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Abstract—Differential Evolution (DE) is an evolutionary computational
method inspired by the biological processes of evolution and mutation. DE has
been applied in numerous scientific fields. The paper presents a literature re-
view of DE and its application in wireless communication. The detailed history,
characteristics, strengths, variants and weaknesses of DE were presented. Seven
broad areas were identified as different domains of application of DE in wire-
less communications. It was observed that coverage area maximisation and en-
ergy consumption minimisation are the two major areas where DE is applied.
Others areas are quality of service, updating mechanism where candidate posi-
tions learn from a large diversified search region, security and related field ap-
plications. Problems in wireless communications are often modelled as multi-
objective optimisation which can easily be tackled by the use of DE or hybrid of
DE with other algorithms. Different research areas can be explored and DE will
continue to be utilized in this context.

Keywords—Differential evolution, multiobjective optimisation, evolutionary
computation, energy utilisation, localisation, coverage, wireless networks.

1 Evolutionary Computation

Physical phenomena are routinely studied using models. The models are sometimes
complex because of different parameters that constitute them. At times, the analysis of
such models is prohibitively complex and waste computation time. The insights and
benefit accrual from the analysis of complex models have pushed researchers to look
for a viable alternative method, which is nature [1]. Natural processes have inspired
researchers in the development of computational processes, methods and algorithm
that can be used to solve complex methods or to provide the best available (optimum)
solution of their models. [2]. Because of the complexity of some models, optimisation
became the only alternative since the models have different candidate solutions [3].
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Optimisation is central to many natural processes as the method of evolution, memes
and adaptation implies that organisms attempt to adjust over time to fit in optimally to
their environment despite the constraints of space, search for food, shelter, and search
for mates and so on. The study of these natural processes gave birth to the notion of
computational intelligence of which evolutionary computation is a subfield [4].

EC is a family of iterative algorithms inspired mostly by biological evolution and
are employed mostly in global optimisation [5]. In addition, is a branch of applied
mathematics that deals with the global optimisation of a given function or set of func-
tions based on some predefined criteria. Global optimisation focuses on finding the
maximum or minimum of all input values while local optimisation deals with finding
local minima or maxima.

In EC, an initial set of candidate solutions is generated and iteratively updated to
minimise or maximise the given function [6]. Each new solution (generation) is pro-
duced by stochastically removing weaker or less desired solutions — survival of the
fittest and iteratively introducing random changes until a termination criterion that
guarantee a feasible solution is obtained [7]. EC techniques can produce highly opti-
mized solutions given a wide range of constraints and complex objective function [8].
This makes EC a suitable tool for solving multi-dimensional problems and advanced
optimisation [9].

The choice of EC is mainly based on the nature of the problem to be solved and the
corresponding data structures. EC techniques perform well in solving higher proce-
dure problems that are designed to find, select or search or determine a heuristic (par-
tial search algorithm) that obtain a near optimal solution [10]. EC works with incom-
plete or partial, or imperfect information and limited completion capacity [11]. How-
ever, EC does not guarantee that an optimal (exact) solution will be obtained [12].

Differential evolution (DE) is one of the most widely used EC technique [13-15].
The biological processes of evolution, mutation and adaptation inspired the develop-
ment of DE.

The aim of this review is to critically analyse the different areas where DE has
been applied in wireless communications.

2 Differential Evolution

The basic procedure of Differential evolution (DE) is given. A population of can-
didate solutions (called vectors) is moved around in the search space by using the
mathematical formulae defined for the objective (fitness) function to combine the
positions of existing vectors from the population. If the new position of the vector is
an improvement, then it is accepted and promoted to form part of the population.
Otherwise, the new position is simply discarded and sometimes archived. The process
is repeated t times until a satisfactory solution is discovered. Note that the algorithm
does not guarantee that an optimal (exact) solution will be found.

