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Abstract—The open source nature of Android Operating System has at-

tracted wider adoption of the system by multiple types of developers. This phe-

nomenon has further fostered an exponential proliferation of devices running 

the Android OS into different sectors of the economy. Although this develop-

ment has brought about great technological advancements and ease of doing 

businesses (e-commerce) and social interactions, they have however become 

strong mediums for the uncontrolled rising cyberattacks and espionage against 

business infrastructures and the individual users of these mobile devices. Dif-

ferent cyberattacks techniques exist but attacks through malicious applications 

have taken the lead aside other attack methods like social engineering. Android 

malware have evolved in sophistications and intelligence that they have become 

highly resistant to existing detection systems especially those that are signature-

based. Machine learning techniques have risen to become a more competent 

choice for combating the kind of sophistications and novelty deployed by 

emerging Android malwares. The models created via machine learning methods 

work by first learning the existing patterns of malware behaviour and then use 

this knowledge to separate or identify any such similar behaviour from un-

known attacks. This paper provided a comprehensive review of machine learn-

ing techniques and their applications in Android malware detection as found in 

contemporary literature. 

Keywords—Machine Learning, Ensemble Learning, Android Malware, An-

droid Malware Detection, Base Classifier, Static Analysis, Dynamic Analysis 

1 Introduction 

Research has shown that Android malware analysis can be done in three different 

ways: The first method involves the deployment of static [1] and dynamic [2]. Inves-

tigation of code of application in order to spot components that are malicious before 

loading the application into any device; The second method involve modification of 

the Android system in order to put in modules for monitoring and interception of 

abnormal behaviours that may occur on the device [3,4,5] while the third approach 
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involve engaging virtualization to implement the separation of domains ranging from 

lightweight isolation of an application on the device to running multiple instances of 

Android OS on the same device [6,7].  

However, recent study has shown that machine learning or “anomaly detection” 

approaches have now emerged to become a leading and more effective approach for 

defeating Android malware [8, 9, 10, 11]. Unlike the static analysis techniques that 

involves the manual examination of the AndroidManifest.xml file, source files and the 

Dalvik byte code, and the Dynamic analysis that involves running an application in a 

controlled environment to study its behaviour, the Machine Learning approach in-

volves learning the general rules and patterns from benign and malicious app samples 

and then allowing data-driven predictions of decisions, such as classification [12]. 

Machine learning methodologies largely depends on static attributes extracted from an 

application [13]. The static components of an Android application provide the base-

line upon which machine learning approaches are anchored and these static features 

are carefully gotten through the process of reverse engineering. 

Machine learning techniques have been applied widely for the classification of ap-

plications, focusing mainly on generic malware detection. The application of machine 

learning in Android malware detection helps eliminate the difficulty involved with 

manually crafting and updating detection patterns [8]. Machine Learning is a proce-

dure that analyzes data using software techniques (algorithms) to create a model, as 

shown in Fig. 1, which is useful for finding patterns and regularities in datasets [14]. 

It is a process of making machines learn from past experiences (existing data) in order 

to make decisions on future occurring events or data instances. Feature vectors are 

very essential elements of Machine Learning and they are usually built for the specific 

task the Machine Algorithm intent to accomplish. The basic idea behind Machine 

Learning is to get the probability distribution of data.  

 

Fig. 1. Classification process in Machine Learning [15]. 

Machine Learning is divided into three main categories and they are Supervised 

Machine Learning [16, 17, 18] and unsupervised machine learning [18] and Re-

enforcement Machine Learning [19]. Furthermore, there are three basic Learning 

Methods associated with each Learning Category; Classifications, Clustering, and 

Regression. Classification is the process used in Supervised Learning in which the 

data sets are well labelled into groups or classes; Clustering is the process used in 

unsupervised learning for unlabelled data sets; and Regression is best associated with 

Re-enforcement learning in which the expected end result is being ranked, graded or 
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estimated. A label is the name of the definite class or group the data instances belongs 

to. In machine learning, data are represented by a fixed number of features which can 

either be categorical, nominal, or continuous [20]. This paper gives a thorough review 

of different existing literatures in the field of Android malware detections using ma-

chine learning techniques. 

