
Paper—Android Malware Detection Through Machine Learning Techniques: A Review

Android Malware Detection through Machine Learning

Techniques: A Review

https://doi.org/10.3991/ijoe.v16i02.11549

Oluwakemi Christiana Abikoye, Benjamin Aruwa Gyunka
University of Ilorin, Ilorin, Nigeria

Oluwatobi Noah Akande ()
Landmark University, Kwara State, Nigeria

olu_noah010@yahoo.com / akande.noah@lmu.edu.ng

Abstract—The open source nature of Android Operating System has at-

tracted wider adoption of the system by multiple types of developers. This phe-

nomenon has further fostered an exponential proliferation of devices running

the Android OS into different sectors of the economy. Although this develop-

ment has brought about great technological advancements and ease of doing

businesses (e-commerce) and social interactions, they have however become

strong mediums for the uncontrolled rising cyberattacks and espionage against

business infrastructures and the individual users of these mobile devices. Dif-

ferent cyberattacks techniques exist but attacks through malicious applications

have taken the lead aside other attack methods like social engineering. Android

malware have evolved in sophistications and intelligence that they have become

highly resistant to existing detection systems especially those that are signature-

based. Machine learning techniques have risen to become a more competent

choice for combating the kind of sophistications and novelty deployed by

emerging Android malwares. The models created via machine learning methods

work by first learning the existing patterns of malware behaviour and then use

this knowledge to separate or identify any such similar behaviour from un-

known attacks. This paper provided a comprehensive review of machine learn-

ing techniques and their applications in Android malware detection as found in

contemporary literature.

Keywords—Machine Learning, Ensemble Learning, Android Malware, An-

droid Malware Detection, Base Classifier, Static Analysis, Dynamic Analysis

1 Introduction

Research has shown that Android malware analysis can be done in three different

ways: The first method involves the deployment of static [1] and dynamic [2]. Inves-

tigation of code of application in order to spot components that are malicious before

loading the application into any device; The second method involve modification of

the Android system in order to put in modules for monitoring and interception of

abnormal behaviours that may occur on the device [3,4,5] while the third approach

14 http://www.i-joe.org

https://doi.org/10.3991/ijoe.v16i02.11549
mailto:olu_noah010@yahoo.com
mailto:akande.noah@lmu.edu.ng

Paper—Android Malware Detection Through Machine Learning Techniques: A Review

involve engaging virtualization to implement the separation of domains ranging from

lightweight isolation of an application on the device to running multiple instances of

Android OS on the same device [6,7].

However, recent study has shown that machine learning or “anomaly detection”

approaches have now emerged to become a leading and more effective approach for

defeating Android malware [8, 9, 10, 11]. Unlike the static analysis techniques that

involves the manual examination of the AndroidManifest.xml file, source files and the

Dalvik byte code, and the Dynamic analysis that involves running an application in a

controlled environment to study its behaviour, the Machine Learning approach in-

volves learning the general rules and patterns from benign and malicious app samples

and then allowing data-driven predictions of decisions, such as classification [12].

Machine learning methodologies largely depends on static attributes extracted from an

application [13]. The static components of an Android application provide the base-

line upon which machine learning approaches are anchored and these static features

are carefully gotten through the process of reverse engineering.

Machine learning techniques have been applied widely for the classification of ap-

plications, focusing mainly on generic malware detection. The application of machine

learning in Android malware detection helps eliminate the difficulty involved with

manually crafting and updating detection patterns [8]. Machine Learning is a proce-

dure that analyzes data using software techniques (algorithms) to create a model, as

shown in Fig. 1, which is useful for finding patterns and regularities in datasets [14].

It is a process of making machines learn from past experiences (existing data) in order

to make decisions on future occurring events or data instances. Feature vectors are

very essential elements of Machine Learning and they are usually built for the specific

task the Machine Algorithm intent to accomplish. The basic idea behind Machine

Learning is to get the probability distribution of data.

Fig. 1. Classification process in Machine Learning [15].

Machine Learning is divided into three main categories and they are Supervised

Machine Learning [16, 17, 18] and unsupervised machine learning [18] and Re-

enforcement Machine Learning [19]. Furthermore, there are three basic Learning

Methods associated with each Learning Category; Classifications, Clustering, and

Regression. Classification is the process used in Supervised Learning in which the

data sets are well labelled into groups or classes; Clustering is the process used in

unsupervised learning for unlabelled data sets; and Regression is best associated with

Re-enforcement learning in which the expected end result is being ranked, graded or

iJOE ‒ Vol. 16, No. 2, 2020 15

Paper—Android Malware Detection Through Machine Learning Techniques: A Review

estimated. A label is the name of the definite class or group the data instances belongs

to. In machine learning, data are represented by a fixed number of features which can

either be categorical, nominal, or continuous [20]. This paper gives a thorough review

of different existing literatures in the field of Android malware detections using ma-

chine learning techniques.

2 Android Application Anatomy

All Android applications are created and compiled as Android Package (APK) file

[21, 22]. The APK file is simply a ZIP format archive file that is renamed to have apk

extension [23]. The content consists of a Dalvik executables, resources, native librar-

ies and a manifest file; and is usually signed by the developer of the application using

self-signed certificate [21, 22]. In particular, the APK file would usually contain two

folders (META-INF and res) and three files (Classes.dex, AndroidManifest.xml, Re-

sources.arsc) [21]. The classes.dex and AndroidManifest.xml are the most delicate

and important components of the APK file which are usually the high targets of mal-

ware creators [24, 25].

Fig. 2. An APK unzipped file displaying its contents [23].

The classes.dex is the dalvik Virtual Machine (VM) executable file which contains

the main working code of the application. That is, the payloads of an application are

created and defined in classes.dex file. The application code is compiled and stored in

dex format. The AndroidManifest.xml provides a semantic-rich information about the

application which includes the version and required permissions governing an app’s

operations. Attackers target these two files to either inject malicious code into clas-

ses.dex [25] or alter the permissions in AndroidManifest.xml for different nefarious

16 http://www.i-joe.org

Paper—Android Malware Detection Through Machine Learning Techniques: A Review

purposes. Therefore, for every Android application, the manifest file is of great im-

portance for the purpose of malware analysis because it defines a list of the various

application components which includes requested permissions, services, broadcast

receivers, activities, package name, and SDK version [26]. Without this basic detailed

information found in the manifest, an application cannot be installed or executed.

