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Abstract—Diagnosing Alzheimer’s disease (AD) is usually difficult, espe-

cially when the disease is in its early stage. However, treatment is most likely to 

be effective at this stage; improving the diagnosis process. Several AD predic-

tion models have been proposed in the past; however, these models endure a 

number of limitations such as small dataset, class imbalance, feature selection 

methods etc which place strong barriers towards the accurate prediction. In this 

paper, an AD prediction model has been proposed and validated using categori-

cal dataset from National Alzheimer’s Coordination Center (NACC). The dif-

ferent categories such as Demographics, Clinical Diagnosis, MMSE & Neuro-

psychological battery, is preprocessed for important features selection and class 

imbalance. A number of predominant classifiers namely, Naïve Bayes, J48, De-

cision Stump, LogitBoost, AdaBoost, and SDG-Text have been used to high-

light the superiority of a classifier in predicting the potential AD patients. Ex-

perimental results revealed that Bayesian based classifiers improve AD detec-

tion accuracy up to 96.4% while using Clinical Diagnosis category. 

Keywords—Alzheimer’s disease prediction, Naïve Bayes, Class imbalance, 

Machine learning, early diagnosis. 

1 Introduction 

In health sector, Alzheimer’s disease has become one of the major concerns for the 

neurologists. It is considered to be a sixth major cause of overall deaths, while a third 

major cause of death for elderly people in America [1]. AD is caused by the retention 

of amyloid plaques and neuro fibrillary tangles in the brain resulting in decreased 

mental ability and reasoning, effecting daily life tasks [2]. Till date, there is no medi-

cation that can reverse or stop the damages caused by the disease, for this reason con-

siderable progress has been reported in only non-pharmacological treatments [3]. 

Therefore, the timely treatment and strategies for the early detection of AD for pro-

gression delay is of fundamental importance. Furthermore, machine learning tech-

niques have widely been utilized for the analysis and identification of the disease 

patterns [4] [5].  For the analysis of AD prediction, ML techniques are recently ap-

plied [6] [7] [8]. The treatment plans and speed in progression relies heavily on early 
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and accurate prediction of the disease. AD prediction deals with predictions of poten-

tial AD patients, in order to devise the strategic approaches towards treatment plans. 

Thus, it is very critical to develop such a model that accurately predicts the AD in its 

onset.  

Disease prediction is referred as a binary classification problem. In binary classifi-

cation, the answer to the problem is generated as one of the binary class. In the predic-

tion of AD, the patient data is taken as an input to the system and the system produces 

output as AD or Non-AD. In health domain, the instances of AD patients are very low 

as compared to the Healthy controls. This results in the different ratio of data for both 

AD as well as non-AD, creating a problem of class imbalance. The classification 

results are always higher for the majority class hence produces biased results. There-

fore, the class imbalance has to be handled by increasing the number of instances of 

AD class [9] [10] [11]. The objective is to develop a most suitable AD prediction 

model which helps to identify those patients who are most likely to develop this dis-

ease. 

For achieving the aforementioned objective, A number of machine learning meth-

ods, such as Naïve Bayes [12] [13], Logit Boost [13], Support Vector Machines [12] 

[14]-[18], and Deep learning [15] [19] methods have been used in the previously 

proposed models to provide accurate prediction of AD patients [8]. However, these 

prior models cannot be used for prediction in the real world environment as they have 

a number of limitations. 

Firstly, the feature selection methods adopted in majority of the previous models 

neglected the information rich variables present in different categories of the dataset 

for model development [20] [21]. Moreover, the prior work focused on diagnosis 

using imaging analysis [22] [23]. We argue that, early detection of AD using correla-

tions among categorical data is far more challenging as compared to the diagnosis 

using imaging analysis. AD patient’s data may not be complete and their data may 

also be large enough which makes it really hard for the prediction model to predict 

potential AD patients accurately. 

Secondly, in previous work, the researchers have used only statistical methods for 

extracting the important features from the dataset [15] [24] [25]. Though these meth-

ods have been used successfully, application of these methods requires domain 

knowledge. Without the augmentation of the domain knowledge, these methods can 

yield erroneous results and such predictive model can show poor performance.  

