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Abstract—Sticker systems and Watson-Crick automata are two modellings 
of DNA molecules in DNA computing. A sticker system is a computational 
model which is coded with single and double-stranded DNA molecules; while 
Watson-Crick automata is the automata counterpart of sticker system which 
represents the biological properties of DNA. Both of these models use the fea-
ture of Watson-Crick complementarity in DNA computing. Previously, the 
grammar counterpart of the Watson-Crick automata have been introduced, 
known as Watson-Crick grammars which are classified into three classes: Wat-
son-Crick regular grammars, Watson-Crick linear grammars and Watson-Crick 
context-free grammars. In this research, a new variant of Watson-Crick gram-
mar called a static Watson-Crick context-free grammar, which is a grammar 
counterpart of sticker systems that generates the double-stranded strings and us-
es rule as in context-free grammar, is introduced. The static Watson-Crick con-
text-free grammar differs from a dynamic Watson-Crick context-free grammar 
in generating double-stranded strings, as well as for regular and linear gram-
mars. The main result of the paper is to determine the generative powers of stat-
ic Watson-Crick context-free grammars. Besides, the relationship of the fami-
lies of languages generated by Chomsky grammars, sticker systems and Wat-
son-Crick grammars are presented in terms of their hierarchy. 

Keywords—DNA Computing, Watson-Crick Grammar, Context-Free Gram-
mar, Sticker Systems, Generative Power 

1 Introduction 

DNA (Deoxyribonucleic Acid) molecule plays an important role in DNA compu-
ting. DNA is a polymer which is constructed from monomers namely deoxyribonu-
cleotides. Each deoxyribonucleotide consists of three parts of components; a sugar, a 
phosphate group, and a nitrogenous base. The four nitrogenous bases are adenine (A), 
thymine (T), guanine (G), and cytosine (C) which are paired as A-T and C-G accord-
ing to the Watson-Crick (WK) complementarity. DNA computing is a branch of bio-
molecular computing which concerns with the utilization of DNA as an information 
carrier. The birth of this field has been marked by Adleman [1] in 1994. By using 
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DNA strands in his experiment, he was able to solve the Hamiltonian path problem 
for a simple graph with the sticker operation.  

Sticker systems and Watson-Crick automata are DNA computing models which are 
based on different principles, but the complementarity relation do exist in a computa-
tion or derivation step. In 1998, sticker systems were introduced by Kari et al. [2] as 
language generating devices based on the sticking operation which is a model of tech-
niques used by Adleman [1]. The operation starts from a finite set of axioms and then 
prolongs to the right of the generated sequences (single or double) symbols by using 
single-stranded strings, either to the upper or lower strands, therefore matching the 
sequence based on the complementarity relation. Some variants of sticker systems 
have been defined such as one-sided, regular, simple, simple one-sided and simple 
regular sticker systems [3]. In order to increase the generative power of sticker sys-
tems, some additional restrictions have been imposed such as by assigning an element 
of a monoid to the sticker operation [4], by introducing probabilistic sticker systems 
[5] and by including the presence of weight for the variant of sticker systems [6]. 

Watson-Crick automata was proposed by Freund et al. in 1997 [7] which is an ex-
tension of finite automata with the addition of two reading heads on double-stranded 
sequences. Some restrictions and extensions have been proposed on the basic model 
of Watson-Crick automata in order to achieve higher generative powers of Watson-
Crick automata. Some variants of Watson-Crick automata have been proposed such as 
Watson-Crick transducers [8], Watson-Crick omega-automata [9] and weighted Wat-
son-Crick automata [10]. 

On the other hand, formal language theory is a natural framework in formalizing 
and investigating DNA computing models. Grammars act as language generator, and 
besides grammar, automata are devices for defining language which work differently 
from the grammar.  Historically, earlier grammar models introduced in DNA compu-
ting did not utilise Watson-Crick complementarity of DNA molecules [11, 12]. Fol-
lowing that, a grammar model that uses this feature has been proposed, known as 
Watson-Crick grammars which produce each stranded string independently [13]. In 
this research, a new variant of Watson-Crick grammars, called a static Watson-Crick 
context-free grammar is introduced as an analytical counterpart of sticker systems.  

This paper is organized as follows: Section 1 introduces the background of the re-
search. In Section 2, some necessary definitions and notations used in this research are 
presented. Next, the definition of Watson-Crick grammars, the concepts of sticker 
systems and Watson-Crick Chomsky normal form are discussed and shown in Section 
3. In Section 4, the results on the static Watson-Crick context-free grammar with 
some of the generative powers are given. 

