
Paper—Multitasking in Embedded System Designs

Multitasking in Embedded System Designs
https://doi.org/10.3991/ijoe.v15i09.10631

Radoslav Mavrevski (*),	Metodi Traykov,
South-West University, Blagoevgrad, Bulgaria

radoslav_sm@abv.bg

Ivan Trenchev
South-West University, Blagoevgrad, Bulgaria

 University of Library Studies and Information Technologies Sofia, Bulgaria

Abstract—It is common knowledge in Information Technology (IT) that an
embedded system is based on microprocessor and is built to control a function
or a range of functions. Although, it is not designed to be programmed by the
end user in the same way that a PC is, it is designed to perform one particular
task with choices and different options [1-5]. Multitasking is a method by
which multiple tasks, also known as processes, share common processing re-
sources, such as CPU. The main aim of this paper is analysis of the design of
the embedded systems and a focus on mid-level abstractions for concurrent
programs.

Keywords—Embedded System, multitasking, design

1 Introduction

The main “parts” that consist an embedded system are: Processor, Memory, Pe-
ripherals, Software and Algorithms.

The main criteria for the processor are whether it can provide the processing pow-
er needed to execute the tasks within the system. Sometimes it occurs that the tasks
are either underestimated in terms of their size and/or complexity or that the specifica-
tion is beyond the processor’s capabilities. Usually, these issues are in bigger scale
because of the performance measurement used to judge the processor. They may
execute completely out of cache memory and thus give an artificially high perfor-
mance level which the final system cannot meet because its software does not fit in
the cache. The software overheads for high level languages, operating systems and
interrupts may be higher than expected. These are all issues that can turn a paper
design into failed reality [2-4]. While processor performance is important and consists
the first gating criterion, there are others such as cost, power consumption, software
tools and component availability.

Memory is an important part of any embedded system design, especially nowa-
days that the requirements and the data are huge. The software influences the re-
sources of a computer system and its memory. Memory can determine how the soft-

44 http://www.i-joe.org

https://doi.org/10.3991/ijoe.v15i09.10631
https://doi.org/10.3991/ijoe.v15i09.10631

Paper—Multitasking in Embedded System Designs

ware is designed, written and developed. It primarily performs two functions within
an embedded system: 1) It provides storage for the software that it will run; and 2) It
provides storage for data such as program variables and intermediate results, status
information and any other data that might be created throughout the operation

It is of high importance that an embedded system must be able to communicate
with the outer world via peripherals. Input peripherals are usually associated with
sensors that measure the external environment and thus effectively control the output
operations that the embedded system performs [2-4]. So, an embedded system can be
designed on a three-stage pipeline. Data and information are being put into the first
stage of the pipeline; the second stage carries out the processes and the third stage
outputs results and data.

There are five main types of peripherals: Binary outputs, which are simple external
pins whose logic state can be controlled by the processor to either zero (off) or one
(on); Serial outputs, which are interfaces that send or receive data using one or two
pins in a serial mode; Analogue values, which are interfaces between the system and
the external environment needed to be converted from analogue to digital and vice
versa; Displays, which can vary from simple LEDs and seven segment displays to
small LCD panels; Time derived outputs (timers and counters).

The software components within an embedded system often encompass the tech-
nology that adds value to the system and defines what it does and how well it does it
[1-9]. The software includes several different components: Customization and config-
uration; Applications (Modules); Operating system; Error handling and Maintenance.

Algorithms are the key components of the software that makes an embedded sys-
tem behave in the way that it does, so as to fulfill its purpose. They can vary from
mathematical processing to models of the outer environment which are used to inter-
pret and take advantage of information that derives from the external sensors and thus
generate control signals. Nowadays with the digital technology such, the algorithms
that digitally encode the analogue data are defined by standard bodies. Getting the
right implementation is very important since, for example, it may allow the same
function to be executed on cheaper hardware (Efficiency). As most embedded sys-
tems are designed to be commercially successful, the selection of the “right” algo-
rithm is extremely important.