Thirdly, the researchers have used a very small set of data or a large data with so 

many missing values for prediction of the disease [5] [9] [10].  As the model gets 

trained too well over the small data hence results in model over-fitting. Moreover, 

with small data set, they lack the external testing and validation of their model and 

results. The large data with a huge number of missing values can produce unrealistic 

results while degrading the overall performance of the predictive model [26]. There-

fore, a model is needed to be developed which can deal with big data set having miss-

ing values, class imbalance along with proper validation. 

Finally, the evaluation measures used in the literature have mostly included the 

Accuracy of the classifier while neglecting the Recall and Area under the curve 

(AUC) [3]. The Recall showcases the ability of a predictive model to classify the 
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percentage of AD patients in comparison to healthy controls. The AUC which is con-

sidered to be the baseline for evaluation of classifier’s performance is rarely utilized 

for the prediction of AD. A classification based model is considered good if it pro-

duces higher values for both of these measures [27]. Moreover, the integrated hetero-

geneous clinical and neuro-pathological data have been used by many researchers 

[13] [15] [19] [25]. However, the comparative study based on different classifiers 

applied to different categories of data for instance, clinical diagnosis (CD), clinical 

judgment of symptoms (CJS) and minimum mental state examination (MMSE) is still 

neglected. To the best of our knowledge, these three categories of AD data altogether 

have never been utilized in a single research for the early prediction of AD.  

To overcome the aforementioned limitations, an AD prediction model has been 

proposed in this paper based on the different categories of data such as CD, CJS and 

MMSE. Initially in this model, the data is preprocessed for feature selection and class 

imbalance. The information rich variables are extracted using domain knowledge 

from all the three categories, while the data is then preprocessed for class imbalance. 

The percentage split validation is used to validate the data. Experiments are conducted 

to evaluate the performance of different classifiers in terms of Recall and AUC and 

compared with predominant classifiers used in literature. The experiments highlight 

the results of Naïve Bayes classifier model on CD category of data with higher TP 

rate (Recall) in comparison to other categories of data as well as models used in litera-

ture.  

2 Related Work 

Alzheimer’s disease, most common in elderly people, need to be diagnosed on ear-

ly stage. Nicolas Fayed et al (2012) highlighted the use of MRI scans (structural and 

functional) for increasing the prediction accuracy as compared to PET scans [28]. 

However it has been identified that structural MRI its self is insufficient for prediction 

of early AD and it needs to be combined with other biomarkers for better prediction 

accuracy and diagnosis.  

Early diagnosis of AD occurs for less than half of the patients, while few are aware 

of the diagnosis. Kumar. B et al. examined the relationship of performance on cogni-

tive tests for the diagnosis of AD on clinical basis [24]. They performed many tests 

based on episodic memory, executive function and global cognition over a sample of 

2125 instances, out of which a percentage was African Americans and European 

Americans. This study highlighted that cognitive battery tests and specific cognitive 

function differences can diagnose AD up to 18years before the diagnosis in an actual 

population. The results also extended that one category of the dataset i.e. cognitive 

impairment can help in the diagnosis of AD in preclinical stage and can aid for early 

detection. While the midlife studies can provide better clinical diagnosis for early AD 

process.  

Many potential drugs have failed to reduce the effect of AD progression in clinical 

diagnosis. K. Blennow et, al. introduced clinical utility in the prognosis of the disease 

[29]. The authors found that in the early stages only the temporal lobe is affected. The 
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whole work was carried out using CSF modality. Authors defend the use of CSF for 

early detection. The clinical diagnosis method for the prognosis of AD show low 

classification accuracy having sensitivity ranging between 71% to 88% and specifici-

ties from 44% to 71% varied with the histo-pathologic criteria being used [30]. In the 

early clinical stages, the accuracy of the clinical diagnosis is very low. The use of 

MRI or PET scans combined with CSF biomarker based on results from information 

based questionnaires and memory tests will increase diagnostic accuracy of AD in its 

early stages [31] [32]. This study showed that the use of CSF biomarkers will enhance 

the specificity and sensitivity of AD signature that could lead to early prognosis of 

AD [33].  

The accuracy of determining AD using clinical diagnosis with the help of clinical 

and neuropathological data is crucial. Thomas G Beach et al. used the dataset collect-

ed between 2005 and 2010 [34]. Initially the dataset had 1198 instances while it was 

reduced to 919 by eliminating the instances having missing values out of it. The da-

taset comprised of 271 normal patients (Nor) while remaining were probable/possible 

AD patients. After different observations and tests, researchers found that there were 

some cases which were classified as AD by clinical diagnosis but where classified as 

Non AD by histopathological threshold [35]. It was stated that clinical diagnosis of 

AD varies depending upon the neuropathological and clinical method used while new 

biomarkers may increase the diagnostic accuracy of AD but will overlap between 

normal, demented and AD patients.  