As noted earlier, the open nature of Android OS has attracted the interest of lots of

developers but has also opened a very wide door for introduction and propagation of

malicious applications. Google Play Store, Package Installer and adb Install are the

three major mediators or mediums through which application packages can be in-

stalled in an Android device [22]. Installations via Google Play Store and Package

Install are able to be monitored and scrutinized through the Permission model, but the

adb install provides a more dangerous and quiet way of installing apps via USB which

cannot be controlled since authentications and permissions are not deployed at this

medium. [22] continued by noting that apps which are signed with the same certificate

are able to share data between each other and may have the same UID and can even

run the same process. This is important to note especially in knowing the origin of a

set of malware or applications. Certificate is used for assurance that the code of the

original application and its updates come from the same place, and to establish trust

relationships between applications of the same developer. Although every application

must be digitally signed before it is released and installed on a device, but the critical

questions is, can the developer of an app and the digital signature be trusted by the

end users and can the apps be trusted to be resistant to tempering once released or

installed?

3 Android Malware Attack Trends

Authors in [27, 28] showed in their works that malware attack methods can be

characterized as follows:

 Information Extraction: The malware in this category compromises a device and

then steals personal information such as IMEI number, user’s personal information

and many more.

 Automatic Calls and SMS: This group of malware increases a user’s phone bill

by placing automatic calls and sending SMS to some premium numbers.

 Root Exploits: These set of malware seek to gain system root privileges in order to

take control of the system and modify the system’s configuration and other system

information.

 Search Engine Optimizations: The malware here artificially searches for a term

and simulates clicks on targeted websites in order to increase the revenue of a

search engine or increase the traffic on a website.

 Dynamically Downloaded Code: This technique enables an installed benign ap-

plication to download a malicious code and deploys it in the mobile devices with-

out the user being aware.

 Covert and Overt Communication Channels: This is a vulnerability that is

found in a device that facilitates the information leak between the processes that

iJOE ‒ Vol. 16, No. 2, 2020 17

Paper—Android Malware Detection Through Machine Learning Techniques: A Review

are not supposed to share the information. This technique is seen as a highly so-

phisticated.

 Botnets: This is a network of compromised mobile devices with a Bot-Master

which is controlled by a Command and Control servers (C&C). It carries out Spam

delivery, DDoS (Distributed Denial of Service) attacks on the host devices.

Malware Authors use many techniques to evade detection. [29] pointed out these

concealment techniques to include code obfuscation techniques, encryptions, unnec-

essary permissions which are not needed by the application, requesting for unwanted

hardware, and download or update attacks in which a benign application updates itself

or another application with malicious payloads.

4 Existing Literature

Authors in [30] proposed a novel classifier fusion approach called DroidFusion that

is based on a multilevel architecture which enables effective machine learning algo-

rithm combination in order to produce an improved accuracy. DroidFusion works by

training the base classifiers at a lower level in order to create a model and then a set of

ranking-based algorithms are applied on their predictive accuracies at the higher level

so as to generate schemes for combination in which one was chosen to build a final

classification model. Stratified 10-fold cross validation technique was applied on the

training set that was used in training the base classifiers at the lower level in order to

estimate their relative prediction accuracies. The authors utilized five base classifiers:

J48, REPTree, Random Tree-100, Random Tree-9, and Voted Perceptron.

DroidFusion was shown to have outperformed all the base classifiers on all the data

sets provided and it also was shown to outperform Stacked Generalization.

A framework for the detection of Android malicious application that was based on

Support Vector Machine (SVM) and Active Learning technologies was proposed in

[31]. Dynamic data (feature) extraction was employed by the Authors and timestamps

was attached to some of the features in order to use a novel time-dependent behavior

tracking to significantly enhance the malware detection accuracy. In order to build an

active learning model, the authors made use of expected error reduction query strate-

gy so as to combine Android malware new informative instances and to retrain the

model in order to be able to do adaptive online learning. To evaluate their model, the

authors utilized the DREBIN benchmark malware dataset via a set of experiments and

their findings revealed that their framework could detect new malware more accurate-

ly.

Authors in [10] conducted a survey with focus on showing the application and the

use of ML methods in the analysis of malware. The Authors observed that machine

learning is one of the most common techniques adopted in literatures for the analysis

of complex malware. The study grouped learning algorithms into four main classes:

signature-based (the matching of malicious signatures, the matching of malicious

graph), classification (Bayes classifier, prototype-based classification, rule-based

classifier, support vector machine, k-Nearest neighbors, decision tree, and artificial

neural network etc.), clustering (k-Means clustering, hierarchical clustering, clustering

18 http://www.i-joe.org

Paper—Android Malware Detection Through Machine Learning Techniques: A Review

with locality sensitive hashing, density-based spatial clustering of applications with

noise, clustering with distance and similarity metrics, self-organizing maps, proto-

type-based clustering) and others (learning with local and global consistency, expecta-

tion maximization, belief propagation).

Idrees et al. (2017) proposed PIndroid, which was a novel Android malware apps

detection framework that uses permissions and intents features for the training of

models and further employed classifier fusion technique to combine the classifiers

together for an improved performance. The authors used 1745 app samples to conduct

the experiments beginning with a comparison of performance between six classifiers:

Multi-Lateral Perceptron (MLP), Decision Table, Decision Tree, Random Forest,

Naïve Bayesian and Support Vector Machine (SVM) using Sequential Minimal Opti-

mization (SMO). They combined the Decision Table, MLP, and Decision Tree classi-

fiers using three fusion schemes which are Average of Probabilities, Product of Prob-

abilities, and Majority Voting. The framework provided 99.8% True Positive detec-

tion accuracy rate, 1.1% False Positive detection rate and an F-measure of 99.7%

through the Product of probability combination method.

Dong (2017) worked using permissions as his primary features to develop a novel

detection system for Android malware. The collection of both benign and malicious

Apps samples was done using a web crawler. To perform the reverse engineering

process, the author developed a tool to decompile the Apps to source code and mani-

fest files automatically. One of the findings was that distribution of permissions for

Apps share a difference between malware dataset and benign datasets. The Author

combined machine learning algorithms such as Logistic Regression Model, Tree

Model with Ensemble techniques, Neural Network and finally an ensemble model to

find the patterns and more valuable information.