2 Android Application Anatomy 

All Android applications are created and compiled as Android Package (APK) file 

[21, 22]. The APK file is simply a ZIP format archive file that is renamed to have apk 

extension [23]. The content consists of a Dalvik executables, resources, native librar-

ies and a manifest file; and is usually signed by the developer of the application using 

self-signed certificate [21, 22]. In particular, the APK file would usually contain two 

folders (META-INF and res) and three files (Classes.dex, AndroidManifest.xml, Re-

sources.arsc) [21]. The classes.dex and AndroidManifest.xml are the most delicate 

and important components of the APK file which are usually the high targets of mal-

ware creators [24, 25].  

 

Fig. 2. An APK unzipped file displaying its contents [23]. 

The classes.dex is the dalvik Virtual Machine (VM) executable file which contains 

the main working code of the application. That is, the payloads of an application are 

created and defined in classes.dex file. The application code is compiled and stored in 

dex format. The AndroidManifest.xml provides a semantic-rich information about the 

application which includes the version and required permissions governing an app’s 

operations. Attackers target these two files to either inject malicious code into clas-

ses.dex [25] or alter the permissions in AndroidManifest.xml for different nefarious 
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purposes. Therefore, for every Android application, the manifest file is of great im-

portance for the purpose of malware analysis because it defines a list of the various 

application components which includes requested permissions, services, broadcast 

receivers, activities, package name, and SDK version [26]. Without this basic detailed 

information found in the manifest, an application cannot be installed or executed. 

As noted earlier, the open nature of Android OS has attracted the interest of lots of 

developers but has also opened a very wide door for introduction and propagation of 

malicious applications. Google Play Store, Package Installer and adb Install are the 

three major mediators or mediums through which application packages can be in-

stalled in an Android device [22]. Installations via Google Play Store and Package 

Install are able to be monitored and scrutinized through the Permission model, but the 

adb install provides a more dangerous and quiet way of installing apps via USB which 

cannot be controlled since authentications and permissions are not deployed at this 

medium. [22] continued by noting that apps which are signed with the same certificate 

are able to share data between each other and may have the same UID and can even 

run the same process. This is important to note especially in knowing the origin of a 

set of malware or applications. Certificate is used for assurance that the code of the 

original application and its updates come from the same place, and to establish trust 

relationships between applications of the same developer. Although every application 

must be digitally signed before it is released and installed on a device, but the critical 

questions is, can the developer of an app and the digital signature be trusted by the 

end users and can the apps be trusted to be resistant to tempering once released or 

installed? 

3 Android Malware Attack Trends 

Authors in [27, 28] showed in their works that malware attack methods can be 

characterized as follows: 

 Information Extraction: The malware in this category compromises a device and 

then steals personal information such as IMEI number, user’s personal information 

and many more. 

 Automatic Calls and SMS: This group of malware increases a user’s phone bill 

by placing automatic calls and sending SMS to some premium numbers. 

 Root Exploits: These set of malware seek to gain system root privileges in order to 

take control of the system and modify the system’s configuration and other system 

information. 

 Search Engine Optimizations: The malware here artificially searches for a term 

and simulates clicks on targeted websites in order to increase the revenue of a 

search engine or increase the traffic on a website. 

 Dynamically Downloaded Code: This technique enables an installed benign ap-

plication to download a malicious code and deploys it in the mobile devices with-

out the user being aware. 

 Covert and Overt Communication Channels: This is a vulnerability that is 

found in a device that facilitates the information leak between the processes that 
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are not supposed to share the information. This technique is seen as a highly so-

phisticated. 

 Botnets: This is a network of compromised mobile devices with a Bot-Master 

which is controlled by a Command and Control servers (C&C). It carries out Spam 

delivery, DDoS (Distributed Denial of Service) attacks on the host devices. 

Malware Authors use many techniques to evade detection. [29] pointed out these 

concealment techniques to include code obfuscation techniques, encryptions, unnec-

essary permissions which are not needed by the application, requesting for unwanted 

hardware, and download or update attacks in which a benign application updates itself 

or another application with malicious payloads. 