2 Material and Method

Before we move further on, to the part of multitasking, it is necessary to explain
what an operation system is. It is a software environment that provides a buffer be-
tween the user and the low-level interfaces to the hardware within a system. It pro-
vides a constant interface and a set of utilities to enable users to utilize the system
quickly and efficiently [7]. Furthermore, software is allowed to be moved from one
system to another and thus can make application programs hardware independent.
Very often there are program debugging tools included. Therefore, the testing process
is completed in lesser time.

iJOE ‒ Vol. 15, No. 9, 2019 45

Paper—Multitasking in Embedded System Designs

Most of the embedded systems nowadays demand a multitasking operating system.
It is an operating system that can run multiple applications simultaneously and pro-
vide intertask communication and control. A multitasking operating system works by
dividing the processor’s time into discrete time slots. Each application or task de-
mands a specific number of time slots to complete its execution. The operating system
kernel decides which task can have the next slot, so instead of a task executing con-
tinuously until completion, its execution is interleaved with other tasks. This sharing
of processor time between tasks gives the illusion to each user that he is the only one
using the system [8].

Further on, comes the analysis of the mechanisms that are used in software in order
to offer concurrent execution of sequential code. With this, multitasking can be
achieved. There are multiple reasons for executing more than one sequential program
concurrently and they all involve timing. One of the main reasons is to improve re-
sponsiveness by avoiding situations where long-running programs can block a pro-
gram that responds to external stimuli, such as sensor data or a user request [1-3].
Faster responsiveness reduces latency, which is in fact, the time between the occur-
rence of a stimulus and the response. Moreover, another reason is to improve perfor-
mance by allowing a program to be executed simultaneously on multiple cores or
processors. Furthermore, one other reason is to directly control the order of external
actions. A program may need to perform some action, such as updating a display or
saving data that was recently added/modified, at particular times, no matter what
other tasks might be executing at the same time.

Fig. 1. Layers of abstraction for concurrency in programs

Figure 1 shows that multitasking are in fact mid-level techniques which are directly
related with the low-level and high-level mechanisms. Embedded system designers
usually use these mid-level mechanisms to build applications, but it is becoming in-
creasingly common for designers to use the high-level mechanisms instead. The de-
signer builds a model of computation using a software tool. This model is then auto-
matically or semi-automatically translated into a program that exploits the mid-level
or low-level mechanisms. The process of translation is widely known as code genera-
tion or auto coding.

46 http://www.i-joe.org

Paper—Multitasking in Embedded System Designs

The mechanisms are provided by an operating system, a microkernel, or a library
of procedures. They can be rather difficult to implement correctly, and because of
that, the work should be done by very experienced people (experts).

3 Results and Discussion

When it comes to the programming language that application programmers use to
develop software, a language that expresses a computation as a sequence of opera-
tions is called an imperative language. C is an example of imperative language. In
Figure 2 there is an example of a program written in C which implements a common-
ly used design patter which is known as the observer pattern [10].

Fig. 2. An example of a program written in C (observer pattern)

In the following example, an update procedure changes the value of a variable x.
The other programs or other parts of the program, which are called “observers”, will
be notified every time x is changed by calling a callback procedure. For instance, the
value of x might be displayed by an observer on a screen. Whenever the value chang-

iJOE ‒ Vol. 15, No. 9, 2019 47

Paper—Multitasking in Embedded System Designs

es, the “observer” needs to be notified so that it can update the display on the screen.
The example below demonstrates a main procedure that uses the procedures defined
in Figure 2:

 1 int main(void) {
 2 addListener(&print);
 3 addListener(&print);
 4 update(l);
 5 addListener(&print);
 6 update(2);
 7 return 0;
 8 }

In this example, the program registers the print procedure as a callback twice, then
performs an update, changing the value of x (x = 1), then registers the print procedure
again, and finally does another update, changing the value of x (x = 2). The print
procedure prints the current value of the variable x, so the final output when executing
this program will be 1 1 2 2 2.

In general, a program in C specifies an order of steps, where each step changes the
state of the memory in the machine. In C, the state of the memory is represented by
the values of variables [1-4].