Let f - R" — R, be the fitness function, which must be minimised, based on

some equality, inequality or bounded constraints. The function maps a candidate solu-
tion in the form of vector in a given dimensional space to a real number as output,
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which indicates, the fitness of the given candidate solution. The aim is to find m for
which f(m) < f(p)for all p in the search space of the given dimension, which

means that the solution m is the only global minimum available.
The detailed development, component, variants, application areas and application
of DE in curve fitting are presented here.

2.1  Historical development

The DE algorithm was created to be a very vital force in evolutionary computing.
The first articles on DE was basically introductory [16] and it took a year later to
actually demonstrate the computational efficiency of the method in an IEEE interna-
tional contest built in conference [17], where it tops other EA in solving real-valued
functions. Researchers were interested in the method and some papers were published
to further elucidate the theory, processes and mathematics behind the method, which
give birth to a clearer DE algorithm. The papers are [16] and [18-19]. Since then, DE
has proven to be a force to be reckoned with, in EC. Summary of the method can be
found in [20] and [21], and their references therein.

In the application of DE, the individual candidate (trial) solutions are called param-
eter vectors or genomes. DE utilizes difference of the parameter vectors to assess and
explore the objective function landscape, which is a deviation from the other EA. The
reliance of DE on difference vectors can be traced to earlier algorithms which uses
difference vectors in their computation. The algorithms are Nelder-Mead algorithm
[22] and the controlled random search algorithm [23].

According to [24[, the reasons why DE is used by researchers as a reliable optimi-
sation tools are listed.

1. DE is simpler and easier to implement when compared with other evolutionary al-
gorithms. The code is easy to code with different programming languages and can
easily be understood by novices.

2. The performance is better than most EC in terms of convergence, computational
speed, accuracy and robustness [25]. This makes it a suitable candidate for han-
dling unimodal, multimodal, homogenous, non-homogenous, separable and non-
separable systems [26].

3. The number of control parameters (Cr, F, and NP) in DE is very few. This has
helped to reduce the computational burden associated with the method [27].

4. The low space complexity of DE has been helpful in the use of DE for solving
large scale, nonlinear and multi-dimensional optimisation problems.

2.2 Control parameters of the differential evolution

There are three main control parameters of the DE algorithm: the mutation scale
factor F, the crossover constant Cr and the population size NP [24]. A good choice of
the control parameters is necessary for the efficient execution of the DE [28]. It is
recommended that for the one-dimensional case, the least population size is 4, muta-
tion factor is set as 0.5 and the crossover constant should be adjusted between 0 and 1
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and this has to be problem specific since some objective functions tend to be sensitive
to the choice of the control parameters [29]. Wrong choice of these parameters will
ultimately frustrate the algorithm, leading to slow convergence speed and inaccurate
results [30].

2.3 Different variants of differential evolution

Since the introduction of DE, researchers have continued to propose different vari-
ants of the algorithm without necessarily altering its foundation. The nonlinear and
complex nature of some problems have led researchers to push back the boundaries of
DE. The different variants of DE are listed.

Differential evolution using trigonometric mutation:This was proposed by [31],
aimed at speeding up the performance of DE by splitting the target vectors [32].

Differential evolution using arithmetic recombination: This comes as a depar-
ture from the traditional binomial crossover used in DE. Here, recombination can be
either continuous or arithmetic. The trial vector is now expressed as a linear combina-
tion of the components from the donor and target vectors [33]. Furthermore, the coef-
ficients of the combination can be a random variable or constant [34].

DE/rand/1/either-or algorithm: This variant of the DE algorithm was designed in
such a way that the here the trial vectors that are pure mutants and those that are pure
recombinants are mutually exclusive [34]. This method appears to perform better than
the classical DE [25].

Opposition based differential evolution (ODE): DE usually start with some ran-
dom guesses and works with no prior information about the actual optimum solution
[35]. Fast convergence to the optima can be obtained simultaneously by checking the
fitness of the opposite solution [36]. This has proved useful as the initial candidate
solution can be chosen between the better fit options of the guess or opposite guess
[37]. The process can be extended before the birth of each individual of the popula-
tion.