Adebayo (2017) centred his work on building a robust malware detection system

by improving apriori algorithm using particle swarm optimization and permission-

based features of Android applications to improve the classification system and detec-

tion rate of malicious applications. He used the particle swarm optimization (PSO) to

generate candidates (flagbearers) from the future set of Android applications for the

improvement of Apriori algorithm and Apriori Association Rule (AAR). Afterward,

the Author formulated rules from the generated candidates using the AAR. The detec-

tion model was developed by using the flagbearers and rules to train seven distinct

classification algorithms; Bayesian Classifier, Naive Bayes (NB), PART, Decision

Tree (J48), Random Forest (RF), Neural Network (NN), and Classification-based

Multiple Association Rule (CMAR). The total application data used was a sample of

1500. The model developed from AAR-PSO performed better, having the best highest

True Positive malware detection (TPR), lowest False positive (FPR), highest accura-

cy, and lowest error rate than any single model developed using the individual classi-

fication algorithm.

Authors in [32] proposed two approaches that are based on machine learning for

static analysis of Android malware. The first approach depended on Android permis-

sion features (such as, manifest analysis) while the second was dependent on the anal-

ysis of Android source code using a bag-of-words representation model. The work

was aimed at demonstrating the efficacy of making use of machine learning methods

iJOE ‒ Vol. 16, No. 2, 2020 19

Paper—Android Malware Detection Through Machine Learning Techniques: A Review

in Android malware static analysis. Classification and clustering are the two machine

learning approaches utilized by the Authors but classification method was mostly

used for malware detection. Clustering was only used to infer the class of unlabeled

data were only very few labels are present in the data set and the labels derived via

clustering were further used to retrain the classification model with more data. The

authors performed the experiment with ensembles that included odd combinations of

three and five classifiers using a fusion method called Majority voting. Four experi-

ments were performed in the study and they are; permission-based clustering, permis-

sion-based classification, source code-based clustering, and source code-based classi-

fication. A total of 400 applications (200 malicious and 200 benign) were used for the

training and testing purposes for the models. Classification algorithms used for model

building are Support Vector Machine (SVM), Decision Tree, C4.5, JRIP (Rule-

based), Random Forest, Linear regression and Random Tree. Clustering algorithm

used are Farthest First, Simple K-means and Expectation maximization (EM). The

study showed that the permission-based model was computationally inexpensive

compared to the source code analysis model but source code analysis model had an F-

Measure of 95.1% against 89% for permission-based model.

An anomaly based malware detection framework for the Android platform was

proposed in [33]. They adopted behavioural analysis procedure for both malicious and

benign application by practically running them on a physical Android device in order

to analyze their behavioral patterns. Machine learning algorithms deployed for mal-

ware classification are Decision Tree, K Nearest Neighbor, Logistic Regression, Mul-

tilayer Perceptron Neural Network, Naïve Bayes, Random Forest, and Support Vector

Machine. Each of the algorithms were assessed using performance metric. Their find-

ings revealed that Support Vector Machine and Random Forest provided the best

outcomes for malware detection.

Authors in [34] proposed a composite classification model using a parallel combi-

nation of heterogeneous classifiers for Android malware detection which employed

static features, extracted from 6,863 app samples, for the algorithms training. The

classifiers deployed are Decision Tree (Tree based), Naïve Baye (probabilistic), Sim-

ple Logistics (function-base), PART (Rule-based) and RIDOR (Rule-based). Four

classifier combination approaches were compared together, that is Average of Proba-

bility, Maximum Probability, Product of Probability, and Majority Vote, using the

classification algorithms. The composite model was aimed at enabling an enhancing

early detection model for Android malware which has improved accuracy and that can

provide a quicker white box analysis by means of more interpretable constituent clas-

sifiers. The aim of the approach was to leverage the strengths of different kinds of

supervised learning algorithms in order to produce a single classification verdict for

new application. Static features (Permissions, APIs, and Android framework com-

mands), collected from the Android application via reverse engineering procedure

using a bespoke APK analysis tool written in Java, were utilized in their work for

malware detection using machine learning. Their result showed that, for individual

classifier, PART performed best while products of probabilities combination schemes

showed best accuracy and TPR (True Positive Rate).

20 http://www.i-joe.org

Paper—Android Malware Detection Through Machine Learning Techniques: A Review

 Similarly, a meta-ensemble technique for Android malware detection was pro-

posed in [12]. They performed an intensive comparative analysis of different classifi-

cation algorithms precision and then selected the best combination of them based on

the ensemble precision obtained. Features selection technique utilized are Chi-squared

and Relief for balanced and unbalanced datasets. The data sets were further divided

into different new datasets, beginning with the original balanced datasets to different

imbalanced datasets. All possible learning algorithms were applied, using their default

parameters in Weka for binary attributes and nominal class, on each of the dataset

formulated in order to find best performing classifiers and the best dataset, to enable

best combination options. Bayesian Log Regression (BLR), Support Vector Machine

(SVM) via Sequential Minimal Optimization (SMO), Random Committee (RC), and

Random Forest (RF) record best performance with RC and RF performing more ex-

ceptionally amongst the four. Identifying RC and RF as the best meta-learners algo-

rithms options, they were further combined together, using Random Forest with 200

trees as based classifier in Random Committee meta-ensemble to form the global

composite model.

In a bit to overcome malware that uses obfuscation concealment methodologies to

evade most state-of-the-art static based detection and analysis systems, DynaLog

which is a dynamic Android malware analysis framework that characterizes Android

applications was proposed in [35]. It is a behavioural based analysis system which

depends mostly on the number of extensive dynamic features available in an applica-

tion. It provides an automated environment which is able to massively analyze and

characterize applications, thus rapidly identifying and isolating those that are mali-

cious. The system is able to automatically accept huge amount of applications, serially

start them on in an emulator, log the different dynamic behaviours and then take them

out for further processing. DynaLog is built upon existing open source tools which

gives it an advantage for a wide range scope for dynamic analysis of Android apps.