In the example which was described in Figure 2, the state of the memory has the
value of variable x which is a global variable. A global variable is visible through all
the procedures and “parts” of the program. Furthermore, there is a list of elements
pointed to by the variable head, which consists another global variable. The list itself
is represented as a linked list, where each element in the list contains a function point-
er referring to a procedure to be called when x changes [1-4].

In computer science, a linked list is a linear collection of data elements, called
nodes, each pointing to the next node by means of a pointer. It is a data structure con-
sisting of a group of node which together represents a sequence. Under the simplest
form, each node is composed of data and a reference (in other words, a link) to the
next node in the sequence. This structure allows for efficient insertion or removal of
elements from any position in the sequence during iteration. More complex variants
add additional links, allowing efficient insertion or removal from arbitrary element
references. Below, there is a definition of a linked list for the program in Figure 2:

 1 typedef void notifyProcedure(int);
 2 struct element {
 3 notifyProcedure* listener;
 4 struct element* next;
 5 };
 6 typedef struct element element_t;
 7 element_t* head =0;
 8 element_t* tail =0;

48 http://www.i-joe.org

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Pointer_(computer_programming)
https://en.wikipedia.org/wiki/Node_(computer_science)
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Reference_(computer_science)

Paper—Multitasking in Embedded System Designs

These are all examples of code that runs sequentially, line after line. Complex pro-
grams can create difficulties handing values and the state of memory. The problems
get much worse when concurrency gets into the mix. C programs with mid-level con-
currency mechanisms such as threads are extremely difficult and prone to errors.

Threads are imperative programs that run concurrently and share a memory space.
One of the advantages is the fact that the programs can access each other’s variables.
The term "threads" is widely used to refer to particular ways of constructing programs
that share memory. In this paper however, the term will refer to any mechanism
where imperative programs run concurrently and share memory.

Most operating systems provide a higher-level mechanism which is provided in the
form of a series of procedures that a programmer can exploit. Such procedures typi-
cally conform to a standardized API (application program interface), which makes it
possible to write programs that are portable, which in fact is very useful as they run
on multiple processors and/or multiple operating systems. Pthreads (or POSIX
threads) is such an API. It is integrated into many modern operating systems. Pthreads
defines a set of C programming language types, functions and constants [1-4]. In
Figure 3, there is an example of a multithreaded program.

Fig. 3. Multithreaded program with Pthreads

The printN procedure, the procedure that the thread begins executing, is known as
the start routine. It prints the argument passed to it 10 times and then exits, which will
force the thread to end. The main procedure creates two threads; each of one will
execute the start routine. The first one, which is created on line 14, will print the value
1. The second one, which is created on line 15, will print the value 2. During the exe-
cution of the program, values 1 and 2 will be the outputs that will be displayed on
screen, in some mixed order that depends on scheduler of the thread. Each time the
program runs, the results will be different orders of 1's and 2's.

In addition, the pthread_create procedure creates a thread and returns immediately.
The start routine may or may not have actually started running when it returns. Lines

iJOE ‒ Vol. 15, No. 9, 2019 49

Paper—Multitasking in Embedded System Designs

17 and 18 use pthread join to ensure that the main program does not terminate before
the threads have finished. Without these two lines, running the program may not yield
any output at all from the threads [1-5]. Generally, a start routine may return or not. In
embedded applications, it is common to define start routines that never return. For
instance, the start routine might run forever and produce an output display periodical-
ly. If the start routine does not return, then any other thread that calls its pthread join
will be blocked indefinitely.

The center part of an implementation of threads is a scheduler that chooses which
thread will be the one executed next when a processor is available to execute one of
them. The choice may be based on fairness, where the principle is to give every active
thread an equal opportunity and time to run, on timing limits, or in terms of how im-
portant it is according to its priority. The first matter that concerns the programmers is
how and when the scheduler is invoked. A simple technique known as cooperative
multitasking does not interrupt a thread unless the thread itself calls a specific proce-
dure or one out of a set of procedures. For instance, the scheduler may intervene each
time an operating system service is invoked by the currently executing thread. Re-
spectively, an operating system service is invoked by calling a library procedure.
Each thread has its own stack, and when the procedure call is made, the return address
will be pushed onto the stack. If the scheduler determines that the currently executing
thread should continue to execute, then the requested service is completed and the
procedure returns as normal. On the other hand, if the scheduler determines that the
thread should be interrupted and another thread should be selected for execution, then
instead of returning, the scheduler makes a record of the stack pointer of the currently
executing thread, and then changes the stack pointer to point to the stack of the select-
ed thread. Moreover, it returns as normal by popping the return address off the stack
and resuming execution, but this time in a new thread.