4 Existing Literature  

Authors in [30] proposed a novel classifier fusion approach called DroidFusion that 

is based on a multilevel architecture which enables effective machine learning algo-

rithm combination in order to produce an improved accuracy. DroidFusion works by 

training the base classifiers at a lower level in order to create a model and then a set of 

ranking-based algorithms are applied on their predictive accuracies at the higher level 

so as to generate schemes for combination in which one was chosen to build a final 

classification model. Stratified 10-fold cross validation technique was applied on the 

training set that was used in training the base classifiers at the lower level in order to 

estimate their relative prediction accuracies. The authors utilized five base classifiers: 

J48, REPTree, Random Tree-100, Random Tree-9, and Voted Perceptron. 

DroidFusion was shown to have outperformed all the base classifiers on all the data 

sets provided and it also was shown to outperform Stacked Generalization. 

A framework for the detection of Android malicious application that was based on 

Support Vector Machine (SVM) and Active Learning technologies was proposed in 

[31]. Dynamic data (feature) extraction was employed by the Authors and timestamps 

was attached to some of the features in order to use a novel time-dependent behavior 

tracking to significantly enhance the malware detection accuracy. In order to build an 

active learning model, the authors made use of expected error reduction query strate-

gy so as to combine Android malware new informative instances and to retrain the 

model in order to be able to do adaptive online learning. To evaluate their model, the 

authors utilized the DREBIN benchmark malware dataset via a set of experiments and 

their findings revealed that their framework could detect new malware more accurate-

ly. 

Authors in [10] conducted a survey with focus on showing the application and the 

use of ML methods in the analysis of malware. The Authors observed that machine 

learning is one of the most common techniques adopted in literatures for the analysis 

of complex malware. The study grouped learning algorithms into four main classes: 

signature-based (the matching of malicious signatures, the matching of malicious 

graph), classification (Bayes classifier, prototype-based classification, rule-based 

classifier, support vector machine, k-Nearest neighbors, decision tree, and artificial 

neural network etc.), clustering (k-Means clustering, hierarchical clustering, clustering 
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with locality sensitive hashing, density-based spatial clustering of applications with 

noise, clustering with distance and similarity metrics, self-organizing maps, proto-

type-based clustering) and others (learning with local and global consistency, expecta-

tion maximization, belief propagation). 

Idrees et al. (2017) proposed PIndroid, which was a novel Android malware apps 

detection framework that uses permissions and intents features for the training of 

models and further employed classifier fusion technique to combine the classifiers 

together for an improved performance. The authors used 1745 app samples to conduct 

the experiments beginning with a comparison of performance between six classifiers: 

Multi-Lateral Perceptron (MLP), Decision Table, Decision Tree, Random Forest, 

Naïve Bayesian and Support Vector Machine (SVM) using Sequential Minimal Opti-

mization (SMO). They combined the Decision Table, MLP, and Decision Tree classi-

fiers using three fusion schemes which are Average of Probabilities, Product of Prob-

abilities, and Majority Voting. The framework provided 99.8% True Positive detec-

tion accuracy rate, 1.1% False Positive detection rate and an F-measure of 99.7% 

through the Product of probability combination method.  

Dong (2017) worked using permissions as his primary features to develop a novel 

detection system for Android malware. The collection of both benign and malicious 

Apps samples was done using a web crawler. To perform the reverse engineering 

process, the author developed a tool to decompile the Apps to source code and mani-

fest files automatically. One of the findings was that distribution of permissions for 

Apps share a difference between malware dataset and benign datasets. The Author 

combined machine learning algorithms such as Logistic Regression Model, Tree 

Model with Ensemble techniques, Neural Network and finally an ensemble model to 

find the patterns and more valuable information. 