The pathologically proven data for the diagnosis of AD remained a concern. John 

M. Hoffman et al. presented a study on pathologic verification of AD with the role of 

specificity, sensitivity and diagnostic accuracy for detection of AD [36]. The authors 

used FDG PET brain scans of twenty two instances out of which 8 were women and 

14 were men who had eventually pathologically confirmed for disease. As a result, 

clinical diagnosis was considered as the primary cause of disease detection in proba-

ble AD in 12 patients. The sensitivity and specificity of probable AD of clinical diag-

nosis were 63% and 100% while for possible AD were 75% and 100% respectively 

with the accuracy rate of 93% and 82%. The authors concluded that metabolic pat-

terns in FDG PET scans helps in differentiating dementia and can aid in clinical sus-

picion of AD.  

Computer aided diagnostic (CAD) tools can help the physicians for making better 

decision about the presence of abnormalities in human brain. In this paper, Veeramu-

thu et al. developed such tool for AD patients for diagnosis and they used PET dataset 

as experiment [37]. They defined such spatial normalization and intensity normaliza-

tion as a pre-processing technique. Fisher Discriminant ratio (FDR) was used for 

feature extraction to develop Region of Interest (ROI). The author claimed the Recall 

of 82.67% with and overall accuracy of 91.33% in comparison to NFM+SV, VAF and 

MPCA+SVM.  

Beside many classification techniques, Garam Lee et al used deep learning tech-

nique for the prediction of probable AD conversions [2]. The overall dataset of 753 

instances was used, comprising of 338 AD patients while 415 were healthy controls. 

The authors combined demographics features along with the MRI data for prediction. 

The results revealed the overall accuracy of 81% with Recall of 84%. However, they 
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haven’t done preprocessing of the data which is an important step especially in critical 

systems. Moreover, the authors have not utilized the other information rich variables 

of different categories of data along with demographics for the prediction of AD. 

In comparison, Bhagya Shree et al used a CSID battery category of data set instead 

of most commonly used MMSE [25]. They have used a dataset having 51 features of 

18 AD patients and 448 Healthy Control. In their proposed model, they have used 

SMOTE to address the class imbalance followed by Naïve Bayes classifier for the 

evaluation of their model. This study shows over all accuracy of 96.6 percent with 

96.7 Recall and 99.1 ROC, which are quite higher as compared to the previous stud-

ies. However, a comparative analysis with other set of classifiers and too small data 

set for experimentation can produce biased results. 

2.1 Critical evaluation measures 

In section 2, we provided the overview of literature based on the early diagnosis of 

AD using Machine learning techniques specially classification while the imaging 

modalities varied for instance, MRI, SPECT, and PET as shown in Table 1.  

We critically analyzed each of these studies on the basis of certain important pa-

rameters such as: 

Imaging modality used: This defined the type of imaging modality used by the re-

searchers for AD detection. For instance PET scans, MRI scan or CSF etc. 

No. of records used: This present the total number of samples selected for the ex-

periment.  

Classification technique used: We analyzed the methodology used for the predic-

tion of AD. From these techniques, a comparative analysis is evaluated on the basis of 

Recall, ROC and computational time. 

Table 1.  Modalities that have been used to predict conversion from Healthy control to AD 

1 Memory & Neuropsychological Tests (Manipulative WAIS subscales etc ) 

2 MR techniques (MR spectrometry, Tensor MRI etc) 

3 PET techniques (FDG PET, Amyloid PET etc) 

4 SPECT 

5 Laboratory TESTS (CSF, Plasma AB42, APOE genotype etc) 

6 Combination of above techniques (FDG-PET with APOE genotype etc) 
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Table 2.  Data Set Details with critical evaluation 

3 Proposed Model 

In this study, we proposed a model based on the findings of previous research car-

ried out for the detection of AD in its early stages using classification techniques. In 

our research, instead of classification of whole dataset, few categories out of the da-

taset are obtained and are classified in the same way as the whole dataset. The de-

tailed model of the classification algorithm implemented on the said categories to 

predict AD in its early stage is shown in Fig. 1. 