Authors in [13] conducted a research on the application of machine learning algo-

rithm for the detection of Android malware. The research was focused on comparing

different static features of applications in order to come out with the right static fea-

tures combination that can produce the most effective Machine Learning Detection

Model. Principally, the research aimed at introducing some feature sets known from

the desktop systems (x86 domain), but never previously used in the Android ecosys-

tem, into evaluating their effectiveness in aiding Android malware detections via

Machine Learning. The new proposed features include Entropy of files in the re-

source-folder, Graphical User Interface (GUI) Layout, Number of methods and num-

ber of instructions per method. The Authors adopted WEKA Data Mining Software to

enable them effectively classifies the different features. For the evaluation of the sys-

tem, they randomly divided their samples into training set and test set in the propor-

tion of 80 to 20. The test set does not contain any sample from the family of malware

used in the training set. The comparative study was run to test both the individual and

collective strength of the features. On individual bases, their results revealed that

Android permissions are the best single predictor of the app’s malignity with an accu-

racy of about 96%. Others which have accuracy above 90% include opcode frequen-

cy, opcode sequences, and app components. Random Forest appeared as the best per-

iJOE ‒ Vol. 16, No. 2, 2020 21

Paper—Android Malware Detection Through Machine Learning Techniques: A Review

forming classifier. For the attributes or feature combination test, an accuracy of over

97% was gotten from features extracted from the Android Manifest which includes

permissions, features, intents, and application components. Thus, the best performing

attribute can be derived rather from an app’s metadata stored in the Android Manifest

than from the actual code of an app.

Authors in [36] utilized an off-device static and dynamic analysis for the purpose

of Android malware detection. Features extracted from manifest files and disassem-

bled codes were used by the Authors. The feature set, that are high-dimensional, in-

cludes permissions, file operations, intents, app developer Ids, API calls, components,

network statistics, phone events, package serial numbers and lots other features. A

linear classifier was used to detect malicious applications and assign a malicious score

to the application using a scale of 3 to 4 being benign and being malicious. [28] fo-

cused attention on analyzing the common weaknesses found in existing Android

malware analysis frameworks. The author noted that in order to create more resilient

malware, malware authors are constantly studying the existing detection systems in

order to know their detection techniques and principles which will enable them design

malware that can evade them. The split-personality malware was the main focus be-

cause of their ability to evade most detection systems. The Author noted that most

Android malware analysis frameworks are weak against malware characteristics such

as code obfuscation which builds a very strong wall against static detections; finger-

printing characteristics renders especially the dynamic detection systems very useless;

Application collusion characteristics which utilizes covert communication channels to

initiate inter-process or application communications, defying the initial permissions

granted an app at installation time. On defeating split-personality malware, the Author

suggested the use of analysis frameworks like the BareCloud which adopts the bare-

metal analysis approach.

Authors in [37] focused on how to identify and defeat the class of unknown mal-

ware known as the “0-day” malware. They developed a framework called Sherlock-

Droid. To detect unknown malware, the SherlockDroid works by filtering masses of

applications and only keeps the most likely to be malicious for future inspections.

Apart from crawling applications from marketplaces, SherlockDroid extracts code-

level features, and then classifies unknown applications using Alligator. Alligator is a

classification tool that efficiently and automatically combines several classification

algorithms. SherlockDroid considered features of Android applications extracted from

a static analysis of the code. A lightweigth technique for Android malware called

DREBIN that enables a direct malicious application detection on the Smartphone was

proposed by [8]. DREBIN overcomes the limitations of lack of enough resources that

hampers applications monitoring at run-time. It works by performing a wide static

analysis, and gathering as many features (Permissions, API calls, hardware resources,

app components, filtered intents and network addresses) of an application as possible.

Joint vector space was used to embed these features such that typical patterns indica-

tive for malware are automatically fiqured out. Support Vector Machine was the ma-

chine learning approach adopted for the malware classification. DREBIN was evalu-

ated against other related approaches using 123,453 applications and 5,560 malware

samples and the results showed that DREBIN performed better than the others with a

22 http://www.i-joe.org

Paper—Android Malware Detection Through Machine Learning Techniques: A Review

malware detection rate of 94% with very minimal false positive detection rate of 1%.

DREBIN was tested on five different smartphones and recorded very high average

speed of 10 seconds to run an analysis. Although their techniques made use of more

features than applied in this study, they however only have 4.5% (5,560) malware

samples out of the total 129,013 apps used, this percentage was too small to enable

the system effectively learn malware patterns. Authors in [38] carried out an in-depth

investigation of Android malware and their different analysis techniques. The study

included the history, evolution, behaviour and the different methodologies available

for the analysis of different Android threats. Having studied the activities of different

malware, the authors revealed that at inception, malwares were mostly targeted at

exploiting roots of devices for nefarious intents, but with the advancement in technol-

ogy, malcode developers now discovered it is no longer necessary to exploit roots of

the device before being able to get what they want. The Authors noted that once in-

stalled and executed, Android malware would most times rather exploit the different

variance of permissions allowed for the app to perform different malicious activities.

The research revealed that Android malware operates mostly as Trojans. The Authors

stated that the analysis of Android malware involves looking for additional class files

because it has become a common phenomenon to easily modify Android apps and add

extra class file, such as a Trojan component, to its code. The research observed that

external tools are better suited to combat malware rather than having tools that runs

inside the device. The infected device will create an unreliable environment for the

analysis tools by influencing their activities and decisions. The work gave a detail

explanation on the different analysis methods which includes Static Analysis, Behav-

ioural Analysis, and Dynamic Analysis through the Sandboxing Systems. They stated

that strings are an essential part of any static malware analysis, possibly providing

clues related to malware construction, functionality, authorship, and Command &

Control (C & C). The research revealed that the most important strings of an app are

found in classes.dex, the source code of apps, after they are unpacked.

Authors in [34] developed and analyzed proactive Machine Learning approaches

based on Bayesian classification aimed at uncovering unknown Android malware via

static analysis. They presented and analyzed three Bayesian classification approaches

for detecting Android malwares. Permissions and code based properties such as API

calls, both Java system based and Android system based, Linux and Android system

commands were also extracted from the sampled applications. The three models were

built by extracting the different features from a set of 1000 samples of 49 Android

malware families together with another 1000 benign applications across a wide varie-

ty of categories. They employed a Java-based custom built APK analyzer to automate

the reverse engineering of all the APK files. A list of top 20 permissions and top API

calls used by benign and malicious applications were presented. The research findings

showed that models developed using mixed-based and code property-based features

are a better choice than the permissions-only models.