Concerning the main drawback of cooperative multitasking, it is that a program
may run for a long time without making any operating system service calls, in which
case other threads will be put to hold almost indefinitely. To avoid this, most of the
operating systems out there, offer an interrupt service routine that runs at certain time
intervals. This routine maintains a system clock, which provides application pro-
grammers with a solution to obtain the current time of day and enables periodic invo-
cation of the scheduler with the use a timer interrupt.

In multitasking, two concurrent pieces of code race to access the same resource,
and the exact order in which their accesses occur affects the results of the program.
Not all race conditions are as bad as the previous example, where some outcomes of
the race cause catastrophic failure. One effective solution to avoid these disasters is
by taking advantage of a mutual exclusion lock (or mutex). The following piece of
code is such an example:

 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

 void addListener(notifyProcedure* listener) {
 pthread_mutex_lock(&lock);
 if (head == 0) {

50 http://www.i-joe.org

Paper—Multitasking in Embedded System Designs

 ...
 } else {
 ...
 }
 pthread_mutex_unlock(&lock);
 }

On the first line a global variable called lock is created and initialized. Inside the
addListener procedure acquires the lock. The principle is that only one thread can
hold the lock each time. The pthread_mutex_lock procedure will block until the call-
ing thread can acquire the lock. When the procedure addListener is called by a thread
and begins executing, pthread mutex lock does not return until no other thread holds
the lock. Once it returns, this calling thread holds the lock. The
pthread_mutex_unlock call at the end releases the lock. It is a serious error in multi-
threaded programming to fail to release a lock.

A mutual exclusion lock prevents two threads from simultaneously accessing or
changing a shared resource of the memory. The code between the lock and unlock is a
critical section. At any cost, only one thread can be executing code in such a critical
section. A programmer may need to ensure that all accesses to a shared resource are
similarly protected by locks [1-4].

However, the mutex added in the previous example is not enough to avoid this
problem. The mutex does not prevent thread A from being halted. So, there is need to
protect all accesses of the data structure with mutexes, which can be done with alter-
ing update procedure as described below:

 void update(int newx) {
 x = newx;
// Notify listeners.
pthread_mutex_lock(&lock);
element_t* element = head;
while (element != 0) {
 (*(element->listener))(newx);
 element = element->next;
 }
 pthread_mutex_unlock(&lock);
 }

The above code will refrain the update procedure from reading the list data struc-
ture while it is being altered by any other thread.

As mutex can be used frequently in programs, the risk of deadlock gets bigger. A
deadlock occurs when some threads become permanently halted struggling to acquire
locks. As an example, if thread A holds lockl and then stops trying to acquire lock2,
which is taken by thread B, and then thread B stops trying to get lockl. This will lead
the system to crash and the program needs to be aborted.

Deadlock can be rather difficult to avoid. One simple technique is to use only one
lock throughout an entire multithreaded program. On the other hand, that technique

iJOE ‒ Vol. 15, No. 9, 2019 51

Paper—Multitasking in Embedded System Designs

does not launch very modular programming. In addition, it can make it difficult to
meet real-time constraints because some shared resources (e.g., displays) may need to
be held long enough to cause deadlines to be missed in other threads [1-3].

Sometimes in a very simple microkernel, it is easy to use the enabling and disa-
bling of interrupts as a single global mutex. If there is a single processor and that
interrupts are the only available mechanism by which a thread may be halted, then
disabling interrupts avoids the suspension of a thread. On the other hand, in most
Operating Systems, threads can be halted for various reasons, thus this technique
won't give back.