Differential evolution with neighborhood-based mutation: This is the use of ex-
ploitation in DE which helps the algorithm to search new regions in a multi-
dimensional search space. This variant of DE is effective because of two things. First-
ly, the search algorithm utilizes the initial information and search towards the optima
and lastly, the search algorithm will be very effective in the introduction and man-
agement of information into the population [38]. The idea behind this to prevent the
search from favouring only vectors in the neighbourhood, but to extend the search to
other areas.

Differential evolution with adaptive selection of mutation strategies: This vari-
ant of DE makes use of the control parameters values and self-adapted trial vector g
eneration strategies to produce new individuals that are candidates for the optimum
solution [27]. This is done by using the historical data and creating patterns that will
generate the solution (unsupervised learning).

Adaptive DE with DE/current-to-pbest mutation: This uses a specific external
data learning tool (archive) or algorithm to relate and interact effectively with the
records of failure and success and subsequently update the control parameters with the

32 http://www.i-joe.org



information. This helps in the creation of new candidate solutions to facilitate conver-
gence and to discourage arbitrary tuning of the control parameters [26].

Hybrid Differential Evolution Algorithms: Hybrid models or algorithms in gen-
eral are the combination of two or more parent algorithms to produce another one
(offspring), whereby the outcome (offspring) is expected to be better than the parent
algorithms. This is because; hybrid algorithms are built upon the best features of the
parent algorithms. Hybridisation in DE takes three forms.

e Hybridisation with other EC algorithms: such as particle swarm optimisation [39-
40], cultural algorithms [41], biogeography-based optimisation [42], earthworm
[43], bacterial foraging optimisation algorithm [44-45], bare bones [46] and modi-
fied bare bones swarm optimizers [47], ant bee colony algorithm [48] and genetic
algorithm [49]. Others are: tissue membrane systems [50], artificial immune sys-
tems [51], firefly algorithm [52], simulated annealing [53], neural networks [54],
bat algorithm [55], krill herd algorithm [56], memetic inspired systems [57], fire-
works optimisation [58], Cuckoo Search algorithm [59] and Grey Wolf optimizer
[60].

o The use of local search technique (algorithms) in DE to improve the ability of the
DE algorithm to make effective utilization of the information collected and to push
towards obtaining the optimum solution [61]. The local search is usually adapted in
the crossover stage of the DE, thereby increasing the likelihood that the optimal so-
lutions (offspring with high fitness) will be found in small neighbourhood around
the candidate solutions and reduction of fitness function evaluations. Hybridisation
can also be done using neighbourhood search [62], Taguchi operator [63], cluster-
ing [64], shuffled [65] and chaotic local search, Levy flight, and Golden Section
Search [66].

e Hybridisation with non-Darwinian methods: DE has been hybridized with some
non-evolutionary techniques such as: black hole inspired systems [67] and gravita-
tion search algorithm [68] and radial basis function response surface [69].

o Differential Evolution for Discrete and Binary Optimisation: DE was originally
created for real value parameters. Over the years, several researchers have modi-
fied it to be utilized in tackling binary and discrete optimisation problems. This can
be achieved by the following: truncating or approximating the parameter values for
objective function evaluation [70] or discretisation of continuous value parameters
[71], bicriteria [72] and purely binary optimisation [73]. Most applications of DE in
this context are for solving job and machine scheduling problems.