In the next section, some preliminaries concepts which are used in this paper are 
stated. 

2 Literature Review  

In the following section, some information on grammars, static Watson-Crick regu-
lar and linear grammars are stated. In this paper, the symbol ⊆ denotes the inclusion 
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while ⊂ denotes the strict (proper) inclusion. The membership of an element to a set is 
denoted by	∈. Let 𝑇  be a finite alphabet.  Then, 𝑇∗  is the set of all finite strings 
(words) over	𝑇. A string with no symbols, or we called it as empty string, is denoted 
by	𝜆. The set 𝑇∗ always contains 𝜆 and to exclude the empty string, the symbol 𝑇( is 
defined as the set of all nonempty finite strings over 𝑇 where	𝑇( = 𝑇∗ − {𝜆}. 

In formal language theory, a grammar acts as a mechanism to describe languages 
mathematically; in other words, it acts as a language generator. A Chomsky grammar 
(sometimes simply called a grammar) is a set of rule formation for rewriting strings. 
Chomsky grammar is classified depending on their respective form of production 
rules. The definition of Chomsky grammar is stated as follows. 

Definition 1 [3]: Chomsky Grammar. A Chomsky grammar is a quadruple 𝐺 =
(𝑁, 𝑇, 𝑆, 𝑃) , where 𝑁, 𝑇  are disjoint alphabets, 𝑆 ∈ 𝑁   and 𝑃  is a finite subset of 
(𝑁 ∪ 𝑇)∗𝑁(𝑁 ∪ 𝑇)∗ × (𝑁 ∪ 𝑇)∗. 

The Chomsky grammar is classified depending on their respective form of produc-
tion rules. A grammar 𝐺 = (𝑁, 𝑇, 𝑆, 𝑃) is called:  

1. context-sensitive, if each rule 𝑢 → 𝑣 ∈ 𝑃 has 𝑢 = 𝑢9𝐴𝑢;,	  𝑣 = 𝑢9𝑥𝑢;, for 𝑢9, 𝑢; ∈
(𝑁 ∪ 𝑇)∗, 𝐴 ∈ 𝑁 and	𝑥 ∈ (𝑁 ∪ 𝑇)(.  

2. context-free, if each rule 𝑢 → 𝑣 ∈ 𝑃 has 𝑢 ∈ 𝑁. 
3.  linear, if each rule 𝑢 → 𝑣 ∈ 𝑃 has 𝑢 ∈ 𝑁 and 𝑣 ∈ 𝑇∗ ∪ 𝑇∗𝑁𝑇∗. 
4.  right-linear, if each rule 𝑢 → 𝑣 ∈ 𝑃 has 𝑢 ∈ 𝑁 and 𝑣 ∈ 𝑇∗ ∪ 𝑇∗𝑁.  
5. left-linear, if each rule 𝑢 → 𝑣 ∈ 𝑃 has 𝑢 ∈ 𝑁 and 𝑣 ∈ 𝑇∗ ∪ 𝑁𝑇∗.  
6.  regular, if each rule 𝑢 → 𝑣 ∈ 𝑃 has 𝑢 ∈ 𝑁 and 𝑣 ∈ 𝑇 ∪ 𝑇𝑁 ∪ {𝜆}. 

The family of languages generated by regular grammars is equal to the family of 
languages generated by the right- or left-linear grammars. The families of context-
sensitive, context-free, linear and regular languages are denoted as CS, CF, LIN and 
REG respectively. Other than that, RE and FIN represent the family of recursive 
enumerable languages, i.e., arbitrary languages and finite language. Hence, the 
following strict inclusion holds for Chomsky hierarchy, where 𝐅𝐈𝐍 ⊂ 𝐑𝐄𝐆 ⊂ 𝐋𝐈𝐍 ⊂
𝐂𝐅 ⊂ 𝐂𝐒 ⊂ 𝐑𝐄 [3].  

Next, we recall the definition of static Watson-Crick regular and linear grammars. 
In this paper, we state only for static Watson-Crick right-linear grammars for the 
regular grammars since the definition is almost similar to left-linear grammars. 

