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Abstract—It is common knowledge in Information Technology (IT) that an 
embedded system is based on microprocessor and is built to control a function 
or a range of functions. Although, it is not designed to be programmed by the 
end user in the same way that a PC is, it is designed to perform one particular 
task with choices and different options [1-5]. Multitasking is a method by 
which multiple tasks, also known as processes, share common processing re-
sources, such as CPU. The main aim of this paper is analysis of the design of 
the embedded systems and a focus on mid-level abstractions for concurrent 
programs. 
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1 Introduction 

The main “parts” that consist an embedded system are: Processor, Memory, Pe-
ripherals, Software and Algorithms.  

The main criteria for the processor are whether it can provide the processing pow-
er needed to execute the tasks within the system. Sometimes it occurs that the tasks 
are either underestimated in terms of their size and/or complexity or that the specifica-
tion is beyond the processor’s capabilities. Usually, these issues are in bigger scale 
because of the performance measurement used to judge the processor. They may 
execute completely out of cache memory and thus give an artificially high perfor-
mance level which the final system cannot meet because its software does not fit in 
the cache. The software overheads for high level languages, operating systems and 
interrupts may be higher than expected. These are all issues that can turn a paper 
design into failed reality [2-4]. While processor performance is important and consists 
the first gating criterion, there are others such as cost, power consumption, software 
tools and component availability. 

Memory is an important part of any embedded system design, especially nowa-
days that the requirements and the data are huge. The software influences the re-
sources of a computer system and its memory. Memory can determine how the soft-
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ware is designed, written and developed. It primarily performs two functions within 
an embedded system: 1) It provides storage for the software that it will run; and 2) It 
provides storage for data such as program variables and intermediate results, status 
information and any other data that might be created throughout the operation 

It is of high importance that an embedded system must be able to communicate 
with the outer world via peripherals. Input peripherals are usually associated with 
sensors that measure the external environment and thus effectively control the output 
operations that the embedded system performs [2-4]. So, an embedded system can be 
designed on a three-stage pipeline. Data and information are being put into the first 
stage of the pipeline; the second stage carries out the processes and the third stage 
outputs results and data.  

There are five main types of peripherals: Binary outputs, which are simple external 
pins whose logic state can be controlled by the processor to either zero (off) or one 
(on); Serial outputs, which are interfaces that send or receive data using one or two 
pins in a serial mode; Analogue values, which are interfaces between the system and 
the external environment needed to be converted from analogue to digital and vice 
versa; Displays, which can vary from simple LEDs and seven segment displays to 
small LCD panels; Time derived outputs (timers and counters). 

The software components within an embedded system often encompass the tech-
nology that adds value to the system and defines what it does and how well it does it 
[1-9]. The software includes several different components: Customization and config-
uration; Applications (Modules); Operating system; Error handling and Maintenance. 

Algorithms are the key components of the software that makes an embedded sys-
tem behave in the way that it does, so as to fulfill its purpose. They can vary from 
mathematical processing to models of the outer environment which are used to inter-
pret and take advantage of information that derives from the external sensors and thus 
generate control signals. Nowadays with the digital technology such, the algorithms 
that digitally encode the analogue data are defined by standard bodies. Getting the 
right implementation is very important since, for example, it may allow the same 
function to be executed on cheaper hardware (Efficiency). As most embedded sys-
tems are designed to be commercially successful, the selection of the “right” algo-
rithm is extremely important. 

2 Material and Method 

Before we move further on, to the part of multitasking, it is necessary to explain 
what an operation system is. It is a software environment that provides a buffer be-
tween the user and the low-level interfaces to the hardware within a system.  It pro-
vides a constant interface and a set of utilities to enable users to utilize the system 
quickly and efficiently [7]. Furthermore, software is allowed to be moved from one 
system to another and thus can make application programs hardware independent. 
Very often there are program debugging tools included. Therefore, the testing process 
is completed in lesser time. 
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Most of the embedded systems nowadays demand a multitasking operating system. 
It is an operating system that can run multiple applications simultaneously and pro-
vide intertask communication and control. A multitasking operating system works by 
dividing the processor’s time into discrete time slots. Each application or task de-
mands a specific number of time slots to complete its execution. The operating system 
kernel decides which task can have the next slot, so instead of a task executing con-
tinuously until completion, its execution is interleaved with other tasks. This sharing 
of processor time between tasks gives the illusion to each user that he is the only one 
using the system [8]. 