Parallel differential evolution: DE can be modified to solve problems concurrent-
ly, which can be in hardware or software modes. This is done by breaking complex
problems into small bits [74]. Speed, accuracy and reducing the complexity of objec-
tive function evaluation is the motivation behind parallel DE [75]. The other EC algo-
rithm can be employed for more accuracy [76]. Parallel DE ensures that the hetero-
genous nature of the optimal population is preserved after migrations. In addition, the
method allows for solving optimisation problems with mixed integer and real parame-
ter values [77].
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2.4  Major strengths of the differential evolution

DE can be applied to tackle real world problems, which are unimodal/multimodal,
linear/non-linear, differentiable/nondifferentiable convex/non-convex, continuous/
non-continuous and symmetrical/asymmetrical in nature. These are categorized as
follows:

Multiobjective optimisation (MO): Real world problems are often complex be-
cause of the composition of the different variables that are used in modelling them.
These imply some problems have several criteria and objectives, which must be eval-
uated simultaneously in order to obtain the solution [78]. DE has proven to be well
suited for tackling this type of optimisation problem. The most prominent modified
version of DE that is used in solving MO problems are Pareto DE [79] and non-Pareto
DE [80].

Constrained optimisation (CO): DE is very good at solving real world problems
that come with conditions known as constraints. The most profound constraints are
called the boundary constraint [81] or boundary value problems in numerical analysis
or numerical optimisation and inequality constraints [82].

Large-scale optimisation (L.SO): Most search abilities of EC algorithms failed at
a very high dimension. This is due to, firstly, the complexity of the problem and the
fatigue of the search strategy and secondly, the exponential increase in the solution
space caused by the time it takes for the search to yield an optimum solution. This
problem is present in almost all the EC algorithm of which DE is not an exception.
However, experts in DE have provided means of which DE can be used to solve large
scale optimisations. Some of the surveyed approaches are the fitness function refine-
ment [83], use of chaotic systems and simplex search method [84], co-evolution [85],
self-adaptive method [86], random grouping scheme [87], surrogate-assisted [88] and
hybrid of co-evolution and log-normal self-adaptation [89], fuzzy adaptive method
[90], strategy adaptation [27] and competition based strategy [91].

Optimisation in dynamic and uncertain environments: EC algorithms generally
suffers from the uncertainties present in the optimisation problems. Those uncertain-
ties can be time, place or measurement indexed. These uncertainties can manifest as
the noisiness of the fitness function, the effect of the computing environment on the
parameters, case of the fitness function being approximated and the optimal nature of
the candidate solution varies over time and location. Researchers have designed dif-
ferent strategies to address these issues in DE environment. Intermittent varying of the
scale parameter and incorporated a very good search method [92], optimisation of the
objective functions that are slow and also changes with time [93] and introduction of
aging mechanism to handle unstable fitness functions [94] are some of the available
strategies.

Multimodal optimisation and niching: Most of objective functions encountered
in real life are multimodal in nature and as such caution must be exercised in handling
them because their nature connotes that several near optimal solutions may be availa-
ble for them. Researchers have proposed different niching methods to tackle this is-
sue. Niching ensures that multiple groups are maintained within the same population
in order to track different optimum solutions. Some niching techniques include, but
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not limited to the following: fitness sharing [95], clearing [96], crowding [97], specia-
tion [98] and restricted tournament selection [99].

2.5  Challenges and future research areas of differential evolution

Irrespective of the advancement made in the modification of DE, the method is still
faced with some challenges, some of which are presented.

e DE is still struggling to tackle objective functions that are not linearly separable
[100].

e DE has been observed to fail to adequately convey the population to large distances
across the solution spaces, especially when clustered population of candidate solu-
tions are encountered [101].

e Rotation invariance remains an issue [102].

e DE is often plagued with low convergence rate due to the action of the randomized
mutation operators and competition between the population and its individuals
[103].

e DE is yet to convincingly prove that it can compute expensive problems better than
other evolutionary computation methods [104].

o [t is still very vague in DE environment; the optimum population size adaptation
strategy to adopt that will yield optimum performance [105].

o Learning based approaches (supervised, reinforcement and unsupervised learning)
have not been fully incorporated in DE [106].

e The problem of parameter settings indicates that more research is needed in this
direction [107].

