source code for Merge sort in Pascal:
//This procedure combine (merge) two arrays
1: procedure merge(a: Tarray; n: integer; b: Tarray; m: integer; var c: Integer);
2: var
3: i, j, k: integer;
4: begin
5: i := 0;
6: j := 0;
7: k := -1;
8: repeat
9: if a[i] < b[j] then
10: begin
11: k := k + 1;
12: c[k] := a[i];
13: i := i + 1;
14: end

iJOE ‒ Vol. 15, No. 8, 2019 133

Paper—Interactive Approach to Learning of Sorting Algorithms

15: else
16: begin
17: k := k + 1;
18: c[k] := b[j];
19: j := j + 1;
20: end
21: until ((i < n) and (j < m));
22: if i = n then
23: begin
24: repeat
25: k := k + 1;
26: c[k] := b[j];
27: j := j + 1;
28: until (j < m)
29: end
30: else
31: begin
32: repeat
33: k ++;
34: c[k] = a[i];
35: i++;
36: unitl (i < n)
37: end;
38: end
// This procedure realizes Merge sort
1: procedure MergeSort(a: Tarray; n: integer);
2: var
3: nLeft, nRight, i: integer;
4: p: Tarray;
5: begin
6: if n < 2 then Еxit;
7: nLeft := n / 2;
8: nRight := n - nLeft;
9: MergeSort(a, nLeft);
10: MergeSort(a + nLeft, nRight);
11: merge(a, nLeft, a + nLeft, nRight, p);
12: for i := 0 to n do a[i] := p[i];
13: end

134 http://www.i-joe.org