 

Fig. 1. Proposed model for the early detection of AD using Categorical data 

Sr. # Ref Data Set Modality Feature Selection Approach Classification Techniques 

 [25] 466 No mentioned Not Mentioned Naïve Bayes 

 [27] 131 MRI Voxel based Hierarchical Ensemble 

 [2] 753 MRI No Deep learning 

 [12] 950 Not mentioned Correlation-based FS 
DT, Naïve Bayes, SVM , TAN 
Bayes 

 [21] 86 PET,  MRI AUC based FS LR 

 [16] 383 Not mentioned No 
SVM, MLP, LR, RF, CART, 

QDA, LDA 

 [26] 776 No Random SVM, Random forest 

 [13] 260 H-MRS Random 
Naïve Bayes, ANN, MLP,SLP, 

BF Tree, FT, Logit boost, RF 

 [15] 825 MRI VAF & Regularized LR SVM, LDS 

 [14] 311 MRI Not Mentioned 
MK SVM, SK SVM, Deep 
learning 

 [17] 30 EEG based Not Mentioned SVM 

 
Proposed 

Model 
101,696 MRI Domain Knowledge 

NB, J48, AdaBoostM1, 

LogitBoost, Decision Stump, 

SGD Text 
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3.1 Materials 

The data set used in this study comprised of 101696 instances of both men and 

women aged between 40 and 110. The Clinical Diagnosis and clinical judgment of 

symptoms and MMSE and Neuropsychological battery category initially had 78, 44 

and 34 attributes respectively. These categories of data were classified as AD or Non 

AD on the basis of behavioral, physical and cognitive measures. 

3.2 Feature selection 

The categories contain a combination of features such as information rich variables 

and variables with least overall impact. The attributed with least impact can be re-

moved from the dataset [23] [24] [29]. In this study, the variables having ratio of 

missing value more than 50% were removed from the targeted categories. Such kind 

of dimensional reduction can increase the overall prediction accuracy while decreas-

ing the computational time. As a result, 30 information rich attributes of CD out of 78 

attributes while 28 out of 44 variables of Clinical Judgment of symptoms category 

and 30 out of 34 attributes of MMSE category were obtained. The division of some 

common attributes of CD and CJS are shown in figure 1 and Figure 2. The detailed 

attributes of CD and CJS are explained in [38]. While the  MMSE and Neuropsycho-

logical battery category have the following attributes MMSELOC, MMSELAN, 

MMSELANX, MMSEORDA, MMSEORLO, PENTAGON, MMSE, NPSYCLOC, 

NPSYLAN, NPSYLANX, LOGIMO, LOGIDAY, LOGIYR, LOGIPREV, 

LOGIMEM, DIGIF, DIGIFLEN, DIGIB, DIGIBLEN, ANIMALS, VEG, TRAILA, 

TRAILARR, TRAILALI, TRAILB, TRAILBRR, TRAILBLI, WAIS, MEMUNITS, 

MEMTIME, BOSTON and COGSTAT. This category had least missing values which 

resulted in equal contribution for the disease prediction. 

 

Fig. 2. Visualization of some prominent features in the CD dataset. 
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Fig. 3. Visualization of some prominent features in the CJS dataset. 

3.3 Class imbalance 

Class imbalance issue can occur in binary classification when one class is in major-

ity while other class is having less number of instances. With such imbalance, the 

classifiers tend to misclassify the minority class while producing good results for the 

majority class [12]. There are many class imbalance algorithms such as SMOTE and 

Class Balancer algorithms. However, for this study, the class imbalance issue is dealt 

by using class balancing algorithm on the selected categorical data, which works by 

assigning equal weights to both classes while the instance ratio is maintained. 

3.4 Classification & evaluation 

Different well known classifiers are then applied to classify the reduced categorical 

data, obtained in the previous step. Although, many different classification methods 

exists while Naïve Bayes and SVM being the most popular, for this study we have 

done a comparative analysis of most common classifiers such as Naïve Bayes, J48, 

Decision Stump, LogitBoost and AdaBoost. We used a 70-30 percentage split for our 

study and validated the results with unseen data. Moreover, the evaluation measure 

for this study were Recall (Sensitivity), Training time of algorithm, Area under the 

curve (AUC) of an algorithm as depicted in Table 3. 