Adebayo (2017) centred his work on building a robust malware detection system 

by improving apriori algorithm using particle swarm optimization and permission-

based features of Android applications to improve the classification system and detec-

tion rate of malicious applications. He used the particle swarm optimization (PSO) to 

generate candidates (flagbearers) from the future set of Android applications for the 

improvement of Apriori algorithm and Apriori Association Rule (AAR). Afterward, 

the Author formulated rules from the generated candidates using the AAR. The detec-

tion model was developed by using the flagbearers and rules to train seven distinct 

classification algorithms; Bayesian Classifier, Naive Bayes (NB), PART, Decision 

Tree (J48), Random Forest (RF), Neural Network (NN), and Classification-based 

Multiple Association Rule (CMAR). The total application data used was a sample of 

1500. The model developed from AAR-PSO performed better, having the best highest 

True Positive malware detection (TPR), lowest False positive (FPR), highest accura-

cy, and lowest error rate than any single model developed using the individual classi-

fication algorithm. 

Authors in [32] proposed two approaches that are based on machine learning for 

static analysis of Android malware. The first approach depended on Android permis-

sion features (such as, manifest analysis) while the second was dependent on the anal-

ysis of Android source code using a bag-of-words representation model. The work 

was aimed at demonstrating the efficacy of making use of machine learning methods 
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in Android malware static analysis. Classification and clustering are the two machine 

learning approaches utilized by the Authors but classification method was mostly 

used for malware detection. Clustering was only used to infer the class of unlabeled 

data were only very few labels are present in the data set and the labels derived via 

clustering were further used to retrain the classification model with more data. The 

authors performed the experiment with ensembles that included odd combinations of 

three and five classifiers using a fusion method called Majority voting. Four experi-

ments were performed in the study and they are; permission-based clustering, permis-

sion-based classification, source code-based clustering, and source code-based classi-

fication. A total of 400 applications (200 malicious and 200 benign) were used for the 

training and testing purposes for the models. Classification algorithms used for model 

building are Support Vector Machine (SVM), Decision Tree, C4.5, JRIP (Rule-

based), Random Forest, Linear regression and Random Tree. Clustering algorithm 

used are Farthest First, Simple K-means and Expectation maximization (EM). The 

study showed that the permission-based model was computationally inexpensive 

compared to the source code analysis model but source code analysis model had an F-

Measure of 95.1% against 89% for permission-based model. 

An anomaly based malware detection framework for the Android platform was 

proposed in [33]. They adopted behavioural analysis procedure for both malicious and 

benign application by practically running them on a physical Android device in order 

to analyze their behavioral patterns. Machine learning algorithms deployed for mal-

ware classification are Decision Tree, K Nearest Neighbor, Logistic Regression, Mul-

tilayer Perceptron Neural Network, Naïve Bayes, Random Forest, and Support Vector 

Machine. Each of the algorithms were assessed using performance metric. Their find-

ings revealed that Support Vector Machine and Random Forest provided the best 

outcomes for malware detection. 

Authors in [34] proposed a composite classification model using a parallel combi-

nation of heterogeneous classifiers for Android malware detection which employed 

static features, extracted from 6,863 app samples, for the algorithms training. The 

classifiers deployed are Decision Tree (Tree based), Naïve Baye (probabilistic), Sim-

ple Logistics (function-base), PART (Rule-based) and RIDOR (Rule-based). Four 

classifier combination approaches were compared together, that is Average of Proba-

bility, Maximum Probability, Product of Probability, and Majority Vote, using the 

classification algorithms. The composite model was aimed at enabling an enhancing 

early detection model for Android malware which has improved accuracy and that can 

provide a quicker white box analysis by means of more interpretable constituent clas-

sifiers. The aim of the approach was to leverage the strengths of different kinds of 

supervised learning algorithms in order to produce a single classification verdict for 

new application. Static features (Permissions, APIs, and Android framework com-

mands), collected from the Android application via reverse engineering procedure 

using a bespoke APK analysis tool written in Java, were utilized in their work for 

malware detection using machine learning. Their result showed that, for individual 

classifier, PART performed best while products of probabilities combination schemes 

showed best accuracy and TPR (True Positive Rate). 
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 Similarly, a meta-ensemble technique for Android malware detection was pro-