e The search continues for an EC that can guarantee 100% optimum solution.

o The following are yet to be fully developed or estimated for DE. They include:
computational complexity, convergence rate estimation, expected first hitting time,
the necessary and sufficient conditions that guarantee convergence and unified
formulation in the theoretical development [107].

o [t cannot be stated, the ranking performance of DE in solving these problems which
include: multiobjective optimisation, constrained optimisation, large-scale optimi-
sation, optimisation in dynamic and uncertain environments or multimodal optimi-
sation.

o Finally, it can be seen that there is no automatic method of selecting a DE variant
for a given problem since studies have shown that DE variants are designed to im-
prove one aspect of DE and as such, may perform very well for a specific type of
problem and perform very poor in others. Fan et al. [108] has proposed an auto-
selection mechanism (ASM) in order to tackle the challenge.

3 DE in Wireless Communications

Wireless communication encompasses all processes and procedures that guarantee
the transfer of information over a distance without physical connection between the
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two or more points, that is, without the aid of wires, cables or any other forms of elec-
trical conductors. The transmitted distance ranges from a few metres to thousands of
kilometres. Wireless communication can be used in radio wireless technology, cellu-
lar telephony, wireless internet access, satellite and broadcast television, wireless
home networking, cordless telephones and others. Wireless communication has sever-
al advantages over wired one. It is cost effective, flexible, convenient, fast, easily
accessible and the probability of maintaining constant connectivity is high. However,
security, coverage and other challenges are some of the issues with wireless commu-
nication.

The problems encountered in wireless communication are often NP hard. Conse-
quently, they are modelled as a constrained optimisation problem, of which differen-
tial evolution (DE) is routinely applied to optimize the objective function resulting
from the problem formulation. Minimisation or maximisation of the objective func-
tion subject to some constraints are usually the main.

A review of previous studies showed that there are six interconnecting areas where
DE has been applied in wireless communications. They are: energy optimisation,
improving quality of service, localisation and coverage area maximisation, updating
mechanism, security application and related field applications.

3.1 Energy optimisation

Energy is required in transmission of data in wireless networks and estimation of
energy consumption is important for network planning [109]. Energy consumption
optimisation is a predictor of overall network performance and remains the most im-
portant constraint. DE has been used to achieve efficient energy optimisation in WSN
[110] and power allocation in orthogonal frequency division multiplexing (OFDM)
systems [111] thereby decreasing the gross impact of the limited available energy
[112].

In order to maintain consistent energy, energy harvesting technology has been pro-
posed to improve network throughput. DE is used to obtain the optimal throughput
that will sustain consistent energy [113] and extend the lifetime of individual nodes in
WSNs [114].

Delay in forwarding packets of data is a strategy to ensure efficient energy con-
sumption, which can be achieved by providing the optimum solution of clustering and
routing in wireless sensor networks (WSN) using DE [115]. Clustering ensures that
data is transmitted in hierarchical order and reduces into distinct groups which helps
to improve power utilization. DE has been used in clusters optimisation and an effec-
tive energy optimisation strategy [116] which guarantees network longevity [117] and
optimum packet delivery ratio [118]. A hybrid of DE and simulated annealing has
been used as clustering algorithm and it achieves the set goals of efficient energy
utilization by reduction of loss of cluster heads and sustaining network lifetime [119].

DE was applied in the power consumption minimisation in Long Term Evolution
(LTE) base stations [120].
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3.2 Quality of service improvement

In improving the quality of network, it is always desirable to optimize the con-
straints that will yield maximum quality of service (QOS). DE has been applied to the
optimisation of network coverage, power consumption, cost and human exposure
minimisation to the network [121-122]. Different examples are given. They are: the
case of heterogenous networks consisting of WiFi access points [123]; multi objective
node deployment to ensure reliable and efficient real time performance [124-125] and
lifetime maximisation [126]; optimum allocation of spectrum in wireless networks
[127] and minimisation of the number of links in WSNs [128].