Authors in [39] investigated the effectiveness of antivirus solutions against An-

droid malware. The aim of their study was to come up with results to help both corpo-

rate and private users to assess the real risk level imposed by Android malware on the

one hand, and the protection level offered by antivirus software on the other hand.

iJOE ‒ Vol. 16, No. 2, 2020 23

Paper—Android Malware Detection Through Machine Learning Techniques: A Review

The motivation of the research was anchored on the very high detection rates attested

by various antivirus testing security reports in circulation. The authors noted that the

general perception of Android security has been largely shaped by two classes of

reports: the one given by antivirus vendors and the one given by magazines, compa-

nies, and institutes who publish test reports of antivirus products. The authors chal-

lenged the different reports on the effectiveness of antivirus support because most of

these reports were all based on retrospective antivirus security testing results. To test a

real world performance of antivirus against unknown malware signatures, the authors

subjected about eleven anti-viruses, which were tagged as the “test candidates”, cho-

sen to represent a fair number of well-known companies, to an experiment. The au-

thors only chose free or free-to-test versions of Android antivirus apps; they noted

that the paid apps usually do not offer additional detection capabilities. The experi-

mental test was setup to consider the ability to cope with typical malware distribution

channels, infection routines, and privilege escalation techniques. The research re-

vealed that it is very easy for malware to evade antivirus detection with only trivial

alterations to their package files. For the experiment, the Authors developed a mal-

ware tagged as “Proof of Concept Malware” which demonstrates advanced function-

ality not found in most of the existing known Android malware. This proof of concept

malware was totally strange to all anti-viruses as they are not familiar with its signa-

tures.

The possibility of detecting malicious applications using permissions was explored

in [40]. In order to retrieve the permissions, the authors disassembled APK packages,

identified the invoked Android system functions and then reconstructed the permis-

sions used. To evaluate their detection model, the authors used a dataset of 124,769

benign applications and 480 malicious ones, and 4 machine learning algorithms re-

spectively: AdaBoost, Naive Bayes, Decision Tree and Support Vector Machine.

However, in order to help the detection mechanism, the authors used several other

features (like the number of particular file formats and both the number of under-

privileged and over-privileged permissions) in addition to the permissions. The exper-

imental finding showed that about of applications that are malicious can be detected

using a single classifier. They however concluded that a permission-based mechanism

can only be used as a quick filter to identify malicious applications but that it still

requires a second analysis system or pass, as they called it, to make complete analysis

to report malicious application. Similarly, [26] introduced a complete automated and a

comprehensive analysis system called ANDRUBIS, which combines both static and

dynamic analysis methods and it is publicly available. The Authors considered as less

effective the approach adopted by most malware analyst which typically relies on

analysis tools to extract characteristic information about an app in an automated fash-

ion for the purpose of malware analysis. The challenge noted about this approach was

that, though these analysis tools are very important, the resulting prototypes remain

limited in terms of analysis capabilities and availability. Although a significant body

of research uses both the static and dynamic analysis methods, none of them provide a

comprehensive feature set for a sample. However, the Authors also suggested that

post-analysis techniques such as clustering can produce more meaningful results if

they are applied to a rich feature set. ANDRUBIS was built as an extension to the

24 http://www.i-joe.org

Paper—Android Malware Detection Through Machine Learning Techniques: A Review

public malware analysis sandbox called Anubis and it is for the analysis of unknown

Android applications. However, the primary goal of ANDRUBIS as stated by the

Authors is to provide researchers with a comprehensive static and dynamic analysis

report of an application, not to automatically identify applications as goodware or

malware. The data generated will then be used for malware analysis.

The use of machine learning approach for the detection of Android malware was

proposed in [41]. The proposed concept involved the use of one-class Vector Support

Machine for the training of only benign Android applications in an off-line manner.

The training of the algorithm was done using the SciKit-Learn framework because of

its ability to provide a convenient interface to LIBSVM. Features, which were solely

based on permission (built-in and non-standard), gotten from the Manifest folder, and

Control Flow Graphs (CFGs) which were both extracted using Androguard, which is

an effective open source tool. They focused mainly on training the model based on

only benign application for the reason that they believe benign Android application

are far more readily accessible than the malicious ones. The One-Class Support Vec-

tor Machine (SVM) adopted in the research is a linear classifier that is in a high-

dimensional feature space which is based on the constrained quadratic optimization

problem. The detection is done by the model only when the classifier is able to classi-

fy an application (in this case, a training sample) as being sufficiently different from

the benign class. Although this is a fast detection approach, but it is one sided, it does

not include the malicious application which was added in this study.

Authors in [42], presented andromaly, a host-based behavioural framework for

anomaly detection on Android devices. Andromaly continuously monitors various

features and events obtained from the mobile device and then passing the data through

anomaly detectors that use Machine Learning. The data that was collected can then be

classified as either benign or malicious. The framework was implemented using small

application which once installed, it samples various pieces of packets sent via cellular

or Wi-Fi networks, total number of processes running, battery consumption and so on,

and then analyses if the phone is functioning normally, or there are some anomalies in

the collected data. The framework utilizes the idea that malware that have not yet

been encountered can be detected by analyzing the similarities shown in the fluctua-

tion of above mention system data with the introduction of already known malware.

The framework is modular and can utilize various malware detection techniques using

rules and algorithms besides its behavioural approach.

Authors in [43] proposed DroidRanger, a permission-based behavioural foot-

printing scheme to detect new samples of known Android malware families. In

DroidRanger, applications are firstly filtered based on the Android permissions re-

quird and, then, heauristcs-based filter is applied. This approach stands a better

chance of combating zero-day malware as it is not based on signatures. This is be-

cause signature-based approaches are only reactive in nature, they can only work

based on known signatures. The system uses an emulator for analysis which becomes

a strong weakness that can be bypassed by the emulator-aware malware. This study

therefore did not involve virtual environment for any of the components analysis.