Table 3.  Comparison of classification performance using Category I: CD in identification of 

two groups of Norm and AD  

Classifier Recall ROC Computational Time 

Naïve Bayes 0.967 0.99 0.08 

Decision Stump 0.929 0.927 0.4 

AdaBoostM1D S 0.94 0.958 3.76 

LogitBoost (Meta) 0.955 0.971 2.41 

SGD Text 0.76 0.5 12.06 

J48 0.961 0.982 6.59 
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Table 4.  Comparison of classification performance using Category II: MMSE in identification 

of two groups of Norm and AD  

Classifier Recall ROC Computational  Time 

Naïve Bayes 0.845 0.916 0.06 

Decision Stump 0.805 0.798 0.03 

AdaBoostM1D S 0.83 0.905 1.02 

LogitBoost (Meta) 0.955 0.971 2.41 

SGD Text 0.5 0.5 3.7 

J48 0.85 0.892 1.5 

Table 5.  Comparison of classification performance using Category III: CJS in identification of 

two groups of Norm and AD  

Classifier Recall ROC Computational  Time 

Naïve Bayes 0.866 0.941 0.07 

Decision Stump 0.522 0.520 0.1 

AdaBoostM1D S 0.522 0.522 1.54 

LogitBoost (Meta) 0.522 0.523 1.37 

SGD Text 0.5 0.5 10.03 

J48 0.878 0.934 4.35 

4 Discussion 

In the current paper, we have proposed a classification based model using different 

categories of data including feature selection, class balancing, and validation. We 

have reviewed recent studies in the field of AD prediction that have used machine 

learning for classification as shown in Table 2. The review of literature and experi-

mental results indicates that prediction of disease such as AD using Naïve Bayes clas-

sifier had the best prediction performance based on the selected categorical attributes. 

The point to be observed is that it is difficult to compare the performances of different 

classifiers due to the different set of features, different data sets with varying sizes; 

the performance of the Recall tends to be around 70 – 95%. However, the fully vali-

dated large datasets resulted in mostly lower accuracies. The small data sets usually 

results in higher prediction accuracies and have an over-fitted model. Other way 

round, they may have used the clinical measures of diagnosis as an input to their sys-

tem which lead to circularity problems. Moreover, the different multivariate classifier 

over same input size from same cohort tends to perform similarly. Finally, the results 

shows that NB can perform better than any other methods that are reported in Table 2 

& 6. Moreover, its use can be very helpful for the physicians in disease the prediction. 

Our findings highlight the potential of NB for disease prediction over other methods. 
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Table 6.  Overall comparison of results based on the Best classifier in the literature and 

proposed approach. 

Ref. # Data Set Sample 
Class  

Imbalance 
Validation 

Best  

Classifier  
Recall  AUC 

Training 

Time 

[25] 
448 Nor 

18 AD 
SMOTE No Naïve Bayes 96.7 96.6 No 

[27] 
70 AD 

61 Nor 
No 10 fold CV Ensemble  86.5 No No 

[2] 
338 AD 

415 Nor 
No No 

Deep learn-

ing 
0.84 No No 

[12] 677 SMOTE HO CV Naïve Bayes No No No 

[21] 41 AD, 45 Nor No 10fold CV LR No 88.7 No 

[16] 383 Nor 121 AD No 5 Fold CV SVM 64 73 No 

[26] 229 Nor 397 AD No No RF 89.1 94.3 No 

[13] 99 Nor 161 AD No 10 Fold CV SLP 86.1 86.6 No 

[15] 200 AD, 231 Nor No 10 fold CV SVM 87 90 No 

[14] 77 Nor, 234 AD No 10 Fold CV Multi Layer  88.57 No No 

[17] 15 Nor, 15 AD No No SVM Yes No No 

Proposed 
Model 

7595 Nor, 
2363AD 

Class  
Balancer 

Percentage 
Split 

NB 96.4 99.2 0.08 

 

 

Fig. 4. Box Plot for the comparisons of three categories on the basis of:  

(a) Recall (b) AUC 

5 Conclusion 

The research is based on the prediction and prognosis of AD using classification 

algorithms over different categories of data. The information rich categories of the 

dataset were preprocessed and passed through different classifiers for evaluation. The 

results shown in fig 4(a) & (b) demonstrate that Clinical Diagnosis category provides 

better prediction for the most commonly used classifiers. Moreover Naïve Bayes 

outperformed the results of other classifiers as well as the results obtained in literature 

with higher Recall and AUC. To conclude, different classifier more specifically Naïve 
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Bayes applied over categorical data have a great potential for being implemented in 

clinical practice to aid AD diagnosis.  
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