Definition 2 [14] Static Watson-Crick right-linear grammar. A static Watson-
Crick right-linear grammar is a 5-tuple 𝐺 = (𝑁, 𝑇, 𝜌, 𝑆, 𝑃)  where 𝑁, 𝑇  are disjoint 
nonterminal and terminal alphabets respectively, 𝜌 ⊆ 𝑇 × 𝑇 is a symmetric relation 
(Watson-Crick complementarity), 𝑆 ∈ 𝑁 is a start symbol (axiom) and 𝑃 is a finite set 
of production rules in the form of 

1. 𝑆 → G𝑢𝑣H I
𝑥
𝑦K𝐴 where 𝐴 ∈ 𝑁 − {𝑆}, G𝑢𝑣H I

𝑥
𝑦K ∈ 𝑅M(𝑇) ; 

7. 𝐴 → I
𝑥
𝑦K𝐵 where 𝐴, 𝐵 ∈ 𝑁 − {𝑆}, I

𝑥
𝑦K ∈ 𝐿𝑅M

∗(𝑇); or  

8. 	𝐴 → I
𝑥
𝑦K G

𝑢
𝑣H where	𝐴 ∈ 𝑁 − {𝑆}, I

𝑥
𝑦K G

𝑢
𝑣H ∈ 𝐿M(𝑇). 
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Definition 3 [15] Static Watson-Crick Linear Grammar. A static Watson-Crick 
linear grammar is a 5-tuple 𝐺 = (𝑁, 𝑇, 𝜌, 𝑆, 𝑃) where 𝑁, 𝑇  are disjoint nonterminal 
and terminal alphabets respectively, 𝜌 ⊆ 𝑇 × 𝑇 is a symmetric relation (Watson-Crick 
complementarity), 𝑆 ∈ 𝑁 is a start symbol (axiom) and 𝑃 is a finite set of production 
rules in the form of 

1. 𝑆 → G
𝑢9
𝑣9H I

𝑥9
𝑦9K 𝐴 I

𝑥;
𝑦;K G

𝑢;
𝑣;H where 𝐴 ∈ 𝑁 − {𝑆}, G

𝑢9
𝑣9H I

𝑥9
𝑦9K ∈ 𝑅M(𝑇) and I

𝑥;
𝑦;K G

𝑢;
𝑣;H ∈

𝐿M(𝑇) ; 

2. 𝐴 → I
𝑥9
𝑦9K𝐵 I

𝑥;
𝑦;K where	𝐴, 𝐵 ∈ 𝑁 − {𝑆} and I

𝑥9
𝑦9K , I

𝑥;
𝑦;K ∈ 𝐿𝑅M

∗(𝑇); or 

3. 	𝐴 → I
𝑥9
𝑦9K where	𝐴 ∈ 𝑁 − {𝑆} and I

𝑥9
𝑦9K ∈ 𝐿𝑅M

∗(𝑇).   

In the next section, the concepts of sticker systems, the definition of Watson-Crick 
grammars and Watson-Crick Chomsky normal form are presented. 

3 Methodology 

In this research, the static Watson-Crick context-free grammars are introduced by 
referring from the Watson-Crick grammars with some modifications and by using the 
concept of sticker systems. Besides, the generative power of these grammars are clas-
sified through comparison with the Chomsky hierarchy and Watson-Crick languages. 
In the following subsections, some information on sticker systems and Watson-Crick 
grammars are stated.   

3.1 Sticker Systems  

Let 𝑉 be an alphabet and let	𝜌 be a symmetric relation for 𝜌 ⊆ 𝑉 × 𝑉 over 𝑉 (of 
complementarity). The symbol 𝑉∗ represents a set of all strings which is composed of 
elements of	𝑉 and the empty string denoted as	𝜆, and 𝑉( is the set	𝑉∗ − {𝜆}. The set 
of all pairs of strings over 𝑉 is denoted as	I𝑉

∗

𝑉∗K. To represent DNA molecules as the 

string, the elements (𝑥9, 𝑥;) ∈ 𝑉∗ × 𝑉∗ are written in the form of	I
𝑥9
𝑥;K ∈ I

𝑉∗
𝑉∗K. The 

set 𝑊𝐾M(𝑉) = G𝑉𝑉HM

∗
where G𝑉𝑉HM

= SG𝑎𝑏H |𝑎, 𝑏 ∈ 𝑉, (𝑎, 𝑏) ∈ 𝜌W	 denotes the Watson-

Crick domain which is associated to the alphabet 𝑉  and the complementarity 
relation 	𝜌 . The elements G

𝑤9
𝑤;H ∈ 𝑊𝐾M(𝑉)  are called well-formed double-stranded 

sequences. The set of incomplete molecules is denoted as 𝑊M(𝑉) = 𝐿M(𝑉) ∪ 𝑅M(𝑉) ∪
𝐿𝑅M(𝑉), where 