DE has been applied to minimize the installation cost satisfying QOS constraints
in Wireless Mesh Network (WMN) [129] and minimisation of overall mobility man-
agement cost in wireless cellular networks [130]. Others are the minimisation of de-
sign and transmission costs with the aid of DE [131].

The following QOS constraints were optimised using DE; the bit error rate (BER),
bandwidth, associativity-based routing (ABR), monetary cost and signal to noise ratio
(SNR) [132]. For instance, a hybrid of DE and genetic algorithm was used to mini-
mise the BER and multi-path effect of the channel thereby increasing the convergence
speed [133-134]. Also, DE was used to minimize the BER in Multi-User Multiple
Input Multiple Output (MU-MIMO) [135] and in general, solving the beamforming
problems subjected to different variables and constraints [136]. DE was used in the
optimum allocation of bandwidth in Cellular IP network, thereby improving the QoS
[137].

The consequence of the optimisation is the minimisation of hangovers, that is the
“Ping Pong” effect [138], minimisation of end to end video reconstruction distortion
[139] and resilience strategy which guarantees that a network can withstand the fail-
ure of few a nodes or links. Relay nodes is one of the resilience strategy and DE is
used to find the optimum number of relay nodes that will improve connectivity and
minimize network downtime [140].

Multicast routing is often preferred strategy in quality service delivery, especially
in multichannel multiradio wireless mesh networks. DE has shown to be efficient in
finding the optimal performance in routing [141-142], packet delivery ratio maximisa-
tion [143], delay minimisation [144] and optimum reassigning vacant channel to cog-
nitive users without network deterioration [145]. Assignment can also take the form of
allocation in download link systems [146].

Transmission rate, transmitter location and network throughput of different wire-
less networks have been optimized using the DE [147]. Application of DE helped in
the optimisation of network throughput in networks with dynamic topological struc-
ture [148].

In order to improve network performance, DE was applied in the reporting cell
problem (RCP), antenna positioning problem (APP) [149], antenna synthesis problem
used in Near Field Communication (NFC) technologies [150-151] and optimisations
of channel state information [152] and geometry of coupler [153].
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3.3  Localisation and coverage area maximisation

Localisation in wireless networks often involves the location of sensed data in
wireless sensors and devices. Location information on localisation is crucial in cover-
age, sensor node deployment, target tracking and routing. DE was applied as a locali-
sation algorithm to enhance the quality of information and for convergence purposes
of determining the optimal distances between nodes [154-155]. Location quality can
be enhanced using DE [156-157] and specifically in base stations (BS) [158]. Apart
from accuracy of location estimation, DE has shown to be useful in reducing the time
complexity, thereby leading to localisation error reduction [159-160]. A further reduc-
tion of the localisation error was achieved by the hybrid of DE and Monte Carlo local-
isation algorithm. This is a case where the sample weight is taken as the objective
function [161]. A hybrid of DE and genetic algorithm has been used as a localisation
algorithm in the estimation of the location of nodes in WSN [162]. Moreover, locali-
sation by using DE can be improved by adaptive controls over the parameters to en-
sure adequate tuning [163].

Generally, coverage problems in WSN are modelled as optimisation problem and
can be solved using evolutionary algorithms such as DE [164]. DE is used in solving
connection based localisation problem features prominently in wireless sensor net-
works where connections can be modelled as a nonconvex or non-convex optimisa-
tion problem which can easily be handled using DE [165].

DE has been used in finding the minimum subset of sensor nodes to cover all the
targets in wireless multimedia sensor networks [166] and hence solving the targets
coverage problem [167-168] and nudge redundant active nodes into sleep mode [169]
or reduction of number of individual nodes which participate in non-dominated solu-
tion sorting [170]. Also available is the use of DE to optimize sensor nodes over di-
verse area shape, thereby increasing the coverage area [171]. Coverage radius and
load balancing were optimized using DE which acts as the gateway deployment algo-
rithm [172]. DE was used as deployment algorithm in optimisation of variables de-
fined for directional WSNs [173].