Further on, comes the analysis of the mechanisms that are used in software in order 
to offer concurrent execution of sequential code. With this, multitasking can be 
achieved. There are multiple reasons for executing more than one sequential program 
concurrently and they all involve timing. One of the main reasons is to improve re-
sponsiveness by avoiding situations where long-running programs can block a pro-
gram that responds to external stimuli, such as sensor data or a user request [1-3]. 
Faster responsiveness reduces latency, which is in fact, the time between the occur-
rence of a stimulus and the response. Moreover, another reason is to improve perfor-
mance by allowing a program to be executed simultaneously on multiple cores or 
processors. Furthermore, one other reason is to directly control the order of external 
actions. A program may need to perform some action, such as updating a display or 
saving data that was recently added/modified, at particular times, no matter what 
other tasks might be executing at the same time. 

 
Fig. 1. Layers of abstraction for concurrency in programs 

Figure 1 shows that multitasking are in fact mid-level techniques which are directly 
related with the low-level and high-level mechanisms. Embedded system designers 
usually use these mid-level mechanisms to build applications, but it is becoming in-
creasingly common for designers to use the high-level mechanisms instead. The de-
signer builds a model of computation using a software tool. This model is then auto-
matically or semi-automatically translated into a program that exploits the mid-level 
or low-level mechanisms. The process of translation is widely known as code genera-
tion or auto coding.  
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The mechanisms are provided by an operating system, a microkernel, or a library 
of procedures. They can be rather difficult to implement correctly, and because of 
that, the work should be done by very experienced people (experts). 

3 Results and Discussion 

When it comes to the programming language that application programmers use to 
develop software, a language that expresses a computation as a sequence of opera-
tions is called an imperative language. C is an example of imperative language. In 
Figure 2 there is an example of a program written in C which implements a common-
ly used design patter which is known as the observer pattern [10]. 

 
Fig. 2. An example of a program written in C (observer pattern) 

In the following example, an update procedure changes the value of a variable x. 
The other programs or other parts of the program, which are called “observers”, will 
be notified every time x is changed by calling a callback procedure. For instance, the 
value of x might be displayed by an observer on a screen. Whenever the value chang-
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es, the “observer” needs to be notified so that it can update the display on the screen. 
The example below demonstrates a main procedure that uses the procedures defined 
in Figure 2: 

 1     int main(void)  { 
 2             addListener(&print); 
 3             addListener(&print); 
 4             update(l); 
 5             addListener(&print); 
  6             update(2); 
 7             return 0; 
  8    } 

In this example, the program registers the print procedure as a callback twice, then 
performs an update, changing the value of x (x = 1), then registers the print procedure 
again, and finally does another update, changing the value of x (x = 2). The print 
procedure prints the current value of the variable x, so the final output when executing 
this program will be 1 1 2 2 2. 

In general, a program in C specifies an order of steps, where each step changes the 
state of the memory in the machine. In C, the state of the memory is represented by 
the values of variables [1-4]. 

In the example which was described in Figure 2, the state of the memory has the 
value of variable x which is a global variable. A global variable is visible through all 
the procedures and “parts” of the program. Furthermore, there is a list of elements 
pointed to by the variable head, which consists another global variable. The list itself 
is represented as a linked list, where each element in the list contains a function point-
er referring to a procedure to be called when x changes [1-4]. 

In computer science, a linked list is a linear collection of data elements, called 
nodes, each pointing to the next node by means of a pointer. It is a data structure con-
sisting of a group of node  which together represents a sequence. Under the simplest 
form, each node is composed of data and a reference (in other words, a link) to the 
next node in the sequence. This structure allows for efficient insertion or removal of 
elements from any position in the sequence during iteration. More complex variants 
add additional links, allowing efficient insertion or removal from arbitrary element 
references. Below, there is a definition of a linked list for the program in Figure 2: 

 1 typedef void notifyProcedure(int); 
 2 struct  element { 
 3  notifyProcedure* listener; 
 4  struct  element* next; 
 5 }; 
 6 typedef struct element element_t; 
 7 element_t* head =0; 
 8 element_t* tail =0; 
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These are all examples of code that runs sequentially, line after line. Complex pro-
grams can create difficulties handing values and the state of memory. The problems 
get much worse when concurrency gets into the mix. C programs with mid-level con-
currency mechanisms such as threads are extremely difficult and prone to errors. 