posed in [12]. They performed an intensive comparative analysis of different classifi-

cation algorithms precision and then selected the best combination of them based on 

the ensemble precision obtained. Features selection technique utilized are Chi-squared 

and Relief for balanced and unbalanced datasets. The data sets were further divided 

into different new datasets, beginning with the original balanced datasets to different 

imbalanced datasets. All possible learning algorithms were applied, using their default 

parameters in Weka for binary attributes and nominal class, on each of the dataset 

formulated in order to find best performing classifiers and the best dataset, to enable 

best combination options. Bayesian Log Regression (BLR), Support Vector Machine 

(SVM) via Sequential Minimal Optimization (SMO), Random Committee (RC), and 

Random Forest (RF) record best performance with RC and RF performing more ex-

ceptionally amongst the four. Identifying RC and RF as the best meta-learners algo-

rithms options, they were further combined together, using Random Forest with 200 

trees as based classifier in Random Committee meta-ensemble to form the global 

composite model. 

In a bit to overcome malware that uses obfuscation concealment methodologies to 

evade most state-of-the-art static based detection and analysis systems, DynaLog 

which is a dynamic Android malware analysis framework that characterizes Android 

applications was proposed in [35]. It is a behavioural based analysis system which 

depends mostly on the number of extensive dynamic features available in an applica-

tion. It provides an automated environment which is able to massively analyze and 

characterize applications, thus rapidly identifying and isolating those that are mali-

cious. The system is able to automatically accept huge amount of applications, serially 

start them on in an emulator, log the different dynamic behaviours and then take them 

out for further processing. DynaLog is built upon existing open source tools which 

gives it an advantage for a wide range scope for dynamic analysis of Android apps. 

Authors in [13] conducted a research on the application of machine learning algo-

rithm for the detection of Android malware. The research was focused on comparing 

different static features of applications in order to come out with the right static fea-

tures combination that can produce the most effective Machine Learning Detection 

Model. Principally, the research aimed at introducing some feature sets known from 

the desktop systems (x86 domain), but never previously used in the Android ecosys-

tem, into evaluating their effectiveness in aiding Android malware detections via 

Machine Learning. The new proposed features include Entropy of files in the re-

source-folder, Graphical User Interface (GUI) Layout, Number of methods and num-

ber of instructions per method. The Authors adopted WEKA Data Mining Software to 

enable them effectively classifies the different features. For the evaluation of the sys-

tem, they randomly divided their samples into training set and test set in the propor-

tion of 80 to 20. The test set does not contain any sample from the family of malware 

used in the training set. The comparative study was run to test both the individual and 

collective strength of the features. On individual bases, their results revealed that 

Android permissions are the best single predictor of the app’s malignity with an accu-

racy of about 96%. Others which have accuracy above 90% include opcode frequen-

cy, opcode sequences, and app components. Random Forest appeared as the best per-
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forming classifier. For the attributes or feature combination test, an accuracy of over 

97% was gotten from features extracted from the Android Manifest which includes 

permissions, features, intents, and application components. Thus, the best performing 

attribute can be derived rather from an app’s metadata stored in the Android Manifest 

than from the actual code of an app. 

Authors in [36] utilized an off-device static and dynamic analysis for the purpose 

of Android malware detection. Features extracted from manifest files and disassem-

bled codes were used by the Authors. The feature set, that are high-dimensional, in-

cludes permissions, file operations, intents, app developer Ids, API calls, components, 

network statistics, phone events, package serial numbers and lots other features. A 

linear classifier was used to detect malicious applications and assign a malicious score 

to the application using a scale of 3 to 4 being benign and being malicious. [28] fo-

cused attention on analyzing the common weaknesses found in existing Android 

malware analysis frameworks. The author noted that in order to create more resilient 

malware, malware authors are constantly studying the existing detection systems in 

order to know their detection techniques and principles which will enable them design 

malware that can evade them. The split-personality malware was the main focus be-

cause of their ability to evade most detection systems. The Author noted that most 

Android malware analysis frameworks are weak against malware characteristics such 

as code obfuscation which builds a very strong wall against static detections; finger-

printing characteristics renders especially the dynamic detection systems very useless; 

Application collusion characteristics which utilizes covert communication channels to 

initiate inter-process or application communications, defying the initial permissions 

granted an app at installation time. On defeating split-personality malware, the Author 

suggested the use of analysis frameworks like the BareCloud which adopts the bare-

metal analysis approach. 