 𝐿M(𝑉) = YI 𝜆𝑉∗K ∪ I
𝑉∗
𝜆 KZ G

𝑉
𝑉HM

∗
, 
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 𝑅M(𝑉) = G𝑉𝑉HM

∗
YI 𝜆𝑉∗K ∪ I

𝑉∗
𝜆 KZ, 

 𝐿𝑅M(𝑉) = YI 𝜆𝑉∗K ∪ I
𝑉∗
𝜆 KZ G

𝑉
𝑉HM

(
YI 𝜆𝑉∗K ∪ I

𝑉∗
𝜆 KZ 

In this research, the definition of 𝐿𝑅M(𝑉) is modified according to our grammar, 
where   

 𝐿𝑅M∗(𝑇) = YI 𝜆𝑇∗K ∪ I
𝑇∗
𝜆 KZ G

𝑇
𝑇HM

∗
YI 𝜆𝑇∗K ∪ I

𝑇∗
𝜆 KZ, 

 𝐿𝑅M((𝑇) = YI 𝜆𝑇∗K ∪ I
𝑇∗
𝜆 KZ G

𝑇
𝑇HM

(
YI 𝜆𝑇∗K ∪ I

𝑇∗
𝜆 KZ, 

and the alphabet 𝑉 which was defined in 𝑊M(𝑉) is changed to alphabet 𝑇 according 
to the definition in the Chomsky grammar.  

Definition 4 [3] A sticker system is a construct 𝛾 = (𝑉, 𝜌, 𝐴, 𝐷) where 𝑉 is an 
alphabet, 𝜌 ⊆ 𝑉 × 𝑉  is a symmetric relation, 𝐴 is a finite subset of 𝐿𝑅M(𝑉) (called 
axioms) and 𝐷 is a finite subset of 𝑊M(𝑉) ×𝑊M(𝑉) (called dominoes). 

3.2 Watson-crick grammars 

In this subsection, the definitions of Watson-Crick grammars are stated as follows. 
Definition 5 [13] A Watson-Crick (WK) grammar 𝐺 = (𝑁, 𝑇, 𝜌, 𝑆, 𝑃) is called 

• Regular if each production has the form 𝐴 → 〈𝑢/𝑣〉 where 𝐴, 𝐵 ∈ 𝑁 and 〈𝑢/𝑣〉 ∈
〈𝑇∗/𝑇∗〉 

• Linear if each production has the form 𝐴 → 〈𝑢9/𝑣9〉𝐵〈𝑢;/𝑣;〉 or 𝐴 → 〈𝑢/𝑣〉 where 
𝐴, 𝐵 ∈ 𝑁 and 〈𝑢/𝑣〉, 〈𝑢9/𝑣9〉, 〈𝑢;/𝑣;〉 ∈ 〈𝑇∗/𝑇∗〉 

• Context-free if each production has the form 𝐴 → 𝛼	 where 𝐴 ∈ 𝑁  and 𝛼 ∈
(𝑁 ∪ 〈𝑇∗/𝑇∗〉)∗ 

The notation 〈𝑢/𝑣〉 represents the element (𝑢, 𝑣) ⊆ 𝑉 × 𝑉  in the set of pairs of 
strings and 〈𝑇∗/𝑇∗〉 is written instead of	𝑉∗ × 𝑉∗. 

Next, the definition of Watson-Crick Chomsky normal form is stated. 
Definition 6 [16] A Watson-Crick (WK) context-free grammar 𝐺 =

(𝑁, 𝑇, 𝜌, 𝑆, 𝑃) is said to be in Watson-Crick Chomsky normal form if all productions 
are of the form 

• 𝐴 → 𝐵𝐶, 
• 𝐴 → 〈𝑢/𝑣〉, or 
• 𝑆 → 〈𝜆/𝜆〉,  

Where 𝐴 ∈ 𝑁, 𝐵, 𝐶 ∈ 𝑁 − {𝑆} and 〈u/v〉 ∈ 〈𝑇/𝜆〉 ∪ 〈𝜆/𝑇〉.  
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In the next section, the definition and the generative power of static Watson-Crick 
context-free grammars are presented. 

4 Results and Findings 

In this research, the definition of static Watson-Crick context-free grammar is in-
troduced whereby it is a grammar counterpart of the sticker system that has rules as in 
context-free grammars.   