Similarly, a cloud-based security model, such as Android Application Sandbox (AA-

Sandbox) wasproposed in [2]. This system was able to perform both statistical and

iJOE ‒ Vol. 16, No. 2, 2020 25

Paper—Android Malware Detection Through Machine Learning Techniques: A Review

dynamical analysis to automatically detect suspicious applications. AASandbox firstly

performs a statistical analysis on the APK package in order to detect malicious pat-

terns. Afterwards, the dynamical analysis is performed in a fully isolated environ-

ment. During the dynamical analysis, all the events occurring in the device are moni-

tored. Though this system appears to be effective, especially that it mostly engages

online scanning engines to scrutinize APKs, it cannot be totally free from error as it is

cloud-based. It is also far away from the analyst who may have little or no control

over the analysis and would thus accept any result generated by the system. This sys-

tem too can be evaded by the split-personality malware since it is also virtualized.

5 Conclusion

Android Operating System remains an opened platform with lots of rising mobile

device hardware manufacturers adopting it as the main OS for their devices. This has

substantiated a constant exponential introduction of different applications developed

for the platform. A huge drawback to this system is that most of the applications de-

veloped don’t have a central control system for integrity check that would certify

whether they are fit and secure to be released to the wider market or not. Due to this

deficiency, lots of applications that were designed with good motive ends up becom-

ing malicious in their behaviours because of poor designs or unprofessional develop-

ers that are either not careful about leaving bugs in the code of the apps nor follow the

right security procedures in the development processes. The volumes of these poorly

designed applications, coupled with the volumes of those that are deliberately created

for malicious purposes, have combined to form a great security challenge for the An-

droid platform. The advent of internet on these hand-held devices has massively cre-

ated an enabling channel for increased proliferations of these malware. All these secu-

rity threats targeted at the Android platform will continue to form the basis for which

very many different researches will keep on being released with focus on the detec-

tion, analysis and remediation of evasive Android malware. Machine learning, which

is a branch of Artificial Intelligent, has gained more popularity as the most suitable

method for combating zero-day malware attacks. Hence, different novelty approaches

for using machine learning methodologies will continue to be investigated and de-

ployed in malware detections.

6 References

[1] Enck, W. (2011). Defending users against smartphone apps: Techniques and future direc-

tions. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 7093 LNCS, 49–70.

https://doi.org/10.1007/978-3-642-25560-1_3

[2] Bläsing, T., Batyuk, L., Schmidt, A. D., Camtepe, S. A., & Albayrak, S. (2010). An an-

droid application sandbox system for suspicious software detection. Proceedings of the 5th

IEEE International Conference on Malicious and Unwanted Software, Malware 2010, 55–

62. https://doi.org/10.1109/malware.2010.5665792

26 http://www.i-joe.org

https://doi.org/10.1007/978-3-642-25560-1_3
https://doi.org/10.1109/malware.2010.5665792

Paper—Android Malware Detection Through Machine Learning Techniques: A Review

[3] Backes, M., Gerling, S., Hammer, C., Maffei, M., & Philipp, von S.-R. (2012). AppGuard

— Real-time policy en- forcement for third-party applications. Saarbrücken, Germany.

[4] Nauman, M., Khan, S., & Zhang, X. (2010). Apex. Proceedings of the 5th ACM Symposi-

um on Information, Computer and Communications Security - ASIACCS ’10, 328. https://

doi.org/10.1145/1755688.1755732

[5] Xu, R., Saïdi, H., Anderson, R., & Saıdi, H. (2012). Aurasium: Practical Policy Enforce-

ment for Android Applications. In Proceedings of the 21st USENIX Security Symposium

(pp. 539–552).

[6] Andrus, J., Dall, C., Hof, A. V., Laadan, O., & Nieh, J. (2011). Cells. Proceedings of the

Twenty-Third ACM Symposium on Operating Systems Principles - SOSP ’11, 173.

https://doi.org/10.1145/2043556.2043574

[7] Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A., & Peter, M. (2011). L4Android: A

Generic Operating System Framework for Secure Smartphones. Proceedings of the 1st

ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, 39–50.

https://doi.org/10.1145/2046614.2046623

[8] Arp, D., Spreitzenbarth, M., Malte, H., Gascon, H., & Rieck, K. (2014). Drebin: Effective

and Explainable Detection of Android Malware in Your Pocket. In Symposium on Net-

work and Distributed System Security (NDSS) (pp. 23–26). https://doi.org/10.

14722/ndss.2014.23247

[9] Demontis, A., Melis, M., Biggio, B., Maiorca, D., Arp, D., Rieck, K., Roli, F. (2017). Yes,

Machine Learning Can Be More Secure! A Case Study on Android Malware Detection, 1–

14. https://doi.org/10.1109/tdsc.2017.2700270

[10] Ucci, D., Aniello, L., & Baldoni, R. (2018). Survey on the Usage of Machine Learning

Techniques for Malware Analysis. Computers and Security, 1(1), 1–67.

https://doi.org/10.1016/j.cose.2018.11.001

[11] Rescuers, V. (2018). How Cybercriminals became ‘The New Mafia.’ Retrieved January

31, 2018, from http://www.virusrescuers.com/how-cybercriminals-became-the-new-mafia/

[12] Coronado-De-Alba, L. D., Rodriguez-Mota, A., & Ambrosio, P. J. E.-. (2016). Feature se-

lection and ensemble of classifiers for Android malware detection. In 2016 8th IEEE Lat-

in-American Conference on Communications (LATINCOM) (pp. 1–6). https://doi.org/10.

1109/latincom.2016.7811605

[13] Hahn, S., Protsenko, M., & Müller, T. (2016). Comparative evaluation of machine learn-

ing-based malware detection on Android. In Sicherheit 2016: Sicherheit, Schutz und Zu-

verl{ä}ssigkeit, Beitr{ä}ge der 8. Jahrestagung des Fachbereichs Sicherheit der Gesell-

schaft f{ü}r Informatik e.V. (GI), 5.-7. April 2016, Bonn (pp. 79–88). https://doi.org/10.10

07/978-3-662-01089-1_31

[14] Russell, I., & Markov, Z. (2017). An Introduction to the Weka Data Mining System. In

Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Edu-

cation - SIGCSE ’17 (pp. 742–742). https://doi.org/10.1145/3017680.3017821

[15] Tan, P.-N., Steinbach, M., & Kumar, V. (2006). Classification : Basic Concepts , Decision

Trees , and Model Evaluation Classification. Introduction to Data Mining, 1, 145–205.