Authors in [37] focused on how to identify and defeat the class of unknown mal-

ware known as the “0-day” malware. They developed a framework called Sherlock-

Droid. To detect unknown malware, the SherlockDroid works by filtering masses of 

applications and only keeps the most likely to be malicious for future inspections. 

Apart from crawling applications from marketplaces, SherlockDroid extracts code-

level features, and then classifies unknown applications using Alligator. Alligator is a 

classification tool that efficiently and automatically combines several classification 

algorithms. SherlockDroid considered features of Android applications extracted from 

a static analysis of the code. A lightweigth technique for Android malware called 

DREBIN that enables a direct malicious application detection on the Smartphone was 

proposed by [8]. DREBIN overcomes the limitations of lack of enough resources that 

hampers applications monitoring at run-time. It works by performing a wide static 

analysis, and gathering as many features (Permissions, API calls, hardware resources, 

app components, filtered intents and network addresses) of an application as possible. 

Joint vector space was used to embed these features such that typical patterns indica-

tive for malware are automatically fiqured out. Support Vector Machine was the ma-

chine learning approach adopted for the malware classification. DREBIN was evalu-

ated against other related approaches using 123,453 applications and 5,560 malware 

samples and the results showed that DREBIN performed better than the others with a 
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malware detection rate of 94% with very minimal false positive detection rate of 1%. 

DREBIN was tested on five different smartphones and recorded very high average 

speed of 10 seconds to run an analysis. Although their techniques made use of more 

features than applied in this study, they however only have 4.5% (5,560) malware 

samples out of the total 129,013 apps used, this percentage was too small to enable 

the system effectively learn malware patterns. Authors in [38] carried out an in-depth 

investigation of Android malware and their different analysis techniques. The study 

included the history, evolution, behaviour and the different methodologies available 

for the analysis of different Android threats. Having studied the activities of different 

malware, the authors revealed that at inception, malwares were mostly targeted at 

exploiting roots of devices for nefarious intents, but with the advancement in technol-

ogy, malcode developers now discovered it is no longer necessary to exploit roots of 

the device before being able to get what they want. The Authors noted that once in-

stalled and executed, Android malware would most times rather exploit the different 

variance of permissions allowed for the app to perform different malicious activities. 

The research revealed that Android malware operates mostly as Trojans. The Authors 

stated that the analysis of Android malware involves looking for additional class files 

because it has become a common phenomenon to easily modify Android apps and add 

extra class file, such as a Trojan component, to its code. The research observed that 

external tools are better suited to combat malware rather than having tools that runs 

inside the device. The infected device will create an unreliable environment for the 

analysis tools by influencing their activities and decisions. The work gave a detail 

explanation on the different analysis methods which includes Static Analysis, Behav-

ioural Analysis, and Dynamic Analysis through the Sandboxing Systems. They stated 

that strings are an essential part of any static malware analysis, possibly providing 

clues related to malware construction, functionality, authorship, and Command & 

Control (C & C). The research revealed that the most important strings of an app are 

found in classes.dex, the source code of apps, after they are unpacked. 

Authors in [34] developed and analyzed proactive Machine Learning approaches 

based on Bayesian classification aimed at uncovering unknown Android malware via 

static analysis. They presented and analyzed three Bayesian classification approaches 

for detecting Android malwares. Permissions and code based properties such as API 

calls, both Java system based and Android system based, Linux and Android system 

commands were also extracted from the sampled applications. The three models were 

built by extracting the different features from a set of 1000 samples of 49 Android 

malware families together with another 1000 benign applications across a wide varie-

ty of categories. They employed a Java-based custom built APK analyzer to automate 

the reverse engineering of all the APK files. A list of top 20 permissions and top API 

calls used by benign and malicious applications were presented. The research findings 

showed that models developed using mixed-based and code property-based features 

are a better choice than the permissions-only models. 