Threads are imperative programs that run concurrently and share a memory space. 
One of the advantages is the fact that the programs can access each other’s variables. 
The term "threads" is widely used to refer to particular ways of constructing programs 
that share memory. In this paper however, the term will refer to any mechanism 
where imperative programs run concurrently and share memory. 

Most operating systems provide a higher-level mechanism which is provided in the 
form of a series of procedures that a programmer can exploit. Such procedures typi-
cally conform to a standardized API (application program interface), which makes it 
possible to write programs that are portable, which in fact is very useful as they run 
on multiple processors and/or multiple operating systems. Pthreads (or POSIX 
threads) is such an API. It is integrated into many modern operating systems. Pthreads 
defines a set of C programming language types, functions and constants [1-4]. In 
Figure 3, there is an example of a multithreaded program. 

 
Fig. 3. Multithreaded program with Pthreads 

The printN procedure, the procedure that the thread begins executing, is known as 
the start routine. It prints the argument passed to it 10 times and then exits, which will 
force the thread to end. The main procedure creates two threads; each of one will 
execute the start routine. The first one, which is created on line 14, will print the value 
1. The second one, which is created on line 15, will print the value 2. During the exe-
cution of the program, values 1 and 2 will be the outputs that will be displayed on 
screen, in some mixed order that depends on scheduler of the thread. Each time the 
program runs, the results will be different orders of 1's and 2's. 

In addition, the pthread_create procedure creates a thread and returns immediately.  
The start routine may or may not have actually started running when it returns. Lines 
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17 and 18 use pthread join to ensure that the main program does not terminate before 
the threads have finished. Without these two lines, running the program may not yield 
any output at all from the threads [1-5]. Generally, a start routine may return or not. In 
embedded applications, it is common to define start routines that never return. For 
instance, the start routine might run forever and produce an output display periodical-
ly. If the start routine does not return, then any other thread that calls its pthread join 
will be blocked indefinitely. 

The center part of an implementation of threads is a scheduler that chooses which 
thread will be the one executed next when a processor is available to execute one of 
them. The choice may be based on fairness, where the principle is to give every active 
thread an equal opportunity and time to run, on timing limits, or in terms of how im-
portant it is according to its priority. The first matter that concerns the programmers is 
how and when the scheduler is invoked. A simple technique known as cooperative 
multitasking does not interrupt a thread unless the thread itself calls a specific proce-
dure or one out of a set of procedures. For instance, the scheduler may intervene each 
time an operating system service is invoked by the currently executing thread. Re-
spectively, an operating system service is invoked by calling a library procedure. 
Each thread has its own stack, and when the procedure call is made, the return address 
will be pushed onto the stack. If the scheduler determines that the currently executing 
thread should continue to execute, then the requested service is completed and the 
procedure returns as normal. On the other hand, if the scheduler determines that the 
thread should be interrupted and another thread should be selected for execution, then 
instead of returning, the scheduler makes a record of the stack pointer of the currently 
executing thread, and then changes the stack pointer to point to the stack of the select-
ed thread. Moreover, it returns as normal by popping the return address off the stack 
and resuming execution, but this time in a new thread. 

Concerning the main drawback of cooperative multitasking, it is that a program 
may run for a long time without making any operating system service calls, in which 
case other threads will be put to hold almost indefinitely. To avoid this, most of the 
operating systems out there, offer an interrupt service routine that runs at certain time 
intervals. This routine maintains a system clock, which provides application pro-
grammers with a solution to obtain the current time of day and enables periodic invo-
cation of the scheduler with the use a timer interrupt. 

In multitasking, two concurrent pieces of code race to access the same resource, 
and the exact order in which their accesses occur affects the results of the program. 
Not all race conditions are as bad as the previous example, where some outcomes of 
the race cause catastrophic failure. One effective solution to avoid these disasters is 
by taking advantage of a mutual exclusion lock (or mutex). The following piece of 
code is such an example: 

 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; 
 
 void addListener(notifyProcedure*  listener) { 
  pthread_mutex_lock(&lock); 
  if (head == 0)  { 
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   ... 
  }  else  { 
   ... 
  } 
  pthread_mutex_unlock(&lock); 
 } 

On the first line a global variable called lock is created and initialized. Inside the 
addListener procedure acquires the lock. The principle is that only one thread can 
hold the lock each time. The pthread_mutex_lock procedure will block until the call-
ing thread can acquire the lock. When the procedure addListener is called by a thread 
and begins executing, pthread mutex lock does not return until no other thread holds 
the lock. Once it returns, this calling thread holds the lock. The 
pthread_mutex_unlock call at the end releases the lock. It is a serious error in multi-
threaded programming to fail to release a lock. 