3.4 Updating mechanism

DE algorithm can be applied as position updating mechanism where candidate po-
sitions learn from a large diversified search region such as online heuristic searching
[174] and search equations for the purpose of reliable data collection [175]. The out-
come is to determine the optimum path that satisfies the different quality of service
(QOS) constraints in Mobile Ad Hoc Networks (MANETS) [176]. DE has been found
to be a crossover strategy used as a search tool in solving optimisation problems in
WSNs and superior to genetic algorithm and particle swarm optimisation [177].

DE was used to compute the fitness function in a hybrid algorithm aimed at finding
the optimal path for efficient data transmission in WSN based air pollution monitoring
system [178].
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3.5 Security

Security issues are one of several issues facing WSN and intrusion detection sys-
tem (IDS) is indispensable in the security of WSN. The aim of IDS is to detect mali-
cious activities that affect the predefined network protocols. The multi-dimensional
nature of the datasets of IDS causes data redundancy which leads to poor performance
and slow speed. In order to address the data dimension issue, feature selections are
often used in IDS which can be effectively optimised by the application of DE [179].
Apart from IDS, trust interference is another method of addressing security issues in
WSN. DE was applied to compute trust values for each individual node in the WSN
[180].

Another aspect of the security issues in WSN is the data aggregation caused by an
enormous connectivity from different devices connected to the network. As a result,
the network is vulnerable to security threats at the aggregated nodes. To solve the
problem, DE was used to compute the trusted aggregated node among multiple nodes
[181]. DE was combined with artificial immune system in the optimisation of the
distribution and effectiveness of the detector generator in WSN intrusion detection
[182].

The strategy of maintaining network reliability and at the same time achieving pri-
vacy preservation in WMAN can be handled using IoT-oriented offload method. DE
can be used to optimize the variables while preserving privacy [183]. Random flipped
is often recommended in preventing security attacks of WSN on an insecure link.
Optimum flipping can be obtained using DE to minimize the fusion error and ensuring
secure data transmission [184]. DE was applied to obtain optimal power schedule in
wireless networks thereby, minimizing the occurrence of the denial of service (DoS)
attacks [185].

3.6 Related field applications

DE is applied when the studied problem is modelled as a network with given objec-
tive function to be minimised or maximised. Another aspect is when DE is combined
with other methods and applied in fields related to wireless communication. DE was
applied to determine the optimal design for the appropriate pipes that fits the network
distribution in water distribution system subject to cost and total loss constraints
[186].

DE was applied to predict gas concentration while WSN systems were used to col-
lect the data [187]. DE was used in energy optimisation of environmental driven WSN
[188]. DE is used in path planning for unmanned underwater vehicle's (UUV) [189].

4 Conclusion
Differential evolution (DE) is one of the most widely applied evolutionary compu-

tational technique. The properties of DE outlined in this review, makes the algorithm,
a favourable choice in the optimisation in wireless communications. Different variants
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of DE have been used in wireless communication. Two major strengths of DE are
efficient handling of multi-objective and multimodal optimisations. As seen in the
review, most of the optimisation problems in wireless networks are multi-objective
and multimodal in nature, of which DE was applied to obtain the desired solutions. It
appears that coverage area maximisation and energy consumption minimisation are
the two major areas where Differential Evolution is applied in wireless networks and
communications, which was part of the submission of [190]. The networks are usually
modelled as a multi-objective optimisation problem where variables are optimised
using some constraints. The variables can be energy efficiency, coverage, resource
allocation and so on, while the constraints can be in the form of link conflict and inter-
ference [191]. Thereafter, evolutionary algorithms, DE in this case are applied to
solve the optimisation problem subject to the given constraint. Different research
paths on the use of DE in wireless networks can be followed.
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