Authors in [39] investigated the effectiveness of antivirus solutions against An-

droid malware. The aim of their study was to come up with results to help both corpo-

rate and private users to assess the real risk level imposed by Android malware on the 

one hand, and the protection level offered by antivirus software on the other hand. 
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The motivation of the research was anchored on the very high detection rates attested 

by various antivirus testing security reports in circulation. The authors noted that the 

general perception of Android security has been largely shaped by two classes of 

reports: the one given by antivirus vendors and the one given by magazines, compa-

nies, and institutes who publish test reports of antivirus products. The authors chal-

lenged the different reports on the effectiveness of antivirus support because most of 

these reports were all based on retrospective antivirus security testing results. To test a 

real world performance of antivirus against unknown malware signatures, the authors 

subjected about eleven anti-viruses, which were tagged as the “test candidates”, cho-

sen to represent a fair number of well-known companies, to an experiment. The au-

thors only chose free or free-to-test versions of Android antivirus apps; they noted 

that the paid apps usually do not offer additional detection capabilities. The experi-

mental test was setup to consider the ability to cope with typical malware distribution 

channels, infection routines, and privilege escalation techniques. The research re-

vealed that it is very easy for malware to evade antivirus detection with only trivial 

alterations to their package files. For the experiment, the Authors developed a mal-

ware tagged as “Proof of Concept Malware” which demonstrates advanced function-

ality not found in most of the existing known Android malware. This proof of concept 

malware was totally strange to all anti-viruses as they are not familiar with its signa-

tures. 

The possibility of detecting malicious applications using permissions was explored 

in [40]. In order to retrieve the permissions, the authors disassembled APK packages, 

identified the invoked Android system functions and then reconstructed the permis-

sions used. To evaluate their detection model, the authors used a dataset of 124,769 

benign applications and 480 malicious ones, and 4 machine learning algorithms re-

spectively: AdaBoost, Naive Bayes, Decision Tree and Support Vector Machine. 

However, in order to help the detection mechanism, the authors used several other 

features (like the number of particular file formats and both the number of under-

privileged and over-privileged permissions) in addition to the permissions. The exper-

imental finding showed that about of applications that are malicious can be detected 

using a single classifier. They however concluded that a permission-based mechanism 

can only be used as a quick filter to identify malicious applications but that it still 

requires a second analysis system or pass, as they called it, to make complete analysis 

to report malicious application. Similarly, [26] introduced a complete automated and a 

comprehensive analysis system called ANDRUBIS, which combines both static and 

dynamic analysis methods and it is publicly available. The Authors considered as less 

effective the approach adopted by most malware analyst which typically relies on 

analysis tools to extract characteristic information about an app in an automated fash-

ion for the purpose of malware analysis. The challenge noted about this approach was 

that, though these analysis tools are very important, the resulting prototypes remain 

limited in terms of analysis capabilities and availability. Although a significant body 

of research uses both the static and dynamic analysis methods, none of them provide a 

comprehensive feature set for a sample. However, the Authors also suggested that 

post-analysis techniques such as clustering can produce more meaningful results if 

they are applied to a rich feature set. ANDRUBIS was built as an extension to the 
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public malware analysis sandbox called Anubis and it is for the analysis of unknown 

Android applications. However, the primary goal of ANDRUBIS as stated by the 

Authors is to provide researchers with a comprehensive static and dynamic analysis 

report of an application, not to automatically identify applications as goodware or 

malware. The data generated will then be used for malware analysis. 

The use of machine learning approach for the detection of Android malware was 

proposed in [41]. The proposed concept involved the use of one-class Vector Support 

Machine for the training of only benign Android applications in an off-line manner. 