Moving further, another technique is to ensure that when there are more than one
mutex locks, each thread acquires the locks in the same order. This can be difficult to
guarantee, however, for several reasons:

• Most programs are written by multiple people, and the locks acquired within a
procedure are not part of the signature of the procedure. Thus, this technique relies
on very careful and constant cooperation and writing down throughout a program-
ming team. Everytime a lock is added, and then all parts of the program that ac-
quire locks may have to be changed, to sustain its “vitality”.

• Correction of the source code may be proved to be extremely difficult. If a pro-
grammer wants to call a procedure that acquires lockl, then it must first release any
locks it holds. As soon as it releases those locks, it may be halted, and the resource
that it held those locks to protect may be modified. Once it has acquired lock1, it
must then reacquire those locks, but it will then need to assume it no longer knows
anything about the state of the resources, and it may have to redo considerable
work.

Of course, there are many other ways to avoid deadlock. For example, a particular-
ly elegant technique synthesizes constraints on a scheduler to prevent deadlock [9].
However, most of them either inflict serious constraints and problems on the pro-
grammer or demand considerable sophistication to apply, which suggests that the
problem may be with the concurrent programming model of threads [1-5].

Threads also suffer from problems that have to do with the memory model of the
programs. Implementation of threads gives some kind of memory consistency model,
which defines how variables that are read and written by various threads appear to
them. Reading a variable should return the last value written to the variable. For in-
stance, in a program, all variables are initialized with value 0 (zero), and thread A
executes the following two lines:

 1 x = 5;
 2 w = y;
while thread B executes the following two lines:
 1 y = 5;
 2 z = x;
Then, after both threads have executed these lines, the expected result is that at

least one of the two variables w and z will have value 5 (five). This is known as se-
quential consistency [10]. Sequential consistency means that the result of any execu-
tion is the same as if the operations of all threads are executed in some sequential

52 http://www.i-joe.org

Paper—Multitasking in Embedded System Designs

order, and the operations of each individual thread appear in this sequence in the order
specified by the thread.

On the other hand, sequential consistency is not working everytime by most im-
plementations of Pthreads. In fact, such a guarantee is rather difficult to be achieved
on modern processors and modern compilers. A compiler, for instance, is free to re-
order the instructions in each of these threads because there is no dependency between
them. There is also a chance that the hardware might reorder them instead. A solution
to this is to very carefully guard such accesses to shared variables using mutual exclu-
sion locks.

Multithreaded programs can be very difficult to understand. Furthermore, it can be
difficult to trust the programs because problems in the code may not show up in the
testing process. A program may have the possibility of deadlock, for example, but
nonetheless run correctly for years without the deadlock ever appearing [1-5].

Fig. 4. Modified update procedure

In Figure 4, there is a modified version of the update procedure that was described
earlier. This code does not hold lock when it calls the listener procedure. Instead, it
holds the lock while it constructs a copy of the list of the listeners, and then it releases
the lock. After releasing the lock, it uses the copy of the list of listeners to notify the
listeners. However, it carries a potentially critical problem that is hard, if not com-
pletely impossible, to be detected in testing. For example, thread A calls update with
newx = 0, indicating "All systems good.". A gets suspended just after releasing the

iJOE ‒ Vol. 15, No. 9, 2019 53

Paper—Multitasking in Embedded System Designs

lock, but before performing the notifications. While it is suspended, thread B calls
update with newx = 1, indicating "Emergency! The engine is off!" Suppose that this
call to update completes before thread A gets a chance to resume. When thread A
resumes, it will notify all the listeners, but it will notify them of the wrong value! If
one of the listeners is updating a pilot display for an aircraft, the display will indicate
that all systems are normal, when in fact the engine is on fire [1-3]. This is an exam-
ple of a very serious issue that could be fatal (loss of human lives) and thus it must be
solved effectively.

Last but not least, processes are also important to keep an eye on when it comes to
embedded systems. Processes are imperative programs with their own memory spac-
es. One of their main characteristics is that they cannot refer to each other’s variables,
and consequently they do not demonstrate the same difficulties as threads. Communi-
cation between the programs must occur through the use of mechanisms provided by
the operating system, a library, or microkernel.