4.1 Definition 7. A static Watson-Crick context-free grammar 

Is a 5-tuple 𝐺 = (𝑁, 𝑇, 𝜌, 𝑆, 𝑃) where 𝑁, 𝑇 are disjoint nonterminal and terminal al-
phabets, respectively, 𝜌 ∈ 𝑇 × 𝑇 is a symmetric relation (Watson-Crick complementa-
rity), 𝑆 ∈ 𝑁 is a start symbol (axiom) and 𝑃 is a finite set of production rules in the 
form of 

1. 𝑆 → 𝑥9𝐴9𝑥;𝐴; ⋯𝑥e𝐴e𝑥e(9  where 𝐴f ∈ 𝑁 − {𝑆}  for 1 ≤ 𝑖 ≤ 𝑘 , 𝑥9 ∈ 𝑅M(𝑇) , 𝑥f ∈
𝐿𝑅M((𝑇) for 2 ≤ 𝑖 ≤ 𝑘 and 𝑥e(9 ∈ 𝐿M(𝑇); 

2. 𝐴 → 𝑦9𝐵9𝑦;𝐵; ⋯𝑦l𝐵l𝑦l(9 where 𝐴, 𝐵f ∈ 𝑁 − {𝑆} for 1 ≤ 𝑖 ≤ 𝑡, 𝑦f ∈ 𝐿𝑅M((𝑇) for 
2 ≤ 𝑖 ≤ 𝑡;      or  

3. 	𝐴 → 𝑥 where	𝐴 ∈ 𝑁 − {𝑆} and 𝑥 ∈ 𝐿𝑅M∗(𝑇). 

Remark 1. The elements G𝑢𝑣H in the set of all pairs of strings 𝑇 × 𝑇 can be classi-

fied into two cases, whether in the form of G𝑢𝑣H ≠ G𝜆𝜆H or	G𝑢𝑣H = G𝜆𝜆H. 
The derivation step for the static Watson-Crick context-free grammar is shown in 

the following. Let 𝐺 = (𝑁, 𝑇, 𝜌, 𝑆, 𝑃) be a static Watson-Crick context-free grammar. 
We say that 𝛼 derives 𝛽 in	𝐺, denoted or written as 𝛼 ⇒ 𝛽 such that 

1. 𝛼 = 𝑆 and 𝛽 = 𝑥9𝐴9𝑥;𝐴;𝑥q ⋯𝑥e𝐴e𝑥e(9 where 𝛼 ⇒ 𝛽 ∈ 𝑃; 
2. 𝛼 = 𝑥𝐴𝑦  and 𝛽 = 𝑥𝑥9𝐵9𝑥;𝐵;𝑥q ⋯𝑥e𝐵e𝑥e(9𝑦   where 𝐴, 𝐵 ∈ 𝑁 − {𝑆} , 𝑥, 𝑦 ∈
r𝐿𝑅M(𝑇) ∪ 𝑁s

∗
 and 𝐴 ⇒ 𝑥9𝐵9𝑥;𝐵;𝑥q ⋯𝑥e𝐵e𝑥e(9 ∈ 𝑃; or 

3. 𝛼 = 𝑥𝐴𝑦 and	𝛽 = 𝑥 G𝑢𝑣H 𝑦 where	𝐴, 𝐵 ∈ 𝑁 − {𝑆}, 𝑥 ∈ 𝑅M(𝑇), 𝑦 ∈ 𝐿M(𝑇) and G𝑢𝑣H ∈
𝐿𝑅M∗(𝑇). 

The reflexive and transitive closure of 
t
⇒or	(⇒) is denoted by	

t
⇒∗ or	(⇒∗). The 

language generated by a static WK context-free grammar , denoted by , is 

defined as	𝐿(𝐺) = S𝑢: G𝑢𝑣H ∈ 𝑊𝐾M(𝑇)	and	𝑆 t
⇒∗ G𝑢𝑣HW. The family of languages gen-

erated by static WK context-free grammar is denoted by SCF.  
Next, an example is illustrated to show the family of languages generated by 

SCF. 
Example 1. Let 𝐺 = ({𝑆, 𝐴, 𝐵}, {𝑎, 𝑏, 𝑐, 𝑑}, {(𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐), (𝑑, 𝑑)}, 𝑆, 𝑃) be a 

static WK context-free grammar, where 𝑃 consists of the following rules: 

G ( )GL
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 𝑆 → G𝑎𝑎H I
𝜆
𝑎K𝐴 I

𝑑
𝜆K G

𝑑
𝑑H,    

 𝐴 → I𝑎𝜆K G
𝑎
𝑎H I

𝜆
𝑎K𝐴 I

𝑑
𝜆K G

𝑑
𝑑H I

𝜆
𝑑K, 

 𝐴 → I𝑎𝜆K G
𝑏
𝑏H I

𝜆
𝑏K𝐵 I

𝑐
𝜆K G

𝑐
𝑐H I

𝜆
𝑑K, 

 𝐵 → I𝑏𝜆K G
𝑏
𝑏H I

𝜆
𝑏K𝐵 I

𝑐
𝜆K G

𝑐
𝑐H I

𝜆
𝑐K, 

 𝐵 → I𝑏𝜆K I
𝜆
𝑐K. 