A mutual exclusion lock prevents two threads from simultaneously accessing or 
changing a shared resource of the memory. The code between the lock and unlock is a 
critical section. At any cost, only one thread can be executing code in such a critical 
section. A programmer may need to ensure that all accesses to a shared resource are 
similarly protected by locks [1-4]. 

However, the mutex added in the previous example is not enough to avoid this 
problem. The mutex does not prevent thread A from being halted. So, there is need to 
protect all accesses of the data structure with mutexes, which can be done with alter-
ing update procedure as described below:  

 void update(int  newx) { 
  x = newx; 
// Notify listeners. 
pthread_mutex_lock(&lock);  
element_t* element = head;  
while (element != 0) { 
   (*(element->listener))(newx); 
   element = element->next; 
  } 
  pthread_mutex_unlock(&lock); 
 } 

The above code will refrain the update procedure from reading the list data struc-
ture while it is being altered by any other thread. 

As mutex can be used frequently in programs, the risk of deadlock gets bigger. A 
deadlock occurs when some threads become permanently halted struggling to acquire 
locks. As an example, if thread A holds lockl and then stops trying to acquire lock2, 
which is taken by thread B, and then thread B stops trying to get lockl. This will lead 
the system to crash and the program needs to be aborted. 

Deadlock can be rather difficult to avoid. One simple technique is to use only one 
lock throughout an entire multithreaded program. On the other hand, that technique 
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does not launch very modular programming. In addition, it can make it difficult to 
meet real-time constraints because some shared resources (e.g., displays) may need to 
be held long enough to cause deadlines to be missed in other threads [1-3]. 

Sometimes in a very simple microkernel, it is easy to use the enabling and disa-
bling of interrupts as a single global mutex. If there is a single processor and that 
interrupts are the only available mechanism by which a thread may be halted, then 
disabling interrupts avoids the suspension of a thread. On the other hand, in most 
Operating Systems, threads can be halted for various reasons, thus this technique 
won't give back. 

Moving further, another technique is to ensure that when there are more than one 
mutex locks, each thread acquires the locks in the same order. This can be difficult to 
guarantee, however, for several reasons: 

• Most programs are written by multiple people, and the locks acquired within a 
procedure are not part of the signature of the procedure. Thus, this technique relies 
on very careful and constant cooperation and writing down throughout a program-
ming team. Everytime a lock is added, and then all parts of the program that ac-
quire locks may have to be changed, to sustain its “vitality”. 

• Correction of the source code may be proved to be extremely difficult. If a pro-
grammer wants to call a procedure that acquires lockl, then it must first release any 
locks it holds. As soon as it releases those locks, it may be halted, and the resource 
that it held those locks to protect may be modified. Once it has acquired lock1, it 
must then reacquire those locks, but it will then need to assume it no longer knows 
anything about the state of the resources, and it may have to redo considerable 
work. 

Of course, there are many other ways to avoid deadlock. For example, a particular-
ly elegant technique synthesizes constraints on a scheduler to prevent deadlock [9]. 
However, most of them either inflict serious constraints and problems on the pro-
grammer or demand considerable sophistication to apply, which suggests that the 
problem may be with the concurrent programming model of threads [1-5]. 

Threads also suffer from problems that have to do with the memory model of the 
programs. Implementation of threads gives some kind of memory consistency model, 
which defines how variables that are read and written by various threads appear to 
them. Reading a variable should return the last value written to the variable. For in-
stance, in a program, all variables are initialized with value 0 (zero), and thread A 
executes the following two lines: 

 1     x = 5; 
 2     w = y; 
while thread B executes the following two lines: 
 1     y = 5; 
 2     z = x; 
Then, after both threads have executed these lines, the expected result is that at 

least one of the two variables w and z will have value 5 (five). This is known as se-
quential consistency [10]. Sequential consistency means that the result of any execu-
tion is the same as if the operations of all threads are executed in some sequential 
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order, and the operations of each individual thread appear in this sequence in the order 
specified by the thread. 

On the other hand, sequential consistency is not working everytime by most im-
plementations of Pthreads. In fact, such a guarantee is rather difficult to be achieved 
on modern processors and modern compilers. A compiler, for instance, is free to re-
order the instructions in each of these threads because there is no dependency between 
them. There is also a chance that the hardware might reorder them instead. A solution 
to this is to very carefully guard such accesses to shared variables using mutual exclu-
sion locks. 