When it comes to the implementation, processes generally demand hardware sup-
port in the form of a memory management unit or MMD. The MMD protects the
memory of one process from accidental, not desired reads or writes by another pro-
cess and also provides address translation, giving each process the “illusion” of a
fixed memory address space that is the same for all processes. When a process ac-
cesses a memory location in that address space, the MMD shifts the address to refer to
a location in the portion of physical memory allocated to that process [1-5].

 Operating systems offer various mechanisms, often even including the ability to
create shared memory spaces, which of course opens the programmer to all the poten-
tial difficulties of multithreaded programming. After all, in order to achieve concur-
rency, the processes must able to communicate. A flexible mechanism for communi-
cating between processes is message passing. One process creates a chunk of data,
deposits it in a carefully controlled section of memory that is shared, and then notifies
other processes that the message is ready. Those other processes can block waiting for
the data to become ready. Message passing requires some memory to be shared, but it
is implemented in libraries that are presumably written by experts. An application
programmer invokes a library procedure to send a message or to receive a message.
Below, in Figure 5, there is an example of a simple message passing application.

This program uses a producer-consumer pattern, where one thread produces a se-
ries of messages (a stream), and another thread consumes the messages. This pattern
can be used to implement the observer pattern without deadlock risk and without the
insidious error discussed in the previous section. The update procedure would always
execute in a different thread from the observers, and would produce messages that are
consumed by the observers. The code executed by the producing thread is given by
the producer procedure and the code for the consuming thread by the consumer pro-
cedure. The producer invokes a procedure called send (to be defined) on line 4 to send
an integer-valued message. The consumer uses get (also to be defined) on line 10 to
receive the message. The consumer is assured that get does not return until it has
actually received the message. In this case, consumer never returns, so this program
will not terminate on its own.

54 http://www.i-joe.org

Paper—Multitasking in Embedded System Designs

Fig. 5. Example of a simple message-passing application

4 Conclusions

To sum up, there has been an analysis of the design of the embedded systems and a
focus on mid-level abstractions for concurrent programs. Examples of codes that
handle multitasking have been demonstrated to provide a look on threads, which are
sequential programs that execute concurrently and share variables and memory. How-
ever, threads are tricky to handle and require attention and study because there are
several issues, such as mutual exclusion and deadlock. Message passing schemes
avoid some of the difficulties, but not all of them, at the expense of being somewhat
more constraining by prohibiting direct sharing of data. In the future, designers and
programmers need to focus on using higher levels of abstraction (see Figure 1).

5 Acknowledgement

This research would not have been possible without the financial assistance of the
following project: "Application of the mixed reality in the training and promotion of
the cultural heritage for the purposes of the in the university information environ-
ment" financed by National Science Fund of the Ministry of Education and Science of
the republic of Bulgaria with Contract № KP – 06 – OPR 05/14 from 17.12.2018, led
by Prof. DSc Irena Peteva.

iJOE ‒ Vol. 15, No. 9, 2019 55

Paper—Multitasking in Embedded System Designs

6 References

[1] Berry G., Gonthier G. (1992). The Esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming, 19(2), 87–152.
https://doi.org/10.1016/0167-6423(92)90005-v

[2] Burns A. Baruah S. (2008). Sustainability in real-time scheduling. Journal of Computing
Science and Engineering, 2(1), 74–97.

[3] Chetto H., Silly M., Bouchentouf T. (1990). Dynamic scheduling of real-time tasks under
precedence constraints. Real-Time Systems, 2(3), 181–194.
https://doi.org/10.1007/bf00365326

[4] Graham R. L. (1969). Bounds on multiprocessing timing anomalies. SIAM Journal on Ap-
plied Mathematics, 17(2), 416–429. https://doi.org/10.1137/0117039

[5] Alur R., Dill D. L. (1994). A theory of timed automata. Theoretical Computer Science,
126(2), 183–235. https://doi.org/10.1016/0304-3975(94)90010-8

[6] Beyer D., Henzinger T. A., Jhala R., Majumdar R. (2007). The software model checker
Blast. International Journal on Software Tools for Technology Transfer (STTT), 9(5-6),
505–525. https://doi.org/10.1007/s10009-007-0044-z