From this, we obtain the derivation: 

 𝑆 ⇒∗ G𝑎
~�9

𝑎~�9
H I𝜆𝑎K𝐴 I

𝑑
𝜆K G

𝑑~�9
𝑑~�9

H		 

 ⇒ G𝑎
~𝑏
𝑎~𝑏H I

𝜆
𝑏K𝐵 I

𝑐
𝜆K G

𝑐𝑑~
𝑐𝑑~H 

 ⇒∗ G𝑎
~𝑏��9
𝑎~𝑏��9

H I𝜆𝑏K𝐵 I
𝑐
𝜆K G

𝑐��9𝑑~
𝑐��9𝑑~

H 

 ⇒ G𝑎
~𝑏�𝑐�𝑑~
𝑎~𝑏�𝑐�𝑑~H. 

Hence, 𝐺 generates the language 𝐿(𝐺) = {𝑎~𝑏�𝑐�𝑑~|𝑛,𝑚 ≥ 1}. 
In the investigation of the generative power of static Watson-Crick context-free 

grammars, we observe the results on the relationships between the families of lan-
guages generated by static Watson-Crick grammars to the families of Chomsky lan-
guages and Watson-Crick languages.  

The following two lemmas immediately follow from the definition of static Wat-
son-Crick context-free grammars. Lemma 1 shows the inclusion between context-free 
languages with static WK context-free languages; while Lemma 2 presents the inclu-
sion between static Watson-Crick regular, linear and context-free languages. 

4.2 Lemma 1.  CF ⊆ SCF. 

Proof.  For a context-free grammar	𝐺 = (𝑁, 𝑇, 𝑆, 𝑃), its static WK variant 𝐺� =
(𝑁, 𝑇, 𝜌, 𝑆, 𝑃′) is defined where 𝜌 = {(𝑎, 𝑎)|𝑎 ∈ 𝑇} and for each production	𝐴 → 𝛼 ∈
𝑃, every terminal string 𝑥 in 𝛼 is changed toG𝑥𝑥H. Then, it is easy to see that	𝐿(𝐺′) =
𝐿(𝐺).    ■ 

4.3 Lemma 2.    The following inclusion holds: 

SREG ⊆ SLIN ⊆ SCF. 
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Proof.  The inclusion follows from the definition of static Watson-Crick grammars 
and by referring to the Chomsky hierarchy. 

Next, we show that the language generated by static Watson-Crick context-free 
grammar can generate some non-context-free languages to relate the generative power 
in Lemma 2 with the result in [14, 15]. 

4.4 Lemma 3.  SCF – CF ≠ ∅ 

Proof.  Consider the static WK context-free grammar 𝐺 =
({𝑆, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸}, {𝑎, 𝑏, 𝑐}, 𝜌, 𝑆, 𝑃) where 𝑃 contains the following productions:  

1. 𝑆 → 𝑆𝑆, 
2. 𝑆 → G𝑎𝑎H I

𝑎
𝜆K 𝐴 I

𝑐
𝜆K G

𝑐
𝑐H,      

3. 𝐴 → I𝑎𝜆K𝐴 I
𝑐
𝜆K,                    

4. 𝐴 → I𝑏𝜆K𝐵,            

5. 𝐵 → I𝜆𝑎K 𝐶, 

6. 		𝐶 → I𝑏𝜆K𝐵, 

7. 𝐶 → I𝜆𝑏K𝐷 I
𝜆
𝑐K, 

8. 𝐷 → I𝜆𝑏K𝐷 I
𝜆
𝑐K, 

9. 𝐷 → G𝑏𝑏H. 