Multithreaded programs can be very difficult to understand. Furthermore, it can be 
difficult to trust the programs because problems in the code may not show up in the 
testing process. A program may have the possibility of deadlock, for example, but 
nonetheless run correctly for years without the deadlock ever appearing [1-5]. 

 
Fig. 4. Modified update procedure 

In Figure 4, there is a modified version of the update procedure that was described 
earlier. This code does not hold lock when it calls the listener procedure. Instead, it 
holds the lock while it constructs a copy of the list of the listeners, and then it releases 
the lock. After releasing the lock, it uses the copy of the list of listeners to notify the 
listeners. However, it carries a potentially critical problem that is hard, if not com-
pletely impossible, to be detected in testing. For example, thread A calls update with 
newx = 0, indicating "All systems good.". A gets suspended just after releasing the 
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lock, but before performing the notifications. While it is suspended, thread B calls 
update with newx = 1, indicating "Emergency! The engine is off!" Suppose that this 
call to update completes before thread A gets a chance to resume. When thread A 
resumes, it will notify all the listeners, but it will notify them of the wrong value! If 
one of the listeners is updating a pilot display for an aircraft, the display will indicate 
that all systems are normal, when in fact the engine is on fire [1-3]. This is an exam-
ple of a very serious issue that could be fatal (loss of human lives) and thus it must be 
solved effectively. 

Last but not least, processes are also important to keep an eye on when it comes to 
embedded systems. Processes are imperative programs with their own memory spac-
es. One of their main characteristics is that they cannot refer to each other’s variables, 
and consequently they do not demonstrate the same difficulties as threads. Communi-
cation between the programs must occur through the use of mechanisms provided by 
the operating system, a library, or microkernel. 

When it comes to the implementation, processes generally demand hardware sup-
port in the form of a memory management unit or MMD. The MMD protects the 
memory of one process from accidental, not desired reads or writes by another pro-
cess and also provides address translation, giving each process the “illusion” of a 
fixed memory address space that is the same for all processes. When a process ac-
cesses a memory location in that address space, the MMD shifts the address to refer to 
a location in the portion of physical memory allocated to that process [1-5]. 

  Operating systems offer various mechanisms, often even including the ability to 
create shared memory spaces, which of course opens the programmer to all the poten-
tial difficulties of multithreaded programming. After all, in order to achieve concur-
rency, the processes must able to communicate. A flexible mechanism for communi-
cating between processes is message passing. One process creates a chunk of data, 
deposits it in a carefully controlled section of memory that is shared, and then notifies 
other processes that the message is ready. Those other processes can block waiting for 
the data to become ready. Message passing requires some memory to be shared, but it 
is implemented in libraries that are presumably written by experts. An application 
programmer invokes a library procedure to send a message or to receive a message. 
Below, in Figure 5, there is an example of a simple message passing application. 

This program uses a producer-consumer pattern, where one thread produces a se-
ries of messages (a stream), and another thread consumes the messages. This pattern 
can be used to implement the observer pattern without deadlock risk and without the 
insidious error discussed in the previous section. The update procedure would always 
execute in a different thread from the observers, and would produce messages that are 
consumed by the observers. The code executed by the producing thread is given by 
the producer procedure and the code for the consuming thread by the consumer pro-
cedure. The producer invokes a procedure called send (to be defined) on line 4 to send 
an integer-valued message. The consumer uses get (also to be defined) on line 10 to 
receive the message. The consumer is assured that get does not return until it has 
actually received the message. In this case, consumer never returns, so this program 
will not terminate on its own. 
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Fig. 5. Example of a simple message-passing application 

4 Conclusions 

To sum up, there has been an analysis of the design of the embedded systems and a 
focus on mid-level abstractions for concurrent programs. Examples of codes that 
handle multitasking have been demonstrated to provide a look on threads, which are 
sequential programs that execute concurrently and share variables and memory. How-
ever, threads are tricky to handle and require attention and study because there are 
several issues, such as mutual exclusion and deadlock. Message passing schemes 
avoid some of the difficulties, but not all of them, at the expense of being somewhat 
more constraining by prohibiting direct sharing of data. In the future, designers and 
programmers need to focus on using higher levels of abstraction (see Figure 1). 
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