[7] Edwards, S. A., Lee E. A. (2003). The semantics and execution of a synchronous block-
diagram language. Science of Computer Programming, 48(1), 21–42.
https://doi.org/10.1016/s0167-6423(02)00096-5

[8] Wang Y., Lafortune S., Kelly T., Kudlur M., Mahlke S. (2009). The theory of deadlock
avoidance via discrete control. In Principles of Programming Languages (POPL), ACM
SIGPLAN Notices, Savannah, Georgia, USA, vol. 44, pp. 252–263.
https://doi.org/10.1145/1480881.1480913

[9] Lamport L., (1977). Proving the correctness of multiprocess programs. IEEE Trans. Soft-
ware Eng., 3(2), 125–143. https://doi.org/10.1109/tse.1977.229904

[10] Gamma E., Helm R., Johnson R., Vlissides J. (1994). Design Patterns: Elements of Reusa-
ble Object-Oriented Software. Addison Wesley.

7 Authors

Radoslav Mavrevski is Chief Assistant in Department of Informatics, Faculty of
Mathematics and Natural Sciences, member of University Center for Advanced, Bio-
informatics Research, South-West University "Neofit Rilski", 66 Ivan Mihaylov Str.,
Blagoevgrad, Bulgaria. PhD on Informatics. Scientific Interest: programming, com-
puter modelling, applied statistics and bioinformatics. He is one of the organizers of
the South Eastern European Mathematical Olympiad for University Students
(SEEMOUS) with International Participation, 2012, http://seemous2012.swu.bg/ and
XXVII REPUBLICAN STUDENT PROGRAMMING OLYMPIAD, 2015,
http://bcpc.eu/XXVII/.

Metodi Traykov is Assistant in Department of Informatics, Faculty of Mathemat-
ics and Natural Sciences, member of University Center for Advanced, Bioinformatics
Research, South-West University "Neofit Rilski", 66 Ivan Mihaylov Str.,
Blagoevgrad, Bulgaria. PhD on Informatics. Scientific Interest: programming and
bioinformatics. He is one of the organizers of the XXVII REPUBLICAN STUDENT
PROGRAMMING OLYMPIAD, 2015, http://bcpc.eu/XXVII/.

56 http://www.i-joe.org

https://doi.org/10.1016/0167-6423(92)90005-v
https://doi.org/10.1016/0167-6423(92)90005-v
https://doi.org/10.1007/bf00365326
https://doi.org/10.1007/bf00365326
https://doi.org/10.1137/0117039
https://doi.org/10.1137/0117039
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1016/s0167-6423(02)00096-5
https://doi.org/10.1016/s0167-6423(02)00096-5
https://doi.org/10.1145/1480881.1480913
https://doi.org/10.1145/1480881.1480913
https://doi.org/10.1109/tse.1977.229904
https://doi.org/10.1109/tse.1977.229904
http://bcpc.eu/XXVII/
http://bcpc.eu/XXVII/
http://bcpc.eu/XXVII/

Paper—Multitasking in Embedded System Designs

Ivan Trenchev is Associate professor in Department of Electrical Engineering,
Electronics and Automatics, Faculty of Engineering, member of University Center for
Advanced, Bioinformatics Research, South-West University "Neofit Rilski", 66 Ivan
Mihaylov Str., Blagoevgrad, Bulgaria and Associate professor in University of Li-
brary Studies and Information Technologies Sofia, Bulgaria. PhD on Informatics.
Scien-tific Interest: virtual reality (VR), computer modelling and bioinformatics. He
is one of the organizers of the XXVII REPUBLICAN STUDENT PROGRAMMING
OLYMPIAD, 2015, http://bcpc.eu/XXVII/.

Article submitted 2019-02-08. Resubmitted 2019-03-25. Final acceptance 2019-05-09. Final version
published as submitted by the authors.

iJOE ‒ Vol. 15, No. 9, 2019 57

http://bcpc.eu/XXVII/
http://bcpc.eu/XXVII/
http://bcpc.eu/XXVII/