[16] Brownlee, J. (2016). Supervised and Unsupervised Machine Learning Algorithms. Re-

trieved May 13, 2018, from http://machinelearningmastery.com/supervised-and-

unsupervised-machine-learning-algorithms/ https://doi.org/10.1007/978-3-030-22475-2_1

[17] Garg, B. (2013). Design and Development of Naive Bayes Classifier (Master Thesis).

North Dakota State University of Agriculture and Applied Science.

[18] Namratha, M., & Prajwala, T. R. (2012). A Comprehensive Overview of Clustering Algo-

rithms in Pattern Recognition. Journal of Computer Engineering, 4(6), 23–30.

iJOE ‒ Vol. 16, No. 2, 2020 27

https://doi.org/10.1145/1755688.1755732
https://doi.org/10.1145/1755688.1755732
https://doi.org/10.1145/2043556.2043574
https://doi.org/10.1145/2046614.2046623
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.1109/tdsc.2017.2700270
https://doi.org/10.1016/j.cose.2018.11.001
https://doi.org/10.1109/latincom.2016.7811605
https://doi.org/10.1109/latincom.2016.7811605
https://doi.org/10.1007/978-3-662-01089-1_31
https://doi.org/10.1007/978-3-662-01089-1_31
https://doi.org/10.1145/3017680.3017821
http://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
http://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
https://doi.org/10.1007/978-3-030-22475-2_1

Paper—Android Malware Detection Through Machine Learning Techniques: A Review

[19] Scott, G. (2015). ML 101: Reinforcement Learning. Retrieved November 23, 2017, from

http://scottge.net/2015/07/02/ml101-reinforcement-learning/

[20] Guyon, I., & Elisseeff, A. (2006). Feature Extraction, Foundations and Applications: An

introduction to feature extraction. Studies in Fuzziness and Soft Computing, 207, 1–25.

https://doi.org/10.1007/978-3-540-35488-8_1

[21] Rovelli, P. (2014). Developing a Next-Generation Mobile Security Solution for Android

(Master Thesis). Reykjavík University.

[22] Zhauniarovich, Y. (2014). Android TM Security (and Not) Internals (ASANI Book)

(1.01). Trento: asani.

[23] Fora, P. O. (2014). Beginners Guide to Reverse Engineering Android Apps. In RSA Con-

ference (pp. 21–22). San Francisco: RSA.

[24] Shah, R. (2011). Analyzing and Dissecting Android Applications for Security defects and

Vulnerabilities. Retrieved January 6, 2018, from https://www.helpnetsecurity.com

/dl/articles/Blueinfy_Rushil_ScanDroid_Paper.pdf

[25] Tchakounté, F., & Dayang, P. (2013). System Calls Analysis of Malwares on Android. In-

ternational Journal of Science and Technology, 2(9), 669–674.

[26] Weichselbaum, L., Neugschwandtner, M., Lindorfer, M., Fratantonio, Y., Veen, V. Van

Der, & Platzer, C. (2012). ANDRUBIS : Android Malware Under The Magnifying Glass.

Vienna University of Technology, Technical Report (Vol. TR-ISECLAB). Vienna Univer-

isty of Technology.

[27] Raveendranath, R., Rajamani, V., Babu, A. J., & Datta, S. K. (2014). Android malware at-

tacks and countermeasures: Current and future directions. 2014 International Conference

on Control, Instrumentation, Communication and Computational Technologies, ICCICCT

2014, 137–143. https://doi.org/10.1109/iccicct.2014.6992944

[28] Richter, L. (2015). Common Weaknesses of Android Malware Analysis Frameworks. In

IT Security Conference, University of Erlangen-Nuremberg during summer term 2015 (pp.

1–10). Erlangen.

[29] Baskaran, B., & Ralescu, A. (2016). A Study of Android Malware Detection Techniques

and Machine Learning. In Proceedings of the 27th Modern Artificial Intelligence and Cog-

nitive Science Conference 2016, Dayton, OH, USA, April 22-23, 2016. (pp. 15–23).

[30] Yerima, Suleiman Y., Sezer, S., & Muttik, I. (2016). Android Malware Detection Using

Parallel Machine Learning Classifiers. 2014 Eighth International Conference on Next Gen-

eration Mobile Apps, Services and Technologies, (Ngmast), 37–42. https://doi.org/10.1

109/ngmast.2014.23

[31] Rashidi, B., Fung, C., & Bertino, E. (2018). Android malicious application detection using

support vector machine and active learning. In 2017 13th International Conference on

Network and Service Management, CNSM 2017 (Vol. 2018-Janua).

https://doi.org/10.23919/cnsm.2017.8256035

[32] Milosevic, N., Dehghantanha, A., & Choo, K. K. R. (2017). Machine learning aided An-

droid malware classification. Computers and Electrical Engineering, 61, 266–274. https://

doi.org/10.1016/j.compeleceng.2017.02.013

[33] Ali, M. Al, Svetinovic, D., Aung, Z., & Lukman, S. (2017). Malware Detection in Android

Mobile Platform using Machine Learning Algorithms. In International Conference on In-

focom Technologies and Unmanned Systems (ICTUS’2017) (pp. 4–9). ADET: IEEE. https

://doi.org/10.1109/ictus.2017.8286109

[34] Yerima, Suleiman Y., & Sezer, S. (2018). DroidFusion: A Novel Multilevel Classifier Fu-

sion Approach for Android Malware Detection. In IEEE Transactions on Cybernetics (pp.