The training of the algorithm was done using the SciKit-Learn framework because of 

its ability to provide a convenient interface to LIBSVM. Features, which were solely 

based on permission (built-in and non-standard), gotten from the Manifest folder, and 

Control Flow Graphs (CFGs) which were both extracted using Androguard, which is 

an effective open source tool. They focused mainly on training the model based on 

only benign application for the reason that they believe benign Android application 

are far more readily accessible than the malicious ones. The One-Class Support Vec-

tor Machine (SVM) adopted in the research is a linear classifier that is in a high-

dimensional feature space which is based on the constrained quadratic optimization 

problem. The detection is done by the model only when the classifier is able to classi-

fy an application (in this case, a training sample) as being sufficiently different from 

the benign class. Although this is a fast detection approach, but it is one sided, it does 

not include the malicious application which was added in this study. 

Authors in [42], presented andromaly, a host-based behavioural framework for 

anomaly detection on Android devices. Andromaly continuously monitors various 

features and events obtained from the mobile device and then passing the data through 

anomaly detectors that use Machine Learning. The data that was collected can then be 

classified as either benign or malicious. The framework was implemented using small 

application which once installed, it samples various pieces of packets sent via cellular 

or Wi-Fi networks, total number of processes running, battery consumption and so on, 

and then analyses if the phone is functioning normally, or there are some anomalies in 

the collected data. The framework utilizes the idea that malware that have not yet 

been encountered can be detected by analyzing the similarities shown in the fluctua-

tion of above mention system data with the introduction of already known malware. 

The framework is modular and can utilize various malware detection techniques using 

rules and algorithms besides its behavioural approach. 

Authors in [43] proposed DroidRanger, a permission-based behavioural foot-

printing scheme to detect new samples of known Android malware families. In 

DroidRanger, applications are firstly filtered based on the Android permissions re-

quird and, then, heauristcs-based filter is applied. This approach stands a better 

chance of combating zero-day malware as it is not based on signatures. This is be-

cause signature-based approaches are only reactive in nature, they can only work 

based on known signatures. The system uses an emulator for analysis which becomes 

a strong weakness that can be bypassed by the emulator-aware malware. This study 

therefore did not involve virtual environment for any of the components analysis. 

Similarly, a cloud-based security model, such as Android Application Sandbox (AA-

Sandbox) wasproposed in [2]. This system was able to perform both statistical and 
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dynamical analysis to automatically detect suspicious applications. AASandbox firstly 

performs a statistical analysis on the APK package in order to detect malicious pat-

terns. Afterwards, the dynamical analysis is performed in a fully isolated environ-

ment. During the dynamical analysis, all the events occurring in the device are moni-

tored. Though this system appears to be effective, especially that it mostly engages 

online scanning engines to scrutinize APKs, it cannot be totally free from error as it is 

cloud-based. It is also far away from the analyst who may have little or no control 

over the analysis and would thus accept any result generated by the system. This sys-

tem too can be evaded by the split-personality malware since it is also virtualized. 

5 Conclusion 

Android Operating System remains an opened platform with lots of rising mobile 

device hardware manufacturers adopting it as the main OS for their devices. This has 

substantiated a constant exponential introduction of different applications developed 

for the platform. A huge drawback to this system is that most of the applications de-

veloped don’t have a central control system for integrity check that would certify 

whether they are fit and secure to be released to the wider market or not. Due to this 

deficiency, lots of applications that were designed with good motive ends up becom-

ing malicious in their behaviours because of poor designs or unprofessional develop-

ers that are either not careful about leaving bugs in the code of the apps nor follow the 

right security procedures in the development processes. The volumes of these poorly 

designed applications, coupled with the volumes of those that are deliberately created 

for malicious purposes, have combined to form a great security challenge for the An-

droid platform. The advent of internet on these hand-held devices has massively cre-

ated an enabling channel for increased proliferations of these malware. All these secu-

rity threats targeted at the Android platform will continue to form the basis for which 

very many different researches will keep on being released with focus on the detec-

tion, analysis and remediation of evasive Android malware. Machine learning, which 

is a branch of Artificial Intelligent, has gained more popularity as the most suitable 

method for combating zero-day malware attacks. Hence, different novelty approaches 

for using machine learning methodologies will continue to be investigated and de-

ployed in malware detections. 
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