Thus, the derivation for each of the production rules is defined as follows: 
Step 1. From rule (i): 

 𝑆 ⇒ 𝑆𝑆. (1) 

Step 2. Derivation (1) can be continued with rule (ii): 

 𝑆 ⇒ G𝑎𝑎H I
𝑎
𝜆K𝐴 I

𝑐
𝜆K G

𝑐
𝑐H 𝑆   (2) 

Step 3. Derivation (2) can be continued with rule (iii) or rule (iv). Without 
the loss of generality, we apply rule (iii) 𝑘 ≥ 0 times and apply rule (iv): 

𝑆 ⇒∗ G𝑎𝑎H I
𝑎
𝜆K �

𝑎e
𝜆
� I𝑏𝜆K𝐴 �

𝑐e
𝜆
� I𝑐𝜆K G

𝑐
𝑐H 𝑆 = G𝑎𝑎H �

𝑎e(9
𝜆
� I𝑏𝜆K𝐴 �

𝑐e(9
𝜆
� G𝑐𝑐H 𝑆.  (3)  

Step 4. Derivation (3) can only be continued with rule (v): 

	𝑆 ⇒∗ G𝑎𝑎H �
𝑎e(9
𝜆
� I𝑏𝜆K I

𝜆
𝑎K 𝐶 �

𝑐e(9
𝜆
� G𝑐𝑐H 𝑆 = G𝑎𝑎𝑎𝑎H �

𝑎e
𝜆
� I𝑏𝜆K 𝐶 �

𝑐e(9
𝜆
� G𝑐𝑐H 𝑆.  (4) 
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Step 5. Derivation (4) can be continued with rule (vi) and rule (vii). Rule 
(vi) must be applied 𝑘 times to complete the lower strand of �𝑎

e

𝜆
�, which results in 

applying rule (v) 𝑘 times, and then we apply rule (vii): 

		𝑆 ⇒∗ G𝑎𝑎𝑎𝑎H �
𝑎e
𝑎e
� I𝑏𝜆K �

𝑏e
𝜆
�𝐶 �𝑐

e(9

𝜆
� G𝑐𝑐H 𝑆 = �𝑎

e(;

𝑎e(;
� G𝑏𝑏H �

𝑏e
𝜆
�𝐷 �𝑐

e

𝜆
� G𝑐𝑐𝑐𝑐H 𝑆.  (5) 

Step 6.  To complete derivation (5), we apply rule (viii) 𝑘 times to complete 
the lower strand of �𝑏

e

𝜆
� and	�𝑐

e

𝜆
�. The derivation is completed with rule (ix) and we 

apply again the similar step to complete the whole derivation of	𝐿(𝐺): 

𝑆 ⇒∗ �𝑎
e(;

𝑎e(;
𝑏e(;𝑐e(;
𝑏e(;𝑐e(;

� 𝑆 = �𝑎
e(;

𝑎e(;
𝑏e(;𝑐e(;	
𝑏e(;𝑐e(;

𝑎e(;
𝑎e(;

𝑏e(;𝑐e(;	
𝑏e(;𝑐e(;

�.   

Thus, 𝐿(𝐺) = {𝑎~�𝑏~�𝑐~�	𝑎~�𝑏~�𝑐~�|	𝑛9, 𝑛; ≥ 2}.      ■ 
Next, the result shows that the family of Watson-Crick context-free languages is 

included in the family of static Watson-Crick context-free languages.  

4.5 Lemma 4. The following inclusion holds: 

WKCF ⊆ SCF. 
Proof.  Let 𝐺 = (𝑁, 𝑇, 𝜌, 𝑆, 𝑃) be a WK context-free grammar (WKCF) in a modi-

fied Chomsky normal form. We construct a static WK context-free grammar (SCF) 
where 𝐺′ = (𝑁′, 𝑇, 𝜌, 𝑆, 𝑃′) such that	𝐿(𝐺) = 𝐿(𝐺′). Without loss of generality, we 
assume that	𝑚 ≥ 𝑛. We set 𝑁� = 𝑁 ∪ {𝐴�|𝐴 ∈ 𝑁} where 𝐴�s are new nonterminals 
and 𝑃′ contains the productions of 𝑃 in the form of	𝐴 → 𝐵𝐶, 𝐴 → I𝜆𝜆K and the set of 
productions  

 𝐴 → I
𝑢9𝑢; ⋯𝑢�

𝜆 K𝐴�, 𝐴′ → � 𝜆
𝑣9𝑣; ⋯𝑣~

�,	 

 𝐴 → I
𝑢9𝑢; ⋯𝑢��9

𝜆 K G
𝑢�
𝑣9 H �

𝜆
𝑣; ⋯𝑣~

�,	 

 𝐴 → I
𝑢9𝑢; ⋯𝑢��;

𝜆 K G
𝑢��9𝑢�
𝑣9𝑣; H � 𝜆

𝑣q ⋯𝑣~
�,	 

 𝐴 → � 𝜆
𝑣9𝑣; ⋯𝑣~

�𝐴�, 𝐴� → I
𝑢9𝑢; ⋯𝑢�

𝜆 K, 

 𝐴 → � 𝜆
𝑣9𝑣; ⋯𝑣~�9

� G
𝑢9
𝑣~H I

𝑢; ⋯𝑢�
𝜆 K, 

for each production 𝐴 → I
𝑢9𝑢; ⋯𝑢�
𝑣9𝑣; ⋯𝑣~ K ∈ 𝑃.  