1–14). IEEE. https://doi.org/10.1109/tcyb.2017.2777960

28 http://www.i-joe.org

http://scottge.net/2015/07/02/ml101-reinforcement-learning/
https://doi.org/10.1007/978-3-540-35488-8_1
https://www.helpnetsecurity.com/dl/articles/Blueinfy_Rushil_ScanDroid_Paper.pdf
https://www.helpnetsecurity.com/dl/articles/Blueinfy_Rushil_ScanDroid_Paper.pdf
https://doi.org/10.1109/iccicct.2014.6992944
https://doi.org/10.1109/ngmast.2014.23
https://doi.org/10.1109/ngmast.2014.23
https://doi.org/10.23919/cnsm.2017.8256035
https://doi.org/10.1016/j.compeleceng.2017.02.013
https://doi.org/10.1016/j.compeleceng.2017.02.013
https://doi.org/10.1109/ictus.2017.8286109
https://doi.org/10.1109/ictus.2017.8286109
https://doi.org/10.1109/tcyb.2017.2777960

Paper—Android Malware Detection Through Machine Learning Techniques: A Review

[35] Alzaylaee, M. K., Yerima, S. Y., & Sezer, S. (2016). DynaLog: An automated dynamic

analysis framework for characterizing android applications. In 2016 International Confer-

ence on Cyber Security and Protection of Digital Services, Cyber Security 2016 (pp. 1–8).

https://doi.org/10.1109/cybersecpods.2016.7502337

[36] Lindorfer, M., Neugschwandtner, M., & Platzer, C. (2015). MARVIN: Efficient and Com-

prehensive Mobile App Classification through Static and Dynamic Analysis. In 2015 IEEE

39th Annual Computer Software and Applications Conference (COMPSAC) (Vol. 2, pp.

422–433). IEEE. https://doi.org/10.1109/compsac.2015.103

[37] Apvrille, L., & Apvrille, A. (2015). Identifying unknown android malware with feature ex-

tractions and classification techniques. Proceedings - 14th IEEE International Conference

on Trust, Security and Privacy in Computing and Communications, TrustCom 2015, 1,

182–189. https://doi.org/10.1109/trustcom.2015.373

[38] Dunham, K., Hartman, S., Morales, J. A., Quintans, M., & Strazzere, T. (2014). Android

malware and analysis (1st ed.). New York: Auerbach Publications. https://doi.org/10.1

201/b17598

[39] Fedler, R., Schütte, J., & Kulicke, M. (2013). On the Effectiveness of Malware Protection

on Android. In Fraunhofer AISEC (p. 36). Berlin.

[40] Huang, C. Y., Tsai, Y. T., & Hsu, C. H. (2013). Performance Evaluation on Permission-

Based Detection for Android Malware. In Smart Innovation, Systems and Technologies

(Vol. 21, pp. 111–120). Berlin: Springer-Verlag Berlin Heidelberg.

[41] Sahs, J., & Khan, L. (2012). A Machine Learning Approach to Android Malware Detec-

tion. In Intelligence and Security Informatics Conference (pp. 141–147). Dallas: IEEE.

https://doi.org/10.1109/eisic.2012.34

[42] Shabtai, A; Kanonov, U; Elovici, Y; Glezer, C; Weiss, Y. (2012). “Andromaly”: a behav-

ioral malware detection framework for android devices. Journal of Intelligent Information

Systems, 38(1), 161–190. https://doi.org/10.1007/s10844-010-0148-x

[43] Zhou, W., Zhou, Y., Jiang, X., & Ning, P. (2012). Detecting repackaged smartphone appli-

cations in third-party android marketplaces. Proceedings of the Second ACM Conference

on Data and Application Security and Privacy - CODASKY ’12, 317–326.

https://doi.org/10.1145/2133601.2133640

7 Authors

Oluwakemi Christiana Abikoye received a National Diploma (ND) in Computer

Science from Kwara State Polytechnic, Ilorin in 1996, a B. Sc. degree in Computer

Science from University of Ilorin in 2001, M. Sc degree in Computer Science from

University of Ibadan, Ibadan in 2006 and Ph.D. degree in Computer Science in 2013..

She began her academic career at University of Ilorin, Department of Computer Sci-

ence in 2004 as a Graduate Assistant and rose through the ranks. She is presently a

Senior Lecturer. Oluwakemi is known for her innovative work in Comput-

er/Communication Network Security, particularly on issues involving Security in

computer, networks and Cash dispenser machines and transaction authentication sys-

tem. Her research interests include Cryptography, Biometrics, Human-Computer

Interaction, and Cybersecurity. She is also involved in the supervision of postgraduate

(Masters/Ph.D.) students' research work in specialized areas of Computer (Infor-

mation Security). She has several publications in Local, national and international

journals.

iJOE ‒ Vol. 16, No. 2, 2020 29

https://doi.org/10.1109/cybersecpods.2016.7502337
https://doi.org/10.1109/compsac.2015.103
https://doi.org/10.1109/trustcom.2015.373
https://doi.org/10.1201/b17598
https://doi.org/10.1201/b17598
https://doi.org/10.1109/eisic.2012.34
https://doi.org/10.1007/s10844-010-0148-x
https://doi.org/10.1145/2133601.2133640

Paper—Android Malware Detection Through Machine Learning Techniques: A Review

Benjamin Aruwa Gyunka graduated with a Doctor of Philosophy degree (Ph.D.)

in Computer Science from the University of Ilorin, Nigeria. He also holds a Bachelor

of Science degree in Mathematics from the University of Jos and a Master of Science

degree in Information Systems Security from Sheffield Hallam University, United

Kingdom. Prior to this time, he had extensive experience as a Network Administrator

while working with the National Open University of Nigeria (NOUN). His research

interest lies mostly in Information Security, Cybersecurity, data mining, Android

security, digital forensics, and machine learning.

Akande Noah Oluwatobi had B. Sc. and M. Sc. degrees in Computer Science

from Ladoke Akintola University of Technology. He presently lectures in the De-

partment of Computer Science, Landmark University, Omu-Aran, Nigeria. He is a

member of Computer Professional (Registration Council) of Nigeria (MCPN), Mem-

ber, Nigeria Computer Society (MNCS), and IAENG Society of Computer Science.

His research areas include Data and Information Security, and Pattern Recognition

(Medical Image Analysis).

Email: akande.noah@lmu.edu.ng / olu_noah010@yahoo.com

Article submitted 2019-08-20. Resubmitted 2019-09-17. Final acceptance 2019-09-21. Final version
published as submitted by the authors.

30 http://www.i-joe.org

mailto:akande.noah@lmu.edu.ng
mailto:olu_noah010@yahoo.com
mailto:olu_noah010@yahoo.com

	iJOE – Vol. 16, No. 2, 2020
	Android Malware Detection Through Machine Learning Techniques: A Review