First, we need to show that	𝐿(𝐺) ⊆ 𝐿(𝐺′). For	𝑤 ⊆ 𝐿(𝐺), we consider the follow-
ing derivation where 𝑆 ⇒ 𝑤9 ⇒ 𝑤; ⇒ ⋯ ⇒ 𝑤e ⇒ 𝑤e(9 ⇒ ⋯ ⇒ 𝑤  for 𝑘 ≥ 1  and 
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𝑤e(9  is obtained from 𝑤e  by applying rule 𝐴 → 〈𝑢/𝑣〉 ∈ 𝑃  where 	𝑢 = 𝑢9𝑢; ⋯𝑢� , 
𝑣 = 𝑣9𝑣; ⋯𝑣~ and	𝑚 ≥ 𝑛. There are some cases in the “sticking” of the symbols, 𝑢 
and 𝑣 whereby 

1. The symbols 𝑢 and 𝑣 are not complementary to each other. 
2. The symbols 𝑢 and 𝑣 are complement to each other partially or completely.  

For example, let	𝑤 = 𝑥 I
𝑢f�𝑢f� ⋯𝑢f�
𝑣��𝑣�� ⋯𝑣��

K 𝑦. In this case, we replace 𝐴 → 〈𝑢/𝑣〉 in the 

corresponding derivation in 𝐺′ with production  

 𝐴 → I
𝑢f�𝑢f� ⋯𝑢f�

𝜆 K𝐴�, 𝐴′ → �
𝜆

𝑣��𝑣�� ⋯𝑣��
�,	 

 𝐴 → I
𝑢f9𝑢f; ⋯𝑢f9�9

𝜆 K G
𝑢f�
𝑣�9H �

𝜆
𝑣�; ⋯𝑣���,	 

 𝐴 → I
𝑢f9𝑢f; ⋯𝑢f9�;

𝜆 K G
𝑢f9�9𝑢f�
𝑣�9𝑣�; H �

𝜆
𝑣�q ⋯𝑣���,	 

 𝐴 → �
𝜆

𝑣�9𝑣�; ⋯𝑣�9�9� G
𝑢f9
𝑣��H I

𝑢f; ⋯𝑢f�
𝜆 K.	 

In a derivation 𝑆 ⇒∗ 𝑤 in	𝐺, every application of production rule 𝐴 → 〈𝑢/𝑣〉 is re-
placed with all the possibilities of production rules as stated above which results in the 
derivation 𝑆′ ⇒ 𝑆 ⇒∗ 𝑤 in	𝐺′. The similar arguments also holds to show for	𝐿(𝐺′) ⊆
𝐿(𝐺). 

Combining the results above with the results from [3, 15], we obtain the following 
relation in the hierarchy form. The relation in Figure 1 holds where the solid arrows 
represent the proper inclusions of the lower families into the upper families, while the 
dotted arrow represents the inclusions. 

 
Fig. 1. The hierarchy of static Watson-Crick, Watson-Crick and Chomsky language families. 

 

       

 

 

			𝐖𝐊𝐂𝐅     		𝐒𝐂𝐅                                 𝐂𝐅 

  

                                        𝐒𝐋𝐈𝐍                             𝐋𝐈𝐍 

 

              𝐒𝐑𝐄𝐆                       𝐑𝐄𝐆 
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5 Conclusion 

In this paper, we defined a new theoretical model known as the static Watson-Crick 
context-free grammar and investigated some of their generative powers. Based on the 
results obtained, we can conclude that: 

1. The family of context-free languages is strictly included in the family of static 
Watson-Crick context-free languages, 

2. Static Watson-Crick context-free grammars can generate non context-free lan-
guages, 

3.  The family of Watson-Crick context-free languages is included in the family of 
static Watson-Crick context-free languages. 

The contribution from the results of this research leads to the development of dif-
ferent variants of WK grammars which are useful for DNA based computing devices 
and algorithmic techniques